Magnetoelectric Composites for Bionics Applications
Magnetoelectric Composites for Bionics Applications
Tian Zheng
University of Wollongong, ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute/AIIM Facility, Innovation Campus, Squires Way, NSW 2522 Australia
Search for more papers by this authorYan Zong
University of Wollongong, ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute/AIIM Facility, Innovation Campus, Squires Way, NSW 2522 Australia
Search for more papers by this authorZhilian Yue
University of Wollongong, ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute/AIIM Facility, Innovation Campus, Squires Way, NSW 2522 Australia
Search for more papers by this authorGordon G. Wallace
University of Wollongong, ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute/AIIM Facility, Innovation Campus, Squires Way, NSW 2522 Australia
Search for more papers by this authorMichael J. Higgins
University of Wollongong, ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute/AIIM Facility, Innovation Campus, Squires Way, NSW 2522 Australia
Search for more papers by this authorTian Zheng
University of Wollongong, ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute/AIIM Facility, Innovation Campus, Squires Way, NSW 2522 Australia
Search for more papers by this authorYan Zong
University of Wollongong, ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute/AIIM Facility, Innovation Campus, Squires Way, NSW 2522 Australia
Search for more papers by this authorZhilian Yue
University of Wollongong, ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute/AIIM Facility, Innovation Campus, Squires Way, NSW 2522 Australia
Search for more papers by this authorGordon G. Wallace
University of Wollongong, ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute/AIIM Facility, Innovation Campus, Squires Way, NSW 2522 Australia
Search for more papers by this authorMichael J. Higgins
University of Wollongong, ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute/AIIM Facility, Innovation Campus, Squires Way, NSW 2522 Australia
Search for more papers by this authorSenentxu Lanceros-Méndez
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorPedro Martins
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorSummary
This chapter provides an introduction to bionics and highlight the general attributes of polymer-based electrodes in this field. Magnetoelectric (ME) composites bring new and exciting opportunities, which include contactless or “wireless” electrical stimulation and related advances in dispersible, injectable nanoelectrodes. Piezoelectric polymers have been used for electrical stimulation of cells, namely, to promote their growth via mechanically driven stimulation. The chapter focuses on the role of the ferroelectric polymers, their biocompatibility, and biointeractions and explores the prospects of developing ME composites based on biopolymers such as cellulose, collagen, and DNA. It then discusses the ability to fabricate nanostructured and nanoscale ME composites and unprecedented capabilities in bionics through recent demonstration of using ME composite nanoparticles for stimulating the brain. The chapter highlights some of the enabling nanoscale characterization tools that are critical in understanding the ME interface and their interactions with proteins and living cells at the molecular level.
References
-
Wallace, G.G., Moulton, S., Kapsa, R.M., and Higgins, M. (2012) Organic Bionics, John Wiley & Sons, Inc..
10.1002/9783527646029 Google Scholar
- Weiland, J.D., Anderson, D.J., and Humayun, M.S. (2002) In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans. Biomed. Eng., 49, 1574–1579.
- Geddes, L. and Roeder, R. (2003) Criteria for the selection of materials for implanted electrodes. Ann. Biomed. Eng., 31, 879–890.
- Merrill, D.R., Bikson, M., and Jefferys, J.G. (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods, 141, 171–198.
- Polikov, V.S., Tresco, P.A., and Reichert, W.M. (2005) Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods, 148, 1–18.
- Green, R.A., Lovell, N.H., Wallace, G.G., and Poole-Warren, L.A. (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials, 29, 3393–3399.
- Wallace, G.G. and Spinks, G.M. (2007) Conducting polymers: a bridge across the bionic interface. Chem. Eng. Prog., 103 (12), S18–S24.
- Hassler, C., Boretius, T., and Stieglitz, T. (2011) Polymers for neural implants. J. Polym. Sci., Part B: Polym. Phys., 49, 18–33.
