High-Throughput Screening of Marine Resources
Arnaud Hochard
USR3151-CNRS, Protein phosphorylation and human diseases, Kinase Inhibitor Specialized Screening facility (KISSf), Station Biologique CNRS-UPMC, Place Georges Teissier, CS 90074, 29688, Roscoff, Bretagne, France
Search for more papers by this authorLuc Reininger
Sorbonne Universités, UPMC Univ Paris 06, USR 3151, Protein phosphorylation and human diseases, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, cedex, France
Search for more papers by this authorSandrine Ruchaud
Sorbonne Universités, UPMC Univ Paris 06, USR 3151, Protein phosphorylation and human diseases, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, cedex, France
Search for more papers by this authorStéphane Bach
CNRS USR 3151, Protein Phosphorylation and Human Diseases, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, cedex, France
Search for more papers by this authorArnaud Hochard
USR3151-CNRS, Protein phosphorylation and human diseases, Kinase Inhibitor Specialized Screening facility (KISSf), Station Biologique CNRS-UPMC, Place Georges Teissier, CS 90074, 29688, Roscoff, Bretagne, France
Search for more papers by this authorLuc Reininger
Sorbonne Universités, UPMC Univ Paris 06, USR 3151, Protein phosphorylation and human diseases, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, cedex, France
Search for more papers by this authorSandrine Ruchaud
Sorbonne Universités, UPMC Univ Paris 06, USR 3151, Protein phosphorylation and human diseases, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, cedex, France
Search for more papers by this authorStéphane Bach
CNRS USR 3151, Protein Phosphorylation and Human Diseases, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, cedex, France
Search for more papers by this authorStéphane La Barre
Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
Search for more papers by this authorJean-Michel Kornprobst
Institut Mer et Littoral,Bâtiment Isomer, 2, rue de la Houssinière, 44322 Nantes, BP 92208,Cedex 3, France
Search for more papers by this authorSummary
The marine environment represents a vast resource to discover bioactive molecules with novel modes of action. The stagnation of the pharmaceutical market in terms of newly approved drugs, along with increased research and development costs, have created an urgent need to accelerate the discovery of new natural chemical scaffolds, and high-throughput screening (HTS) can be used for this purpose. The HTS process involves testing compounds in high numbers, to determine if they can modulate a given molecular pathway. Various HTS assays have been developed, depending on the therapeutic targets. In this chapter, an overview is provided of HTS procedures, and examples given that highlight the potential of marine products as pharmaceuticals, such as inhibitors of protein kinases.
References
- Bergstralh, D.T. and Ting, J.P. (2006) Microtubule stabilizing agents: their molecular signaling consequences and the potential for enhancement by drug combination. Cancer Treat Rev., 32, 166–179.
- Bettayeb, K., Tirado, O.M., Marionneau-Lambot, S., Ferandin, Y., Lozach, O., Morris, J.C., Mateo-Lozano, S., Drueckes, P., Schachtele, C., Kubbutat, M.H. et al. (2007) Meriolins, a new class of cell death inducing kinase inhibitors with enhanced selectivity for cyclin-dependent kinases. Cancer Res., 67, 8325–8334.
- Bharate, S.B., Yadav, R.R., Battula, S., and Vishwakarma, R.A. (2012) Meridianins: marine-derived potent kinase inhibitors. Mini Rev. Med. Chem., 12, 618–631.
- Bickle, M. (2010) The beautiful cell: high-content screening in drug discovery. Anal. Bioanal. Chem., 398, 219–226.
- Boute, N., Jockers, R., and Issad, T. (2002) The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol. Sci., 23, 351–354.
- Brodin, P. and Christophe, T. (2011) High-content screening in infectious diseases. Curr. Opin. Chem. Biol., 15, 534–539.
- Chahrour, O., Cairns, D., and Omran, Z. (2012) Small molecule kinase inhibitors as anti-cancer therapeutics. Mini Rev. Med. Chem., 12, 399–411.
- Ciruela, F. (2008) Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr. Opin. Biotechnol., 19, 338–343.
