New Approaches to Understanding Bacterial Histidine Kinase Activity and Inhibition
Kaelyn E. Wilke
Indiana University, Department of Chemistry, 800 E Kirkwood Ave., Bloomington, IN 47405, USA
Search for more papers by this authorErin E. Carlson
Indiana University, Department of Chemistry, 800 E Kirkwood Ave., Bloomington, IN 47405, USA
University of Minnesota, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
Search for more papers by this authorKaelyn E. Wilke
Indiana University, Department of Chemistry, 800 E Kirkwood Ave., Bloomington, IN 47405, USA
Search for more papers by this authorErin E. Carlson
Indiana University, Department of Chemistry, 800 E Kirkwood Ave., Bloomington, IN 47405, USA
University of Minnesota, Department of Chemistry, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
Search for more papers by this authorHeinz-Bernhard Kraatz
University of Toronto, Phys. & Environmental Sciences, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
Search for more papers by this authorSanela Martic
Oakland University, Dept. of Chemistry, 2200 North Squirrel Road, Rochester, MI 48309, United States
Search for more papers by this authorSummary
Bacteria rely on signal transduction pathways to respond to environmental changes. Many of these pathways are two-component systems (TCSs). The prototypical TCS includes two proteins that are often encoded on the same operon and have molecular recognition for one another: a membrane-bound histidine kinase (HK) and a cytosolic response regulator (RR). Bacterial HKs are typically homodimeric, periplasmic sensing proteins anchored to the membrane. The most direct way of detecting TCS activity is by monitoring the phosphorylation of its proteins, for which radioactive adenosine triphosphate (ATP) assays have traditionally been used. The ideal use of an ABP will be the global profiling of HKs from various sample types or screening of inhibitors. HKs of TCSs are excellent drug targets as it is well established that HKs aid in bacterial survival and virulence. Preventing these signaling pathways from transmitting information would be a new way of treating bacterial infections.
References
- Wilke, K.E., Francis, S., and Carlson, E.E. (2012) Activity-based probe for histidine kinase signaling. J. Am. Chem. Soc., 134 (22), 9150–9153.
- Stock, A.M., Robinson, V.L., and Goudreau, P.N. (2000) Two-component signal transduction. Annu. Rev. Biochem., 69, 183–215.
- Stock, J.B., Stock, A.M., and Mottonen, J.M. (1990) Signal transduction in bacteria. Nature, 344, 395–400.
-
Wolanin, P.M., Thomason, P.A., and Stock, J.B. (2002) Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol., 3 (10), 3013.3011–3013.3018.
10.1186/gb-2002-3-10-reviews3013 Google Scholar
- Prost, L.R. and Miller, S.I. (2008) The Salmonellae PhoQ sensor: mechanisms of detection of phagosome signals. Cell. Microbiol., 10 (3), 576–582.
-
Hong, H.-J., Hutchings, M.I., and Buttner, M.J. (2008) in Bacterial Signal Transduction: Networks and Drug Targets (ed R. Utsumi), Landes Bioscience, pp. 200–213.
10.1007/978-0-387-78885-2_14 Google Scholar
- Ronson, C.W., Nixon, B.T., and Ausubel, F.M. (1987) Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell, 49, 579–581.
- Winans, S.C., Ebert, P.R., Stachel, S.E., Gordon, M.P., and Nester, E.W. (1986) A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc. Natl. Acad. Sci. U.S.A., 83, 8278–8282.
- Nixon, B.T., Ronson, C.W., and Ausubel, F.M. (1986) Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. U.S.A., 83, 7850–7854.
- Barrett, J.F. and Hoch, J.A. (1998) Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob. Agents Chemother., 42, 1529–1536.
- Thomason, P. and Kay, R. (2000) Eukaryotic signal transduction via histidine-aspartate phosphorelay. J. Cell Sci., 113, 3141–3150.
- Wuichet, K., Cantwell, B.J., and Zhulin, I.B. (2010) Evolution and phyletic distribution of two-component signal transduction systems. Curr. Opin. Microbiol., 13 (2), 219–225.
- Capra, E.J. and Laub, M.T. (2012) Evolution of two-component signal transduction systems. Annu. Rev. Microbiol., 66, 325–347.