- Gilmore, K.J., Kita, M., Han, Y., Gelmi, A., Higgins, M.J., Moulton, S.E., Clark, G.M., Kapsa, R., and Wallace, G.G. (2009) Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components. Biomaterials, 30, 5292–5304.
- Liu, X., Gilmore, K.J., Moulton, S.E., and Wallace, G.G. (2009) Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites. J. Neural Eng., 6, 065002.
- Thompson, B.C., Richardson, R.T., Moulton, S.E., Evans, A.J., O'Leary, S., Clark, G.M., and Wallace, G.G. (2010) Conducting polymers, dual neurotrophins and pulsed electrical stimulation – dramatic effects on neurite outgrowth. J. Controlled Release, 141, 161–167.
- Ludwig, K.A., Uram, J.D., Yang, J.Y., Martin, D.C., and Kipke, D.R. (2006) Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (pedot) film. J. Neural Eng., 3, 59–70.
- Khodagholy, D., Doublet, T., Gurfinkel, M., Quilichini, P., Ismailova, E., Leleux, P., Herve, T., Sanaur, S., Bernard, C., and Malliaras, G.G. (2011) Highly conformable conducting polymer electrodes for in vivo recordings. Adv. Mater., 23, H268–H272.
- Cogan, S.F. (2008) Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng., 10, 275–309.
- Guimard, N.K., Gomez, N., and Schmidt, C.E. (2007) Conducting polymers in biomedical engineering. Prog. Polym. Sci., 32, 876–921.
- Cui, X.Y., Lee, V.A., Raphael, Y., Wiler, J.A., Hetke, J.F., Anderson, D.J., and Martin, D.C. (2001) Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res., 56, 261–272.
- Ateh, D.D., Navsaria, H.A., and Vadgama, P. (2006) Polypyrrole-based conducting polymers and interactions with biological tissues. J. R. Soc. Interface, 3, 741–752.
- Schmidt, C.E., Shastri, V.R., Vacanti, J.P., and Langer, R. (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. U.S.A., 94, 8948–8953.
- Svennersten, K., Berggren, M., Richter-Dahlfors, A., and Jager, E.W.H. (2011) Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip, 11, 3287–3293.
- Lee, Y.S., Collins, G., and Arinzeh, T.L. (2011) Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomater., 7, 3877–3886.
- Lee, Y.S. and Arinzeh, T.L. (2012) The influence of piezoelectric scaffolds on neural differentiation of human neural stem/progenitor cells. Tissue Eng. Part A, 18, 2063–2072.
- Ribeiro, C., Sencadas, V., Correia, D.M., and Lanceros-Méndez, S. (2015) Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf., B, 136, 46–55.
-
Ikada, Y., Shikinami, Y., Hara, Y., Tagawa, M., and Fukada, E. (1996) Enhancement of bone formation by drawn poly(l-lactide). J. Biomed. Mater. Res., 30, 553–558.
10.1002/(SICI)1097-4636(199604)30:4<553::AID-JBM14>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- Prabhakaran, M.P., Venugopal, J., and Ramakrishna, S. (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater., 5, 2884–2893.
- Damaraju, S.M., Wu, S., Jaffe, M., and Arinzeh, T.L. (2013) Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomed. Mater., 8, 045007.
- Royo-Gascon, N., Wininger, M., Scheinbeim, J.I., Firestein, B.L., and Craelius, W. (2013) Piezoelectric substrates promote neurite growth in rat spinal cord neurons. Ann. Biomed. Eng., 41, 112–122.
- Rodrigues, M.T., Gomes, M.E., Mano, J.F., and Reis, R.L. (2008) B-PVDF membranes induce cellular proliferation and differentiation in static and dynamic conditions. Mater. Sci. Forum, 587–588, 72–76.
- Ribeiro, C., Moreira, S., Correia, V., Sencadas, V., Rocha, J.G., Gama, F.M., Gómez Ribelles, J.L., and Lanceros-Méndez, S. (2012) Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Adv., 2, 11504.
- Chang, J., Dommer, M., Chang, C., and Lin, L. (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy, 1, 356–371.
- Karan, S.K., Mandal, D., and Khatua, B.B. (2015) Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale, 7, 10655–10666.
- Hong, C.-C., Huang, S.-Y., Shieh, J., and Chen, S.-H. (2012) Enhanced piezoelectricity of nanoimprinted sub-20 nm poly(vinylidene fluoride–trifluoroethylene) copolymer nanograss. Macromolecules, 45, 1580–1586.
- Lee, S.J., Arun, A.P., and Kim, K.J. (2015) Piezoelectric properties of electrospun poly(L-lactic acid) nanofiber web. Mater. Lett., 148, 58–62.
- Liu, M., Shen, G., Xu, W., and Shen, G. (2007) Synthesis of a novel aromatic–aliphatic hyperbranched polyamide and its application in piezoelectric immunosensors. Polym. Int., 56, 1432–1439.
- Martins, P., Costa, C.M., Benelmekki, M., Botelho, G., and Lanceros-Mendez, S. (2012) On the origin of the electroactive poly(vinylidene fluoride) B-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm, 14, 2807.
- Ribeiro, C., Sencadas, V., Gomez Ribelles, J.L., and Lanceros-Mendez, S. (2010) Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes. Soft Mater., 8, 274–287.
- California, A., Cardoso, V.F., Costa, C.M., Sencadas, V., Botelho, G., Gomez-Ribelles, J.L., and Lanceros-Mendez, S. (2011) Tailoring porous structure of ferroelectric poly(vinylidene fluoride-trifluoroethylene) by controlling solvent/polymer ratio and solvent evaporation rate. Eur. Polym. J., 47, 2442–2450.
- Ribeiro, C., Panadero, J.A., Sencadas, V., Lanceros-Mendez, S., Tamano, M.N., Moratal, D., Salmeron-Sanchez, M., and Gomez Ribelles, J.L. (2012) Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomed. Mater., 7, 035004.
- Guo, H.F., Li, Z.S., Dong, S.W., Chen, W.J., Deng, L., Wang, Y.F., and Ying, D.J. (2012) Piezoelectric Pu/PVDF electrospun scaffolds for wound healing applications. Colloids Surf., B, 96, 29–36.
- Low, Y.K., Meenubharathi, N., Niphadkar, N.D., Boey, F.Y., and Ng, K.W. (2011) Alpha- and beta-poly(vinylidene fluoride) evoke different cellular behaviours. J. Biomater. Sci., Polym. Ed., 22, 1651–1667.
- Low, Y.K., Zou, X., Fang, Y.M., Wang, J.L., Lin, W.S., Boey, F.Y., and Ng, K.W. (2014) Beta-phase poly(vinylidene fluoride) films encouraged more homogeneous cell distribution and more significant deposition of fibronectin towards the cell-material interface compared to alpha-phase poly(vinylidene fluoride) films. Mater. Sci. Eng., C, 34, 345–353.
- Ni, P., Fu, S., Fan, M., Guo, G., Shi, S., Peng, J., Luo, F., and Qian, Z. (2011) Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering. Int. J. Nanomed., 6, 3065–3075.
- Haaparanta, A.-M., Jarvinen, E., Cengiz, I.F., Ella, V., Kokkonen, H.T., Kiviranta, I., and Kellomaki, M. (2014) Preparation and characterization of collagen/pla, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. J. Mater. Sci. Mater. Med., 25, 1129–1136.
- Bago, J.R., Pegna, G.J., Okolie, O., Mohiti-Asli, M., Loboa, E.G., and Hingtgen, S.D. (2016) Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma. Biomaterials, 90, 116–125.
- Xie, J.W., MacEwan, M.R., Willerth, S.M., Li, X.R., Moran, D.W., Sakiyama-Elbert, S.E., and Xia, Y.N. (2009) Conductive core-sheath nanofibers and their potential application in neural tissue engineering. Adv. Funct. Mater., 19, 2312–2318.
- Shao, S., Zhou, S., Li, L., Li, J., Luo, C., Wang, J., Li, X., and Weng, J. (2011) Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials, 32, 2821–2833.