- Colas, P. (2008) High-throughput screening assays to discover small-molecule inhibitors of protein interactions. Curr. Drug. Discov. Technol., 5, 190–199.
- Collier, R. (2009) Drug development cost estimates hard to swallow. Can. Med. Assoc. J., 180, 279–280.
- Corbel, C., Wang, Q., Bousserouel, H., Hamdi, A., Zhang, B., Lozach, O., Ferandin, Y., Tan, V.B., Gueritte, F., Colas, P. et al. (2011) First BRET-based screening assay performed in budding yeast leads to the discovery of CDK5/p25 interaction inhibitors. Biotechnol. J., 6, 860–870.
- Debdab, M., Carreaux, F., Renault, S., Soundararajan, M., Fedorov, O., Filippakopoulos, P., Lozach, O., Babault, L., Tahtouh, T., Baratte, B. et al. (2011) Leucettines, a class of potent inhibitors of cdc2-like kinases and dual specificity, tyrosine phosphorylation regulated kinases derived from the marine sponge leucettamine B: modulation of alternative pre-RNA splicing. J. Med. Chem., 54, 4172–4186.
- Degorce, F., Card, A., Soh, S., Trinquet, E., Knapik, G.P., and Xie, B. (2009) HTRF: A technology tailored for drug discovery – a review of theoretical aspects and recent applications. Curr. Chem. Genomics, 3, 22–32.
- Esteban, E., Lien, F., and Youn, R. (2008) Unbiased insight on biopharma's innovation crisis. J. Bus. Chem., 5, 70–78.
- Goktug, A.N., Chai, S.C., and Chen, T. (2013) Data analysis approaches in high throughput screening, in Drug Discovery (ed. P.H. El-Shemy), InTech, Rijeka, Croatia, pp. 201–226. doi: 10.5772/52508; ISBN: 978-953-51-0906-8.
- Guiffant, D., Tribouillard, D., Gug, F., Galons, H., Meijer, L., Blondel, M., and Bach, S. (2007) Identification of intracellular targets of small molecular weight chemical compounds using affinity chromatography. Biotechnol. J., 2, 68–75.
- Hefti, F.F. (2008) Requirements for a lead compound to become a clinical candidate. BMC Neurosci., 9 (Suppl. 3), S7.
- Hochard, A., Oumata, N., Bettayeb, K., Gloulou, O., Fant, X., Durieu, E., Buron, N., Porceddu, M., Borgne-Sanchez, A., Galons, H. et al. (2013) Aftins Increase Amyloid-beta42, lower Amyloid-beta38, and do not alter Amyloid-beta40 extracellular production in vitro: Toward a chemical model of Alzheimer's disease? J. Alzheimers Dis., 35, 107–120.
- Hu, G.P., Yuan, J., Sun, L., She, Z.G., Wu, J.H., Lan, X.J., Zhu, X., Lin, Y.C., and Chen, S.P. (2011) Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar. Drugs, 9, 514–525.
- Hughes, J.P., Rees, S., Kalindjian, S.B., and Philpott, K.L. (2011) Principles of early drug discovery. Br. J. Pharmacol., 162, 1239–1249.
- Khawaja, X., Dunlop, J., and Kowal, D. (2008) Scintillation proximity assay in lead discovery. Expert Opin. Drug. Discov., 3, 1267–1280.
- Kingston, D.G. (2009) Tubulin-interactive natural products as anticancer agents. J. Nat. Prod., 72, 507–515.
- Lavery, P., Brown, M.J., and Pope, A.J. (2001) Simple absorbance-based assays for ultra-high throughput screening. J. Biomol. Screening, 6, 3–9.
- Leclerc, S., Garnier, M., Hoessel, R., Marko, D., Bibb, J.A., Snyder, G.L., Greengard, P., Biernat, J., Wu, Y.Z., Mandelkow, E.M. et al. (2001) Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclin-dependent kinase inhibitors? J. Biol. Chem., 276, 251–260.
