Wave Guides for Micromagnetic Resonance
Ali Yilmaz
University of Southampton, School of Chemistry, Highfield, Southampton SO17 1BJ, UK
Search for more papers by this authorMarcel Utz
University of Southampton, School of Chemistry, Highfield, Southampton SO17 1BJ, UK
Search for more papers by this authorAli Yilmaz
University of Southampton, School of Chemistry, Highfield, Southampton SO17 1BJ, UK
Search for more papers by this authorMarcel Utz
University of Southampton, School of Chemistry, Highfield, Southampton SO17 1BJ, UK
Search for more papers by this authorJens Anders
University of Stuttgart, Institute of Smart Sensors, Pfaffenwaldring 47, Stuttgart, 70569 Germany
Search for more papers by this authorJan G. Korvink
Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Germany
Search for more papers by this authorJens Anders
University of Stuttgart, Institute of Smart Sensors, Pfaffenwaldring 47, Stuttgart, 70569 Germany
Search for more papers by this authorJan G. Korvink
Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Germany
Search for more papers by this authorSummary
This chapter is concerned with the use of planar wave guides, such as striplines and microstrips, as inductive detectors for nuclear magnetic resonance (NMR) spectroscopy and imaging. Wave guides are long structures of an insulator surrounded by conducting surfaces, usually with a constant cross section. Wave guide structures have been used extensively in the design of probes for dynamic nuclear polarization, which require simultaneous irradiation at NMR and electron paramagnetic resonance (EPR) frequencies. Traveling-wave NMR, which has been demonstrated in the context of magnetic resonance imaging and NMR spectroscopy, could have significant advantages at the microscale, as it allows the spatial separation of the sample and the detection circuitry. Planar wave guide structures have been used extensively in solid-state physics, including in experiments that relate directly or indirectly to magnetic resonance.
References
- Abragam, A. (1961) The Principles of Nuclear Magnetism, Oxford University Press, Oxford.
- Rabi, I., Zacharias, J., Millman, S., and Kusch, P. (1938) A new method of measuring nuclear magnetic moment. Phys. Rev., 53 (4), 318.
- Bloch, F. (1946) Nuclear induction. Phys. Rev., 70 (7–8), 460–474.
- Purcell, E.M., Torrey, H.C., and Pound, R.V. (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev., 69 (1–2), 37–38.
- Ernst, R.R. and Anderson, W.A. (1966) Application of Fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instrum., 37 (1), 93–102.
-
Bechinger, B. and Opella, S.J. (1991) Flat-coil probe for NMR spectroscopy of oriented membrane samples. J. Magn. Reson. (1969), 95 (3), 585–588.
10.1016/0022-2364(91)90173-Q Google Scholar
- Zhang, X., Ugurbil, K., and Chen, W. (2001) Microstrip RF surface coil design for extremely high-field MRI and spectroscopy. Magn. Reson. Med., 46 (3), 443–450.
- Hoult, D. and Richards, R. (1975) Critical factors in the design of sensitive high resolution nuclear magnetic resonance spectrometers. Proc. R. Soc. London, Ser. A, Math. Phys. Sci., 344 (1638), 311–340.
- Manz, A., Graber, N., and Widmer, H. (1990) Miniaturized total chemical-analysis systems - a novel concept for chemical sensing. Sens. Actuators, B, 1, 244–248.
- Pozar, D. (2008) Microwave Engineering, 4th edn Wiley, New York (2011).
- Barret, R.M. (1955) Microwave printed circuits - a historical survey. IRE Trans. Microwave Theory Tech., 3 (2), 1–9.
- Hoult, D.I. and Richards, R.E. (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. (1969), 24 (1), 71–85.
- Bridges, J.F. and Advanced NMR Systems, Inc. (1988) Cavity resonator with improved magnetic field uniformity for high frequency operation and reduced dielectric heating in NMR imaging devices. US Patent Office.
- Bogdanov, G. and Ludwig, R. (2002) Coupled microstrip line transverse electromagnetic resonator model for high-field magnetic resonance imaging. Magn. Reson. Med., 47 (3), 579–593.
- Hayes, C.E., Edelstein, W.A., Schenck, J.F., Mueller, O.M., and Eash, M. (1985) An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J. Magn., 63 (3), 622–628.
- Zhang, X., Ugurbil, K., Chen, W., and Regents of the University of Minnesota (2006) Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils. US Patent Office.
- Zhang, X., Zhu, X.H., and Chen, W. (2005) Higher-order harmonic transmission-line RF coil design for MR applications. Magn. Reson. Med., 53 (5), 1234–1239.
- Burian, M. and Hájek, M. (2004) Linear microstrip surface coil for MR imaging of the rat spinal cord at 4.7 T. Magn Reson. Mater. Phys. Biol. Med., 17 (3–6), 359–362.
- Zhang, X., Ugurbil, K., and Chen, W. (2003) A microstrip transmission line volume coil for human head MR imaging at 4T. J. Magn. Reson., 161 (2), 242–251.
- Driesel, W., Mildner, T., and Möller, H.E. (2008) A microstrip helmet coil for human brain imaging at high magnetic fields. Concepts Magn. Reson. Part B: Magn. Reson. Eng., 33B (2), 94–108.
- Vaughan, J.T., Adriany, G., Garwood, M., Yacoub, E., Duong, T., DelaBarre, L., Andersen, P., and Ugurbil, K. (2002) Detunable transverse electromagnetic (TEM) volume coil for high-field NMR. Magn. Reson. Med., 47 (5), 990–1000.
- Lee, R.F., Westgate, C.R., Weiss, R.G., Newman, D.C., and Bottomley, P.A. (2001) Planar strip array (PSA) for MRI. Magn. Reson. Med., 45 (4), 673–683.
- Boskamp, E.B., Lee, R.F., and Ge Medical Systems Global Technology Company, L (2006) Multiple channel, microstrip transceiver volume array for magnetic resonance imaging. US Patent Office.
- Roemer, P.B., Edelstein, W.A., Hayes, C.E., Souza, S.P., and Mueller, O.M. (1990) The NMR phased array. Magn. Reson. Med., 16 (2), 192–225.
- Hoult, D., Kolansky, G., Kripiakevich, D., and King, S. (2004) The NMR multi-transmit phased array: a Cartesian feedback approach. J. Magn. Reson., 171 (1), 64–70.
- van den Bergen, B., Klomp, D.W.J., Raaijmakers, A.J.E., de Castro, C.A., Boer, V.O., Kroeze, H., Luijten, P.R., Lagendijk, J.J.W., and van den Berg, C.A.T. (2010) Uniform prostate imaging and spectroscopy at 7 T: comparison between a microstrip array and an endorectal coil. NMR Biomed., 24, 358–365.
- Adriany, G., Van de Moortele, P.F., Wiesinger, F., Moeller, S., Strupp, J.P., Andersen, P., Snyder, C., Zhang, X., Chen, W., Pruessmann, K.P., Boesiger, P., Vaughan, T., and Ugurbil, Km. (2005) Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn. Reson. Med., 53 (2), 434–445.
-
Wu, B., Zhang, X., Qu, P., and Shen, G.X. (2006) Design of an inductively decoupled microstrip array at 9.4T. J. Magn. Reson., 182 (1), 126–132.
10.1016/j.jmr.2006.04.013 Google Scholar
- Wang, C. and Shen, G.X. (2006) B1 field, SAR, and SNR comparisons for birdcage, TEM, and microstrip coils at 7 T. J. Magn. Reson. Imaging, 24 (2), 439–443.
- van den Bergen, B., van den Berg, C.A.T., Klomp, D.W.J., and Lagendijk, J.J.W. (2009) SAR and power implications of different RF shimming strategies in the pelvis for 7 T MRI. J. Magn. Reson. Imaging, 30 (1), 194–202.
- Ipek, O., Raaijmakers, A.J.E., Klomp, D.W.J., Lagendijk, J.J.W., Luijten, P.R., and van den Berg, C.A.T. (2012) Characterization of transceive surface element designs for 7 Tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip. Phys. Med. Biol., 57 (2), 343–355.
- Olson, D., Peck, T., Webb, A., Magin, R., and Sweedler, J. (1995) High-resolution microcoil l̂H-NMR for mass-limited, nanoliter-volume samples. Science, 270 (5244), 1967–1970.
- Sweedler, J.V., Peck, T.L., Webb, A.G., Magin, R.L., Wu, N., and The Board of Trustees of the University Of Illinois (1997) Method and apparatus for NMR spectroscopy of nanoliter volume samples. US Patent Office.
- Lacey, M.E., Subramanian, R., Olson, D., Webb, A., and Sweedler, J. (1999) High-resolution NMR spectroscopy of sample volumes from 1 nL to 10 ?L. Chem. Rev., 99 (10), 3133–3152.
- Peck, T., Webb, A., Wu, N., Magin, R., and Sweedler, J. (1994) On-line NMR detection in capillary electrophoresis using an RF microcoil. Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE.
- Wu, N., Peck, T.L., Webb, A.G., Magin, R.L., and Sweedler, J.V. (1994) Nanoliter volume sample cells for 1H NMR: application to online detection in capillary electrophoresis. J. Am. Chem. Soc., 116 (17), 7929–7930.
- Olson, D., Lacey, M.E., Webb, A., and Sweedler, J. (1999) Nanoliter-volume 1H NMR detection using periodic stopped-flow capillary electrophoresis. Anal. Chem., 71 (15), 3070–3076.
- Lacey, M.E., Tan, Z.J., Webb, A.G., and Sweedler, J.V. (2001) Union of capillary high-performance liquid chromatography and microcoil nuclear magnetic resonance spectroscopy applied to the separation and identification of terpenoids. J. Chromatogr. A, 922 (1–2), 139–149.
-
Seeber, D.A., Hoftiezer, J.H., Daniel, W.B., Rutgers, M.A., and Pennington, C.H. (2000) Triaxial magnetic field gradient system for microcoil magnetic resonance imaging. Rev. Sci. Instrum., 71 (11), 4263–4272.
10.1063/1.1313800 Google Scholar
- Ciobanu, L. and Seeber, D. (2002) ScienceDirect.com - Journal of Magnetic Resonance - 3D MR microscopy with resolution 3.7m by 3.3m by 3.3m. J. Magn. Reson., 158, 178–182.
- Yamauchi, K., Imada, T., and Asakura, T. (2005) Use of microcoil probehead for determination of the structure of oriented silk fibers by solid-state NMR. J. Phys. Chem. B, 109 (37), 17689–17692.
- Kentgens, A.P.M., Bart, J., van Bentum, P.J.M., Brinkmann, A., van Eck, E., Gardeniers, J.G.E., Janssen, J.W.G., Knijn, P., Vasa, S., and Verkuijlen, M.H.W. (2008) High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors. J. Chem. Phys., 128 (5), 052202.
- Sakellariou, D., Goff, G.L., and Jacquinot, J.F. (2007) High-resolution, high-sensitivity NMR of nanolitre anisotropic samples by coil spinning. Nature, 447 (7145), 694–697.
- Jacquinot, J.F. and Sakellariou, D. (2011) NMR signal detection using inductive coupling: applications to rotating microcoils. Concepts Magn. Reson. Part A, 38A (2), 33–51.
- Samoson, A., Tuherm, T., Past, J., Reinhold, A., Heinmaa, I., Anup old, T., Smith, M.E., and Pike, K.J. (2010) Fast Magic-Angle Spinning: Implications, John Wiley & Sons, Ltd, Chichester.
- Hilty, C., McDonnell, E., Granwehr, J., Pierce, K., Han, S., and Pines, A. (2005) Microfluidic gas-flow profiling using remote-detection NMR. Proc. Natl. Acad. Sci. U.S.A., 102 (42), 14 960–14 963.
- McDonnell, E., Han, S., Hilty, C., Pierce, K., and Pines, A. (2005) NMR analysis on microfluidic devices by remote detection. Anal. Chem., 77 (24), 8109–8114.
-
Harel, E., Hilty, C., Koen, K., McDonnell, E.E., and Pines, A. (2007) Time-of-flight flow imaging of two-component flow inside a microfluidic chip. Phys. Rev. Lett., 98 (1). doi: 10.1103/physrevlett.98.017601.
10.1103/physrevlett.98.017601 Google Scholar
- Bouchard, L.S., Burt, S.R., Anwar, M.S., Kovtunov, K.V., Koptyug, I.V., and Pines, A. (2008) NMR imaging of catalytic hydrogenation in microreactors with the use of para-hydrogen. Science, 319 (5862), 442–445.
- Ledbetter, M.P., Savukov, I.M., Budker, D., Shah, V., Knappe, S., Kitching, J., Michalak, D.J., Xu, S., and Pines, A. (2008) Zero-field remote detection of NMR with a microfabricated atomic magnetometer. Proc. Natl. Acad. Sci. U.S.A., 105 (7), 2286–2290.
-
Harel, E. (2009) Magnetic resonance detection: spectroscopy and imaging of lab-on-a-chip. Lab Chip, 9 (1), 17–23.
10.1039/B807036A Google Scholar
- Bajaj, V.S., Paulsen, J., Harel, E., and Pines, A. (2010) Zooming in on microscopic flow by remotely detected MRI. Science, 330 (6007), 1078–1081.
-
Telkki, V.V. and Zhivonitko, V.V. (2011) Analysis of remote detection travel time curves measured from microfluidic channels. J. Magn. Reson., 210 (2), 238–245.
10.1016/j.jmr.2011.03.011 Google Scholar
- Telkki, V.V., Zhivonitko, V.V., Selent, A., Scotti, G., Leppäniemi, J., Franssila, S., and Koptyug, I.V. (2014) Lab-on-a-chip reactor imaging with unprecedented chemical resolution by Hadamard-encoded remote detection NMR. Angew. Chem., 126 (42), 11 471–11 475.
- Badilita, V., Kratt, K., Baxan, N., Mohmmadzadeh, M., Burger, T., Weber, H., von Elverfeldt, D., Hennig, J., Korvink, J.G., and Wallrabe, U. (2010) On-chip three dimensional microcoils for MRI at the microscale. Lab Chip, 10 (11), 1387–1390.
-
Stocker, J.E., Peck, T., Webb, A., Feng, M., and Magin, R. (1997) Nanoliter volume, high-resolution NMR microspectroscopy using a 60-m planar microcoil. IEEE Trans. Biomed. Eng., 44 (11), 1122–1127.
10.1109/10.641340 Google Scholar
- Trumbull, J.D., Glasgow, I.K., Beebe, D.J., and Magin, R. (2000) Integrating microfabricated fluidic systems and NMR spectroscopy. IEEE Trans. Biomed. Eng., 47 (1), 3–7.
- Massin, C., Boero, G., Vincent, F., Abenhaim, J., Besse, P., and Popovic, R.S. (2002) High-Q factor RF planar microcoils for micro-scale NMR spectroscopy. Sens. Actuators, A, 97 98, 280–288.
-
Massin, C., Vincent, F., Homsy, A., Ehrmann, K., Boero, G., Besse, P., Daridon, A., Verpoorte, E., de Rooij, N., and Popovic, R. (2003) Planar microcoil-based microfluidic NMR probes. J. Magn. Reson., 164 (2), 242–255.
10.1016/S1090-7807(03)00151-4 Google Scholar
- Wensink, H., Hermes, D.C., and van den Berg, A. (2004) High signal to noise ratio in low field NMR on chip, simulations and experimental results. MEMSYS-04, IEEE, pp. 407–410.
-
Wensink, H., Benito-Lopez, F., Hermes, D.C., Verboom, W., Gardeniers, H.J.G.E., Reinhoudt, D.N., and van den Berg, A. (2005) Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR. Lab Chip, 5 (3), 280–284.
10.1039/b414832k Google Scholar
-
Gomez, M.V., Verputten, H.H.J., Díaz-Ortíz, A., Moreno, A., de la Hoz, A., and Velders, A.H. (2010) On-line monitoring of a microwave-assisted chemical reaction by nanolitre NMR-spectroscopy. Chem. Commun., 46 (25), 4514.
10.1039/b924936b Google Scholar
- Yue, J., Schouten, J.C., and Nijhuis, T.A. (2012) Integration of microreactors with spectroscopic detection for online reaction monitoring and catalyst characterization. Ind. Eng. Chem. Res., 51 (45), 14 583–14 609.
- Boero, G., Bouterfas, M., Massin, C., Vincent, F., Besse, P., Popovic, R.S., and Schweiger, A. (2003) Electron-spin resonance probe based on a 100 m planar microcoil. Rev. Sci. Instrum., 74 (11), 4794–4798.
- Spengler, N., Moazenzadeh, A., Meier, R.C., Badilita, V., Korvink, J.G., and Wallrabe, U. (2014) Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance. J. Micromech. Microeng., 24 (3), 034 004.
- Spengler, N., Höfflin, J., Moazenzadeh, A., Mager, D., MacKinnon, N., Badilita, V., Wallrabe, U., and Korvink, J.G. (2016) Heteronuclear micro-Helmholtz coil facilitates µm-range spatial and sub-Hz spectral resolution NMR of nL-volume samples on customisable microfluidic chips. Plos One, 11 (1), e0146 384.
- Gruschke, O.G., Baxan, N., Clad, L., Kratt, K., von Elverfeldt, D., Peter, A., Hennig, J., Badilita, V., Wallrabe, U., and Korvink, J.G. (2012) Lab on a chip phased array MR multi-platform analysis system. Lab Chip, 12 (3), 495–502.
- Göbel, K., Gruschke, O.G., and Leupold, J. (2014) Phased array of microcoils allows MR microscopy of ex vivo human skin samples at 9.4 T. Skin Res. Technol., 21 (1), 1–8.
- Oligschläger, D., Lehmkuhl, S., Watzlaw, J., Benders, S., de Boever, E., Rehorn, C., Vossel, M., Schnakenberg, U., and Blümich, B. (2015) Miniaturized multi-coil arrays for functional planar imaging with a single-sided NMR sensor. J. Magn. Reson., 254, 10–18.
- Maguire, Y., Gershenfeld, N., and Chuang, I.L. (2009) Slitted and stubbed microstrips for high sensitivity, near-field electromagnetic detection of small samples and fields. US Patent Office.
-
Maguire, Y., Chuang, I., Zhang, S., and Gershenfeld, N. (2007) Ultra-small-sample molecular structure detection using microslot waveguide nuclear spin resonance. Proc. Natl. Acad. Sci. U.S.A., 104 (22), 9198–9203.
10.1073/pnas.0703001104 Google Scholar
- Krojanski, H., Lambert, J., Gerikalan, Y., Suter, D., and Hergenröder, R. (2008) Microslot NMR probe for metabolomics studies. Anal. Chem, 80 (22), 8668.
- Kalfe, A., Telfah, A., Lambert, J., and Hergenröder, R. (2015) Looking into living cell systems: planar waveguide microfluidic NMR detector for in vitro metabolomics of tumor spheroids. Anal. Chem., 87 (14), 7402–7410.
-
Murphree, D., Cahn, S.B., Rahmlow, D., and DeMille, D. (2007) An easily constructed, tuning free, ultra-broadband probe for NMR. J. Magn. Reson., 188 (1), 160–167.
10.1016/j.jmr.2007.05.025 Google Scholar
-
Mispelter, J., Lupu, M., and Briguet, A. (2006) NMR Probeheads for Biophysical and Biomedical Experiments: Theoretical Principles & Practical Guidelines, Imperial College Press.
10.1142/p438 Google Scholar
- Zhang, X., Wang, C., Xie, Z., and Wu, B. (2008) Non-resonant microstrip (NORM) RF coils: an unconventional RF solution to MR imaging and spectroscopy. Proceedings of International Society.
- Zhang, X., Wang, C., and Vigneron, D. (2009) Studies on MR reception efficiency and SNR of non-resonance RF method (NORM). Proceedings of the 17th Annual Meeting of ISMRM; Honolulu, Hawaii, USA, p. 104.
- Brunner, D.O., De Zanche, N., Fröhlich, J., Paska, J., and Pruessmann, K.P. (2009) Travelling-wave nuclear magnetic resonance. Nature, 457 (7232), 994–998.
- Tang, J.A., Wiggins, G.C., Sodickson, D.K., and Jerschow, A. (2011) Cutoff-free traveling wave NMR. Concepts Magn. Reson. Part A, 38A (5), 253–267.
-
Fratila, R.M., Gomez, M.V., Sýkora, S., and Velders, A.H. (2014) Multinuclear nanoliter one-dimensional and two-dimensional NMR spectroscopy with a single non-resonant microcoil. Nat. Commun., 5. doi: 10.1038/ncomms4025.
10.1038/ncomms4025 Google Scholar
- van Bentum, P.J.M., Janssen, J.W.G., Kentgens, A.P.M., Bart, J., and Gardeniers, J.G.E. (2007) Stripline probes for nuclear magnetic resonance. J. Magn. Reson., 189 (1), 104–113.
- Bart, J., Oosthoek-de Vries, A.J., Tijssen, K.C.H., Janssen, J.W.G., Bentum, P.J.M., Gardeniers, J., and Kentgens, A. (2010) In-line NMR analysis using stripline based detectors. Proceedings of the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 3–7 October 2010, Groningen, The Netherlands.
-
Bart, J., Kolkman, A.J., Oosthoek-de Vries, A.J., Koch, K., Nieuwland, P.J., Janssen, H.J.W.G., van Bentum, P.J.M., Ampt, K.A.M., Rutjes, F.P.J.T., Wijmenga, S.S., Gardeniers, H.J.G.E., and Kentgens, A.P.M. (2009) A microfluidic high-resolution NMR flow probe. J. Am. Chem. Soc., 131 (14), 5014–5015.
10.1021/ja900389x Google Scholar
-
Bart, J., Janssen, J.W.G., van Bentum, P.J.M., Kentgens, A.P.M., and Gardeniers, J.G.E. (2009) Optimization of stripline-based microfluidic chips for high-resolution NMR. J. Magn. Reson., 201 (2), 175–185.
10.1016/j.jmr.2009.09.007 Google Scholar
- van Bentum, P.J.M. and Kentgens, A.P.M. (2008) High-sensitivity NMR probe systems, in Modern Magnetic Resonance, Springer, Netherlands, Dordrecht, pp. 353–361.
- Goswami, M., Knijn, P.J., Bauhuis, G.J., Janssen, J.W.G., van Bentum, P.J.M., de Wijs, G.A., and Kentgens, A.P.M. (2014) Stripline 75As NMR study of epitaxial III–V semiconductor Al0.5Ga0.5As. J. Phys. Chem. C, 118 (25), 13 394–13 405.
- Falck, D., Vries, A.J.Od., Kolkman, A., Lingeman, H., Honing, M., Wijmenga, S.S., Kentgens, A.P.M., and Niessen, W.M.A. (2013) EC–SPE–stripline-NMR analysis of reactive products: a feasibility study. Anal. Bioanal. Chem., 405 (21), 6711–6720.
-
Falck, D. and Niessen, W.M.A. (2015) Solution-phase electrochemistry-nuclear magnetic resonance of small organic molecules. TrAC, Trends Anal. Chem., 70, 31–39.
10.1016/j.trac.2015.03.010 Google Scholar
-
Tayler, M.C.D., van Meerten, S.B.G.J., Kentgens, A.P.M., and van Bentum, P.J.M. (2015) Analysis of mass-limited mixtures using supercritical-fluid chromatography and microcoil NMR. Analyst, 140 (18), 6217–6221.
10.1039/C5AN00772K Google Scholar
- Tijssen, K.C.H., Bart, J., Tiggelaar, R.M., Janssen, J.W.G.H., Kentgens, A.P.M., and van Bentum, P.J.M. (2016) Spatially resolved spectroscopy using tapered stripline NMR. J. Magn. Reson., 263, 136–146.
-
Yap, Y.S., Yamamoto, H., Tabuchi, Y., Negoro, M., Kagawa, A., and Kitagawa, M. (2013) Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator. J. Magn. Reson., 232, 62–67.
10.1016/j.jmr.2013.04.015 Google Scholar
- Klotz, F., Huebl, H., Heiss, D., Klein, K., Finley, J.J., and Brandt, M.S. (2011) Coplanar stripline antenna design for optically detected magnetic resonance on semiconductor quantum dots. Rev. Sci. Instrum., 82 (7), 074 707.
-
Jasiński, K., Młynarczyk, A., Latta, P., Volotovskyy, V., Węglarz, W.P., and Tomanek, B. (2012) A volume microstrip RF coil for MRI microscopy. Magn. Reson. Imaging, 30 (1), 70–77.
10.1016/j.mri.2011.07.010 Google Scholar
- Finch, G., Yilmaz, A., and Utz, M. (2016) An optimised detector for in-situ high-resolution NMR in microfluidic devices. Journal of Magnetic Resonance, 262, 73–80.
- Pan, Z. and Raftery, D. (2007) Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal. Bioanal. Chem., 387 (2), 525–527.
-
Zhang, S., Gowda, G.A.N., Ye, T., and Raftery, D. (2010) Advances in NMR -based biofluid analysis and metabolite profiling. Analyst, 135 (7), 1490–1498.
10.1039/c000091d Google Scholar
-
Yusa, G., Muraki, K., Takashina, K., Hashimoto, K., and Hirayama, Y. (2005) Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device. Nature, 434 (7036), 1001–1005.
10.1038/nature03456 Google Scholar
- Tycko, R. (2005) Techniques: NMR on a chip. Nature, 434 (7036), 966–967.
- Kostylev, M. (2009) Strong asymmetry of microwave absorption by bilayer conducting ferromagnetic films in the microstrip-line based broadband ferromagnetic resonance. J. Appl. Phys., 106 (4), 043 903.
- Kostylev, M., Stashkevich, A.A., Adeyeye, A.O., Shakespeare, C., Kostylev, N., Ross, N., Kennewell, K., Magaraggia, R., Roussigné, Y., and Stamps, R.L. (2010) Magnetization pinning in conducting films demonstrated using broadband ferromagnetic resonance. J. Appl. Phys., 108 (10), 103 914.
- Keatley, P.S., Kruglyak, V.V., Barman, A., Ladak, S., Hicken, R.J., Scott, J., and Rahman, M. (2005) Use of microscale coplanar striplines with indium tin oxide windows in optical ferromagnetic resonance measurements. J. Appl. Phys., 97 (10), 10R304.
- Ardenkjaer-Larsen, J.H. (2016) On the present and future of dissolution-DNP. J. Magn. Reson., 264, 3–12.
- Brindle, K.M., Bohndiek, S.E., Gallagher, F.A., and Kettunen, M.I. (2011) Tumor imaging using hyperpolarized 13C magnetic resonance. Magn. Reson. Med., 66 (2), 505–519.
- Sharma, M., Janssen, G., Leggett, J., Kentgens, A.P.M., and van Bentum, P.J.M. (2015) Rapid-melt dynamic nuclear polarization. J. Magn. Reson., 258, 40–48.
- Loening, N.M., Rosay, M., Weis, V., and Griffin, R.G. (2002) Solution-state dynamic nuclear polarization at high magnetic field. J. Am. Chem. Soc., 124 (30), 8808–8809.
-
Lingwood, M.D. and Han, S. (2009) Dynamic nuclear polarization of 13C in aqueous solutions under ambient conditions. J. Magn. Reson, 201 (2), 137–145.
10.1016/j.jmr.2009.09.002 Google Scholar
- Griffin, R.G. and Prisner, T.F. (2010) High field dynamic nuclear polarization—the renaissance. Phys. Chem. Chem. Phys., 12 (22), 5737–5740.
- Annino, G., Villanueva-Garibay, J.A., Bentum, P.J.M., Klaassen, A.A.K., and Kentgens, A.P.M. (2009) A high-conversion-factor, double-resonance structure for high-field dynamic nuclear polarization. Appl. Magn. Reson., 37 (1–4), 851–864.
- Villanueva-Garibay, J.A., Annino, G., van Bentum, P.J.M., and Kentgens, A.P.M. (2010) Pushing the limit of liquid-state dynamic nuclear polarization at high field. Phys. Chem. Chem. Phys., 12 (22), 5846.
- van Bentum, P.J.M., van der Heijden, G.H.A., Villanueva-Garibay, J.A., and Kentgens, A.P.M. (2011) Quantitative analysis of high field liquid state dynamic nuclear polarization. Phys. Chem. Chem. Phys., 13 (39), 17 831–17 840.
- Denysenkov, V., Prandolini, M.J., Gafurov, M., Sezer, D., Endeward, B., and Prisner, T.F. (2010) Liquid state DNP using a 260 GHz high power gyrotron. Phys. Chem. Chem. Phys., 12 (22), 5786–5790.
-
Denysenkov, V.P., Prandolini, M.J., Krahn, A., Gafurov, M., Endeward, B., and Prisner, T.F. (2008) High-field DNP spectrometer for liquids. Appl. Magn. Reson., 34 (3-4), 289–299.
10.1007/s00723-008-0127-3 Google Scholar
- Denysenkov, V. and Prisner, T. (2012) Liquid state dynamic nuclear polarization probe with Fabry–Perot resonator at 9.2T. J. Magn. Reson., 217, 1–5.
- Prandolini, M.J., Denysenkov, V.P., Gafurov, M., Endeward, B., and Prisner, T.F. (2009) High-field dynamic nuclear polarization in aqueous solutions. J. Am. Chem. Soc., 131 (17), 6090–6092.