- Skerker, J.M., Prasol, M.S., Perchuk, B.S., Biondi, E.G., and Laub, M.T. (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol., 3 (10), e334.
- Rodríguez, H., Rico, S., Díaz, M., and Santamaría, R.I. (2013) Two-component systems in Streptomyces: key regulators of antibiotic complex pathways. Microb. Cell Fact., 12, 127.
- Throup, J.P., Koretke, K.K., Bryant, A.P., Ingraham, K.A., Chalker, A.F., Ge, Y., Marra, A., Wallis, N.G., Brown, J.R., Holmes, D.J., Rosenberg, M., and Burnham, M.K.R. (2000) A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol. Microbiol., 35 (3), 566–576.
- Rodrigue, A., Quentin, Y., Lazdunski, A., Méjean, V., and Foglino, M. (2000) Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol., 8 (11), 498–504.
- Beier, D. and Gross, R. (2006) Regulation of bacterial virulence by two-component systems. Curr. Opin. Microbiol., 9 (2), 143–152.
- Laub, M.T. and Goulian, M. (2007) Specificity in two-component signal transduction pathways. Annu. Rev. Genet., 41, 121–145.
- Grebe, T.W. and Stock, J.B. (1999) The histidine protein kinase superfamily. Adv. Microb. Physiol., 41, 139–227.
- Krell, T., Lacal, J., Busch, A., Silva-Jimenez, H., Guazzaroni, M.E., and Ramos, J.L. (2010) Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu. Rev. Microbiol., 64, 539–559.
- Dutta, R. and Inouye, M. (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci., 25 (1), 24–28.
- Guarnieri, M.T., Zhang, L.D., Shen, J.P., and Zhao, R. (2008) The Hsp90 inhibitor radicicol interacts with the ATP-binding pocket of bacterial sensor kinase PhoQ. J. Mol. Biol., 379 (1), 82–93.
- Tanaka, T., Saha, S.K., Tomomori, C., Ishima, R., Liu, D., Tong, K.I., Park, H., Dutta, R., Qin, L., Swindells, M.B., Yamazaki, T., Ono, A.M., Kainosho, M., Inouye, M., and Ikura, M. (1998) NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature, 396, 88–92.
- Besant, P.G. and Attwood, P.V. (2005) Mammalian histidine kinases. Biochim. Biophys. Acta, 1754 (1-2), 281–290.
- Kee, J.-M. and Muir, T.W. (2012) Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem. Biol., 7 (1), 44–51.
- Nathan, C. (2012) Fresh approaches to anti-infective therapies. Sci. Transl. Med., 4, 140sr142.
- Eguchi, Y., Okada, T., Minagawa, S., Oshima, T., Mori, H., Yamamoto, K., Ishihama, A., and Utsumi, R. (2004) Signal transduction cascade between EvgA/EvgS and PhoP/PhoQ two-component systems of Escherichia coli. J. Bacteriol., 186 (10), 3006–3014.
- Oshima, T., Alba, H., Masuda, Y., Kanaya, S., Suglura, M., Wanner, B.L., Mori, H., and Mizuno, T. (2002) Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol. Microbiol., 46 (1), 281–291.
- Petrova, O.E. and Sauer, K. (2009) A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathog., 5 (11), e1000668.
- Grimsrud, P.A., Swaney, D.L., Wenger, C.D., Beauchene, N.A., and Coon, J.L. (2010) Phosphoproteomics for the masses. ACS Chem. Biol., 5 (1), 105–119.
- Besant, P.G. and Attwood, P.V. (2009) Detection and analysis of protein histidine phosphorylation. Mol. Cell. Biochem., 329 (1-2), 93–106.
- Duclos, B., Marcandier, S., and Cozzone, A.J. (1991) Chemical properties and separation of phosphoamino acids by thin-layer chromatography and/or electrophoresis. Methods Enzymol., 201, 10–21.
- Batalha, I.L., Lowe, C.R., and Roque, A.C. (2012) Platforms for enrichment of phosphorylated proteins and peptides in proteomics. Trends Biotechnol., 30 (2), 100–110.
- Lapek, J.J.D., Tombline, G., and Friedman, A.E. (2011) Mass spectrometry detection of histidine phosphorylation on NM23-H1. J. Proteome Res., 10, 751–755.