- Lemmens, I., Lievens, S., Eyckerman, S., and Tavernier, J. (2006) Reverse MAPPIT detects disruptors of protein–protein interactions in human cells. Nat. Protoc., 1, 92–97.
- Lievens, S., Vanderroost, N., Van der Heyden, J., Gesellchen, V., Vidal, M., and Tavernier, J. (2009) Array MAPPIT: high-throughput interactome analysis in mammalian cells. J. Proteome Res., 8, 877–886.
- Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 23, 3–25.
- Luo, J., Zhu, Y., Zhu, M.X., and Hu, H. (2011) Cell-based calcium assay for medium to high throughput screening of TRP channel functions using FlexStation 3. J. Vis. Exp. (54), e3149. doi: 10.3791/3149.
- Maes, M., Loyter, A., and Friedler, A. (2012) Peptides that inhibit HIV-1 integrase by blocking its protein–protein interactions. FEBS J., 279, 2795–2809.
- Malo, N., Hanley, J.A., Cerquozzi, S., Pelletier, J., and Nadon, R. (2006) Statistical practice in high-throughput screening data analysis. Nat. Biotechnol., 24, 167–175.
- Meijer, L., Thunnissen, A.M., White, A.W., Garnier, M., Nikolic, M., Tsai, L.H., Walter, J., Cleverley, K.E., Salinas, P.C., Wu, Y.Z. et al. (2000) Inhibition of cyclin-dependent kinases, GSK-3beta and CK1 by hymenialdisine, a marine sponge constituent. Chem. Biol., 7, 51–63.
- Mere, L., Bennett, T., Coassin, P., England, P., Hamman, B., Rink, T., Zimmerman, S., and Negulescu, P. (1999) Miniaturized FRET assays and microfluidics: key components for ultra-high-throughput screening. Drug. Discov. Today, 4, 363–369.
- Michelini, E., Cevenini, L., Mezzanotte, L., Coppa, A., and Roda, A. (2010) Cell-based assays: fuelling drug discovery. Anal. Bioanal. Chem., 398, 227–238.
- Mitnaul, L.J., Tian, J., Burton, C., Lam, M.H., Zhu, Y., Olson, S.H., Schneeweis, J.E., Zuck, P., Pandit, S., Anderson, M. et al. (2007) Fluorogenic substrates for high-throughput measurements of endothelial lipase activity. J. Lipid Res., 48, 472–482.
- Molinski, T.F., Dalisay, D.S., Lievens, S.L., and Saludes, J.P. (2009) Drug development from marine natural products. Nat. Rev. Drug. Discov., 8, 69–85.
- Mullard, A. (2012) Protein-protein interaction inhibitors get into the groove. Nat. Rev. Drug. Discov., 11, 173–175.
- Newbatt, Y., Hardcastle, A., McAndrew, P.C., Strover, J.A., Mirza, A., Morgan, G.J., Burke, R., Davies, F.E., Collins, I., and van Montfort, R.L. (2013) Identification of autophosphorylation inhibitors of the inositol-requiring enzyme 1 alpha (IRE1alpha) by high-throughput screening using a DELFIA assay. J. Biomol. Screening, 18, 298–308.
- Nooren, I.M. and Thornton, J.M. (2003) Structural characterisation and functional significance of transient protein–protein interactions. J. Mol. Biol., 325, 991–1018.
- Ofran, Y. and Rost, B. (2007) Protein–protein interaction hotspots carved into sequences. PLoS Comput. Biol., 3, e119.
- Owicki, J.C. (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J. Biomol. Screening, 5, 297–306.
-
Pettit, G.R.,
Herald, C.L., and
Hogan, F.
(2002)
Biosynthetic products for anticancer drug design and treatment: The bryostatins, in
Anticancer Drug Development
(eds C.B. Bruce and
J.K. David),
Academic Press,
San Diego, Ch. 12, pp.
203–235.
10.1016/B978-012072651-6/50013-9 Google Scholar
- Rezwan, M. and Auerbach, D. (2012) Yeast “N”-hybrid systems for protein–protein and drug–protein interaction discovery. Methods, 57, 423–429.
- Siebring-van Olst, E., Vermeulen, C., de Menezes, R.X., Howell, M., Smit, E.F., and van Beusechem, V.W. (2013) Affordable luciferase reporter assay for cell-based high-throughput screening. J. Biomol. Screening, 18, 453–461.
- Singh, R., Sharma, M., Joshi, P., and Rawat, D.S. (2008) Clinical status of anti-cancer agents derived from marine sources. Anticancer Agents Med. Chem., 8, 603–617.
- Skropeta, D., Pastro, N., and Zivanovic, A. (2011) Kinase inhibitors from marine sponges. Mar. Drugs, 9, 2131–2154.
- Stynen, B., Tournu, H., Tavernier, J., and Van Dijck, P. (2012) Diversity in genetic in vivo methods for protein–protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol. Mol. Biol. Rev., 76, 331–382.
- Thiel, P., Kaiser, M., and Ottmann, C. (2012) Small-molecule stabilization of protein-protein interactions: an underestimated concept in drug discovery? Angew. Chem. Int. Ed. Engl., 51, 2012–2018.
- Trindade-Silva, A.E., Lim-Fong, G.E., Sharp, K.H., and Haygood, M.G. (2010) Bryostatins: biological context and biotechnological prospects. Curr. Opin. Biotechnol., 21, 834–842.
- Tyner, J.W., Deininger, M.W., Loriaux, M.M., Chang, B.H., Gotlib, J.R., Willis, S.G., Erickson, H., Kovacsovics, T., O'Hare, T., Heinrich, M.C. et al. (2009) RNAi screen for rapid therapeutic target identification in leukemia patients. Proc. Natl Acad. Sci. USA, 106, 8695–8700.
- Vijayakumar, M.V., Ajay, A.K., and Bhat, M.K. (2010) Demonstration of a visual cell-based assay for screening glucose transporter 4 translocation modulators in real time. J. Biosci., 35, 525–531.
- Vinothkumar, S. and Parameswaran, P.S. (2013) Recent advances in marine drug research. Biotechnol. Adv., 31, 1826–1845.
- von Ahsen, O., Schmidt, A., Klotz, M., and Parczyk, K. (2006) Assay concordance between SPA and TR-FRET in high-throughput screening. J. Biomol. Screening, 11, 606–616.
- Wan, Y., Hur, W., Cho, C.Y., Liu, Y., Adrian, F.J., Lozach, O., Bach, S., Mayer, T., Fabbro, D., Meijer, L. et al. (2004) Synthesis and target identification of hymenialdisine analogs. Chem. Biol., 11, 247–259.
- Wender, P.A., Baryza, J.L., Brenner, S.E., DeChristopher, B.A., Loy, B.A., Schrier, A.J., and Verma, V.A. (2011) Design, synthesis, and evaluation of potent bryostatin analogs that modulate PKC translocation selectivity. Proc. Natl Acad. Sci. USA, 108, 6721–6726.
- Westby, M., Nakayama, G.R., Butler, S.L., and Blair, W.S. (2005) Cell-based and biochemical screening approaches for the discovery of novel HIV-1 inhibitors. Antiviral. Res., 67, 121–140.
- White, A.W., Carpenter, N., Lottin, J.R., McClelland, R.A., and Nicholson, R.I. (2012) Synthesis and evaluation of novel anti-proliferative pyrroloazepinone and indoloazepinone oximes derived from the marine natural product hymenialdisine. Eur. J. Med. Chem., 56, 246–253.
- Yasgar, A., Shultz, J., Zhou, W., Wang, H., Huang, F., Murphy, N., Abel, E.L., DiGiovanni, J., Inglese, J., and Simeonov, A. (2010) A high-throughput 1,536-well luminescence assay for glutathione S-transferase activity. Assay Drug. Dev. Technol., 8, 200–211.
- Zhang, J.H., Chung, T.D., and Oldenburg, K.R. (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screening, 4, 67–73.
- Zhu, X., Fu, A., and Luo, K.Q. (2012) A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents. Biochem. Biophys. Res. Commun., 418, 641–646.