Conotoxins and Other Conopeptides
Quentin Kaas
The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD, 4072, Australia
Search for more papers by this authorDavid J. Craik
The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD, 4072, Australia
Search for more papers by this authorQuentin Kaas
The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD, 4072, Australia
Search for more papers by this authorDavid J. Craik
The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD, 4072, Australia
Search for more papers by this authorStéphane La Barre
Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
Search for more papers by this authorJean-Michel Kornprobst
Institut Mer et Littoral,Bâtiment Isomer, 2, rue de la Houssinière, 44322 Nantes, BP 92208,Cedex 3, France
Search for more papers by this authorSummary
Conopeptides are a large family of peptide toxins produced by marine cone snails. They act with high potency and exquisite specificity on a range of ion channels and transporters of the nervous system, making them valuable drug leads and important molecular probes in neurophysiological studies. Most conopeptides are small, ranging from 10 to 30 amino acid residues, but some contain up to about 90 amino acids. They display a large chemical diversity because they have very diverse sequences and a large number of post-translational modifications. Disulfide-rich conopeptides are commonly referred to as conotoxins, and have particularly diverse structures and a broad range of molecular targets. One conotoxin, MVIIA (also named Prialt® or ziconotide), is an N-type calcium channel blocker that is used clinically as an analgesic to treat neuropathic pain. Other conopeptides have also attracted considerable interest for their potential pharmaceutical applications. In this chapter, the marine cone snails and their venoms are introduced and the chemical diversity of conopeptides is described, along with the techniques used to unravel this diversity. The three-dimensional structures of conopeptides are discussed and linked to their pharmacological activities.
References
-
Adams, D.J.,
Alewood, P.F.,
Craik, D.J.,
Drinkwater, R.D., and
Lewis, R.J.
(1999)
Conotoxins and their potential pharmaceutical applications.
Drug Dev. Res.,
46,
219–234.
10.1002/(SICI)1098-2299(199903/04)46:3/4<219::AID-DDR7>3.0.CO;2-S CAS Web of Science® Google Scholar
- Adams, D.J., Callaghan, B., and Berecki, G. (2012) Analgesic conotoxins: block and G protein-coupled receptor modulation of N-type (Ca(V) 2.2) calcium channels. Br. J. Pharmacol., 166, 486–500.
- Akcan, M., Cao, Y., Chongxu, F., and Craik, D.J. (2013) The three-dimensional solution structure of mini-M conotoxin BtIIIA reveals a disconnection between disulfide connectivity and peptide fold. Bioorg. Med. Chem., 21, 3590–3596.
- Bagal, S.K., Brown, A.D., Cox, P.J., Omoto, K., Owen, R.M., Pryde, D.C., Sidders, B., Skerratt, S.E., Stevens, E.B., Storer, R.I. et al. (2013) Ion channels as therapeutic targets: a drug discovery perspective. J. Med. Chem., 56, 593–624.
- Balaji, R.A., Ohtake, A., Sato, K., Gopalakrishnakone, P., Kini, R.M., Seow, K.T., and Bay, B.H. (2000) λ-conotoxins, a new family of conotoxins with unique disulfide pattern and protein folding. Isolation and characterization from the venom of Conus marmoreus . J. Biol. Chem., 275, 39516–39522.
- Berecki, G., Motin, L., Haythornthwaite, A., Vink, S., Bansal, P., Drinkwater, R., Wang, C.I., Moretta, M., Lewis, R.J., Alewood, P.F. et al. (2010) Analgesic ω-conotoxins CVIE and CVIF selectively and voltage-dependently block recombinant and native N-type calcium channels. Mol. Pharmacol., 77, 139–148.
- Bhatia, S., Kil, Y.J., Ueberheide, B., Chait, B.T., Tayo, L., Cruz, L., Lu, B., Yates, J.R. 3rd, and Bern, M. (2012) Constrained de novo sequencing of conotoxins. J. Proteome Res., 11, 4191–4200.
- Biggs, J.S., Rosenfeld, Y., Shai, Y., and Olivera, B.M. (2007) Conolysin-Mt: a Conus peptide that disrupts cellular membranes. Biochemistry, 46, 12586–12593.
- Biggs, J.S., Watkins, M., Puillandre, N., Ownby, J.-P., Lopez-Vera, E., Christensen, S., Moreno, K.J., Bernaldez, J., Licea-Navarro, A., Corneli, P.S. et al. (2010) Evolution of Conus peptide toxins: analysis of Conus californicus Reeve, 1844. Mol. Phylogenet. Evol., 56, 1–12.