- Lasker, M., Bui, C.D., Besant, P.G., Sugawara, K., Thai, P., Medzihradszky, G., and Turck, C.W. (1999) Protein histidine phosphorylation: increased stability of thiophosphohistidine. Protein Sci., 8, 2177–2185.
- Hermsen, R., Erickson, D.W., and Hwa, T. (2011) Speed, sensitivity, and bistability in auto-activating signaling circuits. PLoS Comput. Biol., 7 (11), e1002265.
- Gonzalo-Asensio, J., Soto, C.Y., Arbues, A., Sancho, J., del Carmen Menendez, M., Garcia, M.J., Gicquel, B., and Martin, C. (2008) The Mycobacterium tuberculosis phoPR operon is positively autoregulated in the virulent strain H37Rv. J. Bacteriol., 190 (21), 7068–7078.
- Clarke, E.J. and Voigt, C.A. (2011) Characterization of combinatorial patterns generated by multiple two-component sensors in E. coli that respond to many stimuli. Biotechnol. Bioeng., 108 (3), 666–675.
- Verhamme, D.T., Arents, J.C., Postma, P.W., Crielaard, W., and Hellingwerf, K.J. (2002) Investigation of in vivo cross-talk between key two-component systems of Escherichia coli. Microbiology, 148, 69–78.
- Macielag, M.J., Demers, J.P., Fraga-Spano, S.A., Hlasta, D.J., Johnson, S.G., Kanojia, R.M., Russell, R.K., Sui, Z., Weidner-Wells, M.A., Werblood, H., Foleno, B.D., Goldschmidt, R.M., Loeloff, M.J., Webb, G.C., and Barrett, J.F. (1998) Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. J. Med. Chem., 41, 2939–2945.
- Gao, R. and Stock, A.M. (2013) Probing kinase and phosphatase activities of two-component systems in vivo with concentration-dependent phosphorylation profiling. Proc. Natl. Acad. Sci. U.S.A., 110, 672–677.
- Scharf, B.E. (2010) Summary of useful methods for two-component system research. Curr. Opin. Microbiol., 13 (2), 246–252.
- Foster, J.E., Sheng, Q., McClain, J.R., Bures, M., Nicas, T.I., Henry, K., Winkler, M.E., and Gilmour, R. (2004) Kinetic and mechanistic analyses of new classes of inhibitors of two-component signal transduction systems using a coupled assay containing HpkA-DrrA from Thermotoga maritima. Microbiology, 150 (4), 885–896.
- Gutu, A.D., Wayne, K.J., Sham, L.T., and Winkler, M.E. (2010) Kinetic characterization of the WalRKspn (VicRK) two-component system of Streptococcus pneumoniae: dependence of WalKspn (VicK) phosphatase activity on its PAS domain. J. Bacteriol., 192 (9), 2346–2358.
- Eguchi, Y., Kubo, N., Matsunaga, H., Igarashi, M., and Utsumi, R. (2011) Development of an antivirulence drug against Streptococcus mutans: repression of biofilm formation, acid tolerance, and competence by a histidine kinase inhibitor, walkmycin C. Antimicrob. Agents Chemother., 55 (4), 1475–1484.
-
Yamamoto, K., Hirao, K., Oshima, T., Aiba, H., Utsumi, R., and Ishihama, A. (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J. Biol. Chem., 280 (2), 1448–1456.
10.1074/jbc.M410104200 Google Scholar
- Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K., and Koike, T. (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics, 5 (4), 749–757.
- Yamada, S., Nakamura, H., Kinoshita, E., Kinoshita-Kikuta, E., Koike, T., and Shiro, Y. (2007) Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis. Anal. Biochem., 360 (1), 160–162.
- Barbieri, C.M. and Stock, A.M. (2008) Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using Phos-tag-based reagents. Anal. Biochem., 376 (1), 73–82.
- Wayne, K.J., Li, S., Kazmierczak, K.M., Tsui, H.C., and Winkler, M.E. (2012) Involvement of WalK (VicK) phosphatase activity in setting WalR (VicR) response regulator phosphorylation level and limiting cross-talk in Streptococcus pneumoniae D39 cells. Mol. Microbiol., 86 (3), 645–660.
- Wako Pure Chemical Industries, Ltd. Phos-Tag Series, http://www.wako-chem.co.jp/english/labchem/product/life/Phos-tag/ (accessed 09 September 2014).
- Attwood, P.V., Piggott, M.J., Zu, X.L., and Besant, P.G. (2007) Focus on phosphohistidine. Amino Acids, 32 (1), 145–156.
- Rush, J., Moritz, A., Lee, K.A., Guo, A., Goss, V.L., Spek, E.J., Zhang, H., Zha, X.M., Polakiewicz, R.D., and Comb, M.J. (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol., 23 (1), 94–101.
- Kee, J.M., Oslund, R.C., Perlman, D.H., and Muir, T.W. (2013) A pan-specific antibody for direct detection of protein histidine phosphorylation. Nat. Chem. Biol., 9 (7), 416–421.
- Oslund, R.C., Kee, J.M., Couvillon, A.D., Bhatia, V.N., Perlman, D.H., and Muir, T.W. (2014) A phosphohistidine proteomics strategy based on elucidation of a unique gas-phase phosphopeptide fragmentation mechanism. J. Am. Chem. Soc., 136 (37), 12899–12911.
- Pirrung, M.C., James, K.D., and Rana, V.S. (2000) Thiosphosphorylation of histidine. J. Org. Chem., 65, 8448–8453.
- Carlson, H.K., Plate, L., Price, M.S., Allen, J.J., Shokat, K.M., and Marletta, M.A. (2010) Use of a semisynthetic epitope to probe histidine kinase activity and regulation. Anal. Biochem., 397, 139–143.
- Kinoshita, E., Kinoshita-Kikuta, E., Shiba, A., Edahiro, K., Inoue, Y., Yamamoto, K., Yoshida, M., and Koike, T. (2014) Profiling of protein thiophosphorylation by Phos-tag affinity electrophoresis: evaluation of adenosine 5'-O-(3-thiotriphosphate) as a phosphoryl donor in protein kinase reactions. Proteomics, 14 (6), 668–679.
- Cassel, D. and Glaser, L. (1982) Resistance to phosphatase of thiophosphorylated epidermal growth factor receptor in A431 membranes. Proc. Natl. Acad. Sci. U.S.A., 79, 2231–2235.
- Cravatt, B.F., Wright, A.T., and Kozarich, J.W. (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem., 77, 383–414.
- Cai, S.J. and Inouye, M. (2002) EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J. Biol. Chem., 277 (27), 24155–24161.
- Wayne, K.J., Sham, L.T., Tsui, H.C., Gutu, A.D., Barendt, S.M., Keen, S.K., and Winkler, M.E. (2010) Localization and cellular amounts of the WalRKJ (VicRKX) two-component regulatory system proteins in serotype 2 Streptococcus pneumoniae. J. Bacteriol., 192 (17), 4388–4394.
- Stephenson, K. and Hoch, J.A. (2002) Virulence- and antibiotic resistance-associated two-component signal transduction systems of gram-positive pathogenic bacteria as targets for antimicrobial therapy. Pharmacol. Ther., 93, 293–305.
- Bretl, D.J., Demetriadou, C., and Zahrt, T.C. (2011) Adaptation to environmental stimuli within the host: two-component signal transduction systems of Mycobacterium tuberculosis. Microbiol. Mol. Biol. Rev., 75 (4), 566–582.
- Goodman, A.L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R.S., and Lory, S. (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell, 7 (5), 745–754.
- Kraus, D., Herbert, S., Kristian, S.A., Khosravi, A., Nizet, V., Gotz, F., and Peschel, A. (2008) The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses. BMC Microbiol., 8, 85.
- Wilke, K.E. and Carlson, E.E. (2013) All signals lost. Sci. Transl. Med., 5, 203ps212.
- Clatworthy, A.E., Pierson, E., and Hung, D.T. (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol., 3 (9), 541–548.
- Rasko, D.A. and Sperandio, V. (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discovery, 9 (2), 117–128.
- Centers for Disease Control and Prevention (2013) Antibiotic Resistance Threats in the United States. Atlanta, GA.
- Silver, L.L. (2011) Challenges of antibacterial discovery. Clin. Microbiol. Rev., 24 (1), 71–109.