- Ribeiro, C., Correia, V., Martins, P., Gama, F.M., and Lanceros-Mendez, S. (2016) Proving the suitability of magnetoelectric stimuli for tissue engineering applications. Colloids Surf., B, 140, 430–436.
- Ashmore, J. (2008) Cochlear outer hair cell motility. Physiol. Rev., 88, 173–210.
- Inaoka, T., Shintaku, H., Nakagawa, T., Kawano, S., Ogita, H., Sakamoto, T., Hamanishi, S., Wada, H., and Ito, J. (2011) Piezoelectric materials mimic the function of the cochlear sensory epithelium. Proc. Natl. Acad. Sci. U.S.A., 108, 18390–18395.
- Kargol, A.M., Malkinski, L., and Caruntu, G. (2012) in Advanced Magnetic Materials (ed. L. Malkinski), InTech, Rijeka, pp. 89–118.
- Hu, Z., Tian, M., Nysten, B., and Jonas, A.M. (2009) Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat. Mater., 8, 62–67.
- Liu, Y., Weiss, D.N., and Li, J. (2010) Rapid nanoimprinting and excellent piezoresponse of polymeric ferroelectric nanostructures. ACS Nano, 4, 83–90.
- Mandal, D., Yoon, S., and Kim, K.J. (2011) Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol. Rapid Commun., 32, 831–837.
- Oh, S., Kim, Y., Choi, Y.-Y., Kim, D., Choi, H., and No, K. (2012) Fabrication of vertically well-aligned P(VDF-TrFE) nanorod arrays. Adv. Mater., 24, 5708–5712.
- Lutkenhaus, J.L., McEnnis, K., Serghei, A., and Russell, T.P. (2010) Confinement effects on crystallization and curie transitions of poly(vinylidene fluoride-co-trifluoroethylene). Macromolecules, 43, 3844–3850.
- Cauda, V., Torre, B., Falqui, A., Canavese, G., Stassi, S., Bein, T., and Pizzi, M. (2012) Confinement in oriented mesopores induces piezoelectric behavior of polymeric nanowires. Chem. Mater., 24, 4215–4221.
- Cauda, V., Stassi, S., Bejtka, K., and Canayese, G. (2013) Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. ACS Appl. Mater. Interfaces, 5, 6430–6437.
- Goncalves, R., Martins, P., Moya, X., Ghidini, M., Sencadas, V., Botelho, G., Mathur, N.D., and Lanceros-Mendez, S. (2015) Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres. Nanoscale, 7, 8058–8061.
- Gonçalves, R., Martins, P., Correia, D.M., Sencadas, V., Vilas, J.L., León, L.M., Botelho, G., and Lanceros-Méndez, S. (2015) Development of magnetoelectric CoFe2O4/poly(vinylidene fluoride) microspheres. RSC Adv., 5, 35852–35857.
-
Paluszek, M., Avirovik, D., Zhou, Y., Kundu, S., Chopra, A., Montague, R., and Priya, S. (2015) in Composite Magnetoelectrics (eds G. Srinivasan, S. Priya, and N.X. Sun), Woodhead Publishing, Cambridge, pp. 297–327.
10.1016/B978-1-78242-254-9.00011-1 Google Scholar
- Yue, K., Guduru, R., Hong, J., Liang, P., Nair, M., and Khizroev, S. (2012) Magneto-electric nano-particles for non-invasive brain stimulation. PLoS One, 7, article no.: e44040.
- Guduru, R., Liang, P., Runowicz, C., Nair, M., Atluri, V., and Khizroev, S. (2013) Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Sci. Rep., 3, article no.: UNSP 2953.
- Rodzinski, A. et al. (2016) Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles. Sci. Rep., 6, article no.: 20867.
- Guduru, R., Liang, P., Hong, J., Rodzinski, A., Hadjikhani, A., Horstmyer, J., Levister, E., and Khizroev, S. (2015) Magnetoelectric ‘spin’ on stimulating the brain. Nanomedicine, 10, 2051–2061.