- Buczek, O., Wei, D., Babon, J.J., Yang, X., Fiedler, B., Chen, P., Yoshikami, D., Olivera, B.M., Bulaj, G., and Norton, R.S. (2007) Structure and sodium channel activity of an excitatory I1-superfamily conotoxin. Biochemistry, 46, 9929–9940.
- Callaghan, B. and Adams, D.J. (2010) Analgesic α-conotoxins Vc1.1 and RgIA inhibit N-type calcium channels in sensory neurons of α9 nicotinic receptor knockout mice. Channels, 4, 51–54.
- Carstens, B.B., Clark, R.J., Daly, N.L., Harvey, P.J., Kaas, Q., and Craik, D.J. (2011) Engineering of conotoxins for the treatment of pain. Curr. Pharm. Des., 17, 4242–4253.
- Chang, D. and Duda, T.F. Jr (2012) Extensive and continuous duplication facilitates rapid evolution and diversification of gene families. Mol. Biol. Evol., 29, 2019–2029.
- Clark, C., Olivera, B.M., and Cruz, L.J. (1981) A toxin from the venom of the marine snail Conus geographus which acts on the vertebrate central nervous system. Toxicon, 19, 691–699.
- Conniff, R. (2009) Mad About Seashells http://www.smithsonianmag.com/science-nature/Mad-About-Shells.html (accessed August 2009).
- Conticello, S.G., Gilad, Y., Avidan, N., Ben-Asher, E., Levy, Z., and Fainzilber, M. (2001) Mechanisms for evolving hypervariability: the case of conopeptides. Mol. Biol. Evol., 18, 120–131.
- Corpuz, G.P., Jacobsen, R.B., Jimenez, E.C., Watkins, M., Walker, C., Colledge, C., Garrett, J.E., McDougal, O., Li, W., Gray, W.R. et al. (2005) Definition of the M-conotoxin superfamily: characterization of novel peptides from molluscivorous Conus venoms. Biochemistry, 44, 8176–8186.
- Cox, J. (1884) Poisonous effects of the bite inflicted by Conus geographicus . Linn. Proc. Linnean Soc., 9, 944–946.
- Craig, A.G., Bandyopadhyay, P., and Olivera, B.M. (1999a) Post-translationally modified neuropeptides from Conus venoms. Eur. J. Biochem., 264, 271–275.
- Craig, A.G., Norberg, T., Griffin, D., Hoeger, C., Akhtar, M., Schmidt, K., Low, W., Dykert, J., Richelson, E., Navarro, V. et al. (1999b) Contulakin-G, an O-glycosylated invertebrate neurotensin. J. Biol. Chem., 274, 13752–13759.
- Craik, D.J. and Adams, D.J. (2007) Chemical modification of conotoxins to improve stability and activity. ACS Chem. Biol., 2, 457–468.
- Cruz, L.J., Gray, W.R., Olivera, B.M., Zeikus, R.D., Kerr, L., Yoshikami, D., and Moczydlowski, E. (1985) Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J. Biol. Chem., 260, 9280–9288.
- Cruz, L.J., de Santos, V., Zafaralla, G.C., Ramilo, C.A., Zeikus, R., Gray, W.R., and Olivera, B.M. (1987) Invertebrate vasopressin/oxytocin homologs. Characterization of peptides from Conus geographus and Conus striatus venoms. J. Biol. Chem., 262, 15821–15824.
- Daly, N.L. and Craik, D.J. (2009) Structural studies of conotoxins. IUBMB Life, 61, 144–150.
- Daly, N.L., Callaghan, B., Clark, R.J., Nevin, S.T., Adams, D.J., and Craik, D.J. (2011) Structure and activity of α-conotoxin PeIA at nicotinic acetylcholine receptor subtypes and GABAB receptor-coupled N-type calcium channels. J. Biol. Chem., 286, 10233–10237.
- Davis, J., Jones, A., and Lewis, R.J. (2009) Remarkable inter- and intra-species complexity of conotoxins revealed by LC/MS. Peptides, 30, 1222–1227.
- Dobson, R., Collodoro, M., Gilles, N., Turtoi, A., De Pauw, E., and Quinton, L. (2012) Secretion and maturation of conotoxins in the venom ducts of Conus textile . Toxicon, 60, 1370–1379.