- World Health Organization (2014) Antimicrobial Resistance: Global Report on Surveillance. Geneva.
- Boucher, H.W., Talbot, G.H., Bradley, J.S., Edwards, J.E., Gilbert, D., Rice, L.B., Scheld, M., Spellberg, B., and Bartlett, J. (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 48 (1), 1–12.
- Stephenson, K., Yamaguchi, Y., and Hoch, J.A. (2000) The mechanism of action of inhibitors of bacterial two-component signal transduction systems. J. Biol. Chem., 275 (49), 38900–38904.
- Rasko, D.A., Moreira, C.G., Li de, R., Reading, N.C., Ritchie, J.M., Waldor, M.K., Williams, N., Taussig, R., Wei, S., Roth, M., Hughes, D.T., Huntley, J.F., Fina, M.W., Falck, J.R., and Sperandio, V. (2008) Targeting QseC signaling and virulence for antibiotic development. Science, 321 (5892), 1078–1080.
- Sergeev, G., Roy, S., Jarek, M., Zapolskii, V., Kaufmann, D.E., Nandy, R.K., and Tegge, W. (2014) High-throughput screening and whole genome sequencing identifies an antimicrobially active inhibitor of Vibrio cholerae. BMC Microbiol., 14 (1), 49.
- Cai, X., Zhang, J., Chen, M., Wu, Y., Wang, X., Chen, J., Zhang, J., Shen, X., Qu, D., and Jiang, H. (2011) The effect of the potential PhoQ histidine kinase inhibitors on Shigella flexneri virulence. PLoS One, 6 (8), e23100.
- Li, N., Wang, F., Niu, S., Cao, J., Wu, K., Li, Y., Yin, N., Zhang, X., Zhu, W., and Yin, Y. (2009) Discovery of novel inhibitors of Streptococcus pneumoniae based on the virtual screening with the homology-modeled structure of histidine kinase (VicK). BMC Microbiol., 9, 129.
- Huang, R.Z., Zheng, L.K., Liu, H.Y., Pan, B., Hu, J., Zhu, T., Wang, W., Jiang, D.B., Wu, Y., Wu, Y.C., Han, S.Q., and Qu, D. (2012) Thiazolidione derivatives targeting the histidine kinase YycG are effective against both planktonic and biofilm-associated Staphylococcus epidermidis. Acta Pharmacol. Sin., 33 (3), 418–425.
- Qin, Z., Zhang, J., Xu, B., Chen, L., Wu, Y., Yang, X., Shen, X., Molin, S., Danchin, A., Jiang, H., and Qu, D. (2006) Structure-based discovery of inhibitors of the YycG histidine kinase: new chemical leads to combat Staphylococcus epidermidis infections. BMC Microbiol., 6, 96.
- Liu, H., Zhao, D., Chang, J., Yan, L., Zhao, F., Wu, Y., Xu, T., Gong, T., Chen, L., He, N., Wu, Y., Han, S., and Qu, D. (2014) Efficacy of novel antibacterial compounds targeting histidine kinase YycG protein. Appl. Microbiol. Biotechnol., 98 (13), 6003–6013.
- Gilmour, R., Foster, J.E., Sheng, Q., McClain, J.R., Riley, A., Sun, P.M., Ng, W.L., Yan, D., Nicas, T.I., Henry, K., and Winkler, M.E. (2005) New class of competitive inhibitor of bacterial histidine kinases. J. Bacteriol., 187 (23), 8196–8200.
- Francis, S., Wilke, K.E., Brown, D.E., and Carlson, E.E. (2013) Mechanistic insight into inhibition of two-component system signaling. Med. Chem. Commun., 4, 269–277.
- Mayer, M. and Meyer, B. (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc., 123, 6108–6117.
- Stewart, R.C., VanBruggen, R., Ellefson, D.D., and Wolfe, A.J. (1998) TNP-ATP and TNP-ADP as probes of the nucleotide binding site of CheA, the histidine protein kinase in the chemotaxis signal transduction pathway of Escherichia coli. Biochemistry, 37, 12269–12279.
- Casino, P., Miguel-Romero, L., and Marina, A. (2014) Visualizing autophosphorylation in histidine kinases. Nature, 5, 3258.