- Fukada, E. (1955) Piezoelectricity of wood. J. Phys. Soc. Jpn., 10, 149–154.
- Fukada, E. (1956) On the piezoelectric effect of silk fibers. J. Phys. Soc. Jpn., 11, 1301.
- Fukada, E. and Yasuda, I. (1957) On the piezoelectric effect of bone. J. Phys. Soc. Jpn., 12, 1158–1162.
- Fukada, E. and Yasuda, I. (1964) Piezoelectric effects in collagen. Jpn. J. Appl. Phys., 3, 117.
- Lang, S.B. (1966) Pyroelectric effect in bone and tendon. Nature, 212, 704–705.
- Di Lullo, G.A., Sweeney, S.M., Körkkö, J., Ala-Kokko, L., and San Antonio, J.D. (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem., 277, 4223–4231.
- Fukada, E. (1983) Piezoelectric properties of biological polymers. Q. Rev. Biophys., 16, 59–87.
- Rinaudo, M. (2006) Chitin and chitosan: properties and applications. Prog. Polym. Sci., 31, 603–632.
- Moon, R.J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J. (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 40, 3941–3994.
- Ando, Y. and Fukada, E. (1976) Piezoelectric properties of oriented deoxyribonucleate films. J. Polym. Sci., Part B: Polym. Phys., 14, 63–79.
- Csoka, L., Hoeger, I.C., Rojas, O.J., Peszlen, I., Pawlak, J.J., and Peralta, P.N. (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett., 1, 867–870.
- Lee, B.Y., Zhang, J., Zueger, C., Chung, W.-J., Yoo, S.Y., Wang, E., Meyer, J., Ramesh, R., and Lee, S.-W. (2012) Virus-based piezoelectric energy generation. Nat. Nanotechnol., 7, 351–356.
- Fukada, E. (1950) Vibrational study of the wood used for the sound boards of pianos. Nature (London), 166, 772–773.
-
Fukada, E., Date, M., and Hirai, N. (1968) Effect of temperature on piezoelectricity in wood. J. Polym. Sci., Part C: Polym. Symp., 23, 509–517.
10.1002/polc.5070230208 Google Scholar
- Maeda, H. and Fukada, E. (1987) Effect of bound water on piezoelectric, dielectric, and elastic properties of wood. J. Appl. Polym. Sci., 33, 1187–1198.
- Kim, J., Yun, S., and Ounaies, Z. (2006) Discovery of cellulose as a smart material. Macromolecules, 39, 4202–4206.
- Kim, J., Kang, Y., and Yun, S. (2007) Blocked force measurement of electro-active paper actuator by micro-balance. Sens. Actuators, A, 133, 401–406.
- Jaehwan, K. and Yung, B.S. (2002) Electro-active paper actuators. Smart Mater. Struct., 11, 355.
- Yun, G.Y., Kim, H.S., Kim, J., Kim, K., and Yang, C. (2008) Effect of aligned cellulose film to the performance of electro-active paper actuator. Sens. Actuators, A, 141, 530–535.
- Yun, S., Kim, J.H., Li, Y., and Kim, J. (2008) Alignment of cellulose chains of regenerated cellulose by corona poling and its piezoelectricity. J. Appl. Phys., 103, 083301.
- Sungryul, Y., Sangdong, J., Gyu-Young, Y., and Jaehwan, K. (2009) Electrically aligned cellulose film for electro-active paper and its piezoelectricity. Smart Mater. Struct., 18, 117001.
- Yang, C., Kim, J.-H., Kim, J.-H., Kim, J., and Kim, H.S. (2009) Piezoelectricity of wet drawn cellulose electro-active paper. Sens. Actuators, A, 154, 117–122.
- Nogi, M. and Yano, H. (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater., 20, 1849–1852.
- Zhu, H., Xiao, Z., Liu, D., Li, Y., Weadock, N.J., Fang, Z., Huang, J., and Hu, L. (2013) Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci., 6, 2105–2111.
- Srinivasan, G. (2010) Magnetoelectric composites. Annu. Rev. Mater. Res., 40, 153–178.
- Lu, S.G., Jin, J.Z., Zhou, X., Fang, Z., Wang, Q., and Zhang, Q.M. (2011) Large magnetoelectric coupling coefficient in poly(vinylidene fluoride-hexafluoropropylene)/Metglas laminates. J. Appl. Phys., 110, 104103.
- Silva, M., Reis, S., Lehmann, C.S., Martins, P., Lanceros-Mendez, S., Lasheras, A., Gutierrez, J., and Barandiaran, J.M. (2013) Optimization of the magnetoelectric response of poly(vinylidene fluoride)/epoxy/Vitrovac laminates. ACS Appl. Mater. Interfaces, 5, 10912–10919.
- Jin, J., Zhao, F., Han, K., Haque, M.A., Dong, L., and Wang, Q. (2014) Multiferroic polymer laminate composites exhibiting high magnetoelectric response induced by hydrogen-bonding interactions. Adv. Funct. Mater., 24, 1067–1073.
- Wong, C.K. and Shin, F.G. (2007) Effect of inclusion deformation on the magnetoelectric effect of particulate magnetostrictive/piezoelectric composites. J. Appl. Phys., 102, 063908.
- Martins, P., Lasheras, A., Gutierrez, J., Barandiaran, J.M., Orue, I., and Lanceros-Mendez, S. (2011) Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nanocomposites. J. Phys. D: Appl. Phys., 44, 495303.
- Martins, P., Moya, X., Caparrós, C., Fernandez, J., Mathur, N.D., and Lanceros-Mendez, S. (2013) Large linear anhysteretic magnetoelectric voltage coefficients in CoFe2O4/polyvinylidene fluoride 0–3 nanocomposites. J. Nanopart. Res., 15, article no.: UNSP 1825.
- Guthner, P. and Dransfeld, K. (1992) Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett., 61, 1137–1139.
- Rodriguez, B.J., Callahan, C., Kalinin, S.V., and Proksch, R. (2007) Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology, 18, 475504.
- Guo, H.Y., Xu, J.B., Wilson, I.H., Xie, Z., Luo, E.Z., Hong, S.B., and Yan, H. (2002) Study of domain stability on (Pb0.76Ca0.24)TiO3 thin films using piezoresponse microscopy. Appl. Phys. Lett., 81, 715–717.
- Jesse, S., Baddorf, A.P., and Kalinin, S.V. (2006) Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett., 88, 062908.
- Xie, S., Ma, F., Liu, Y., and Li, J. (2011) Multiferroic CoFe2O4–Pb(Zr(0.52)Ti(0.48))O3 core-shell nanofibers and their magnetoelectric coupling. Nanoscale, 3, 3152–3158.
- Zhu, Q., Xie, Y., Zhang, J., Liu, Y., Zhan, Q., Miao, H., and Xie, S. (2014) Multiferroic CoFe2O4–BiFeO3 core–shell nanofibers and their nanoscale magnetoelectric coupling. J. Mater. Res., 29, 657–664.
- Caruntu, G., Yourdkhani, A., Vopsaroiu, M., and Srinivasan, G. (2012) Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy. Nanoscale, 4, 3218–3227.
- Vopsaroiu, M., Stewart, M., Hegarty, T., Muniz-Piniella, A., McCartney, N., Cain, M., and Srinivasan, G. (2008) Experimental determination of the magnetoelectric coupling coefficient via piezoelectric measurements. Meas. Sci. Technol., 19, 045106.
- Zhang, H.R., Molino, P.J., Wallace, G.G., and Higgins, M.J. (2015) Quantifying molecular-level cell adhesion on electroactive conducting polymers using electrochemical-single cell force spectroscopy. Sci. Rep., 5, 13334.
- Gelmi, A., Higgins, M.J., and Wallace, G.G. (2013) Resolving sub-molecular binding and electrical switching mechanisms of single proteins at electroactive conducting polymers. Small, 9, 393–401.