- Donevan, S.D. and McCabe, R.T. (2000) Conantokin G is an NR2B-selective competitive antagonist of N-methyl-D-aspartate receptors. Mol. Pharmacol., 58, 614–623.
- Duda, T.F. Jr and Palumbi, S.R. (1999) Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus . Proc. Natl Acad. Sci. USA, 96, 6820–6823.
- Duda, T.F. Jr and Palumbi, S.R. (2000) Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails. Mol. Biol. Evol., 17, 1286–1293.
- Duda, T.F. Jr and Palumbi, S.R. (2004) Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus Conus . Proc. Biol. Sci., 271, 1165–1174.
- Duda, T.F. and Lee, T. (2009) Ecological release and venom evolution of a predatory marine snail at Easter Island. PloS ONE, 4, e5558.
- Duda, T.F., Chang, D., Lewis, B.D., and Lee, T. (2009a) Geographic variation in venom allelic composition and diets of the widespread predatory marine gastropod Conus ebraeus . PloS ONE, 4, e6245.
- Duda, T.F. Jr., Kohn, A.J., and Matheny, A.M. (2009b) Cryptic species differentiated in Conus ebraeus, a widespread tropical marine gastropod. Biol. Bull., 217, 292–305.
- Dutertre, S., Ulens, C., Büttner, R., Fish, A., van Elk, R., Kendel, Y., Hopping, G., Alewood, P.F., Schroeder, C., Nicke, A. et al. (2007) AChBP-targeted α-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. EMBO J., 26, 3858–3867.
- Dutertre, S., Jin, A., Kaas, Q., Jones, A., Alewood, P., and Lewis, R. (2013) Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol. Cell. Proteomics, 12, 312–329.
- Dutton, J.L. and Craik, D.J. (2001) α-Conotoxins: nicotinic acetylcholine receptor antagonists as pharmacological tools and potential drug leads. Curr. Med. Chem., 8, 327–344.
- Dy, C.Y., Buczek, P., Imperial, J.S., Bulaj, G., and Horvath, M.P. (2006) Structure of conkunitzin-S1, a neurotoxin and Kunitz-fold disulfide variant from cone snail. Acta Crystallogr. D Biol. Crystallogr., 62, 980–990.
- Ekberg, J., Jayamanne, A., Vaughan, C.W., Aslan, S., Thomas, L., Mould, J., Drinkwater, R., Baker, M.D., Abrahamsen, B., Wood, J.N. et al. (2006) μO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proc. Natl Acad. Sci. USA, 103, 17030–17035.
- Elliger, C.A., Richmond, T.A., Lebaric, Z.N., Pierce, N.T., Sweedler, J.V., and Gilly, W.F. (2011) Diversity of conotoxin types from Conus californicus reflects a diversity of prey types and a novel evolutionary history. Toxicon, 57, 311–322.
- Ellison, M., McIntosh, J.M., and Olivera, B.M. (2003) α-Conotoxins ImI and ImII. Similar α7 nicotinic receptor antagonists act at different sites. J. Biol. Chem., 278, 757–764.
- Endean, R., Parish, G., and Gyr, P. (1974) Pharmacology of the venom of Conus geographus . Toxicon, 12, 131–138.
- England, L.J., Imperial, J., Jacobsen, R., Craig, A.G., Gulyas, J., Akhtar, M., Rivier, J., Julius, D., and Olivera, B.M. (1998) Inactivation of a serotonin-gated ion channel by a polypeptide toxin from marine snails. Science, 281, 575–578.
- Fainzilber, M., Gordon, D., Hasson, A., Spira, M.E., and Zlotkin, E. (1991) Mollusc-specific toxins from the venom of Conus textile neovicarius . Eur. J. Biochem., 202, 589–595.
- Fainzilber, M., Nakamura, T., Lodder, J.C., Zlotkin, E., Kits, K.S., and Burlingame, A.L. (1998) γ-Conotoxin-PnVIIA, a gamma-carboxyglutamate-containing peptide agonist of neuronal pacemaker cation currents. Biochemistry, 37, 1470–1477.
- Gilles, A., Meglécz, E., Pech, N., Ferreira, S., Malausa, T., and Martin, J.-F. (2011) Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics, 12, 245.
- Gilly, W.F., Richmond, T.A., Duda, T.F. Jr, Elliger, C., Lebaric, Z., Schulz, J., Bingham, J.P., and Sweedler, J.V. (2011) A diverse family of novel peptide toxins from an unusual cone snail, Conus californicus . J. Exp. Biol., 214, 147–161.
- Gowd, K.H., Dewan, K.K., Iengar, P., Krishnan, K.S., and Balaram, P. (2008) Probing peptide libraries from Conus achatinus using mass spectrometry and cDNA sequencing: identification of δ and ω-conotoxins. J. Mass Spectrom., 43, 791–805.
- Gray, W.R., Luque, A., Olivera, B.M., Barrett, J., and Cruz, L.J. (1981) Peptide toxins from Conus geographus venom. J. Biol. Chem., 256, 4734–4740.
- Gray, W.R., Olivera, B.M., and Cruz, L.J. (1988) Peptide toxins from venomous Conus snails. Annu. Rev. Biochem., 57, 665–700.
- Halai, R. and Craik, D.J. (2009) Conotoxins: natural product drug leads. Nat. Prod. Rep., 26, 526–536.
- Han, Y.-H., Wang, Q., Jiang, H., Liu, L., Xiao, C., Yuan, D.-D., Shao, X.-X., Dai, Q.-Y., Cheng, J.-S., and Chi, C.-W. (2006) Characterization of novel M-superfamily conotoxins with new disulfide linkage. FEBS J., 273, 4972–4982.
- Heinemann, S.H. and Leipold, E. (2007) Conotoxins of the O-superfamily affecting voltage-gated sodium channels. Cell. Mol. Life Sci., 64, 1329–1340.
- Hidaka, Y., Sato, K., Nakamura, H., Kobayashi, J., Ohizumi, Y., and Shimonishi, Y. (1990) Disulfide pairings in geographutoxin I, a peptide neurotoxin from Conus geographus . FEBS Lett., 264, 29–32.
- Hill, J.M., Alewood, P.F., and Craik, D.J. (2000) Conotoxin TVIIA, a novel peptide from the venom of Conus tulipa 2. Three-dimensional solution structure. Eur. J. Biochem., 267, 4649–4657.
- Hillyard, D.R., Olivera, B.M., Woodward, S., Corpuz, G.P., Gray, W.R., Ramilo, C.A., and Cruz, L.J. (1989) A molluscivorous Conus toxin: conserved frameworks in conotoxins. Biochemistry, 28, 358–361.
- Hopkins, C., Grilley, M., Miller, C., Shon, K.J., Cruz, L.J., Gray, W.R., Dykert, J., Rivier, J., Yoshikami, D., and Olivera, B.M. (1995) A new family of Conus peptides targeted to the nicotinic acetylcholine receptor. J. Biol. Chem., 270, 22361–22367.
- Hu, H., Bandyopadhyay, P.K., Olivera, B.M., and Yandell, M. (2011) Characterization of the Conus bullatus genome and its venom-duct transcriptome. BMC Genomics, 12, 60.
- Hu, H., Bandyopadhyay, P.K., Olivera, B.M., and Yandell, M. (2012) Elucidation of the molecular envenomation strategy of the cone snail Conus geographus through transcriptome sequencing of its venom duct. BMC Genomics, 13, 284.
- Hu, S.H., Gehrmann, J., Alewood, P.F., Craik, D.J., and Martin, J.L. (1997) Crystal structure at 1.1 A resolution of α-conotoxin PnIB: comparison with alpha-conotoxins PnIA and GI. Biochemistry, 36, 11323–11330.
- Jakubowski, J.A., Kelley, W.P., and Sweedler, J.V. (2006) Screening for post-translational modifications in conotoxins using liquid chromatography/mass spectrometry: an important component of conotoxin discovery. Toxicon, 47, 688–699.
- Jimenez, E.C., Shetty, R.P., Lirazan, M., Rivier, J., Walker, C., Abogadie, F.C., Yoshikami, D., Cruz, L.J., and Olivera, B.M. (2003) Novel excitatory Conus peptides define a new conotoxin superfamily. J. Neurochem., 85, 610–621.
- Kaas, Q., Westermann, J.-C., Halai, R., Wang, C.K.L., and Craik, D.J. (2008) ConoServer, a database for conopeptide sequences and structures. Bioinformatics, 24, 445–446.
- Kaas, Q., Westermann, J.-C., and Craik, D.J. (2010) Conopeptide characterization and classifications: an analysis using ConoServer. Toxicon, 55, 1491–1509.
- Kaas, Q., Yu, R., Jin, A.-H., Dutertre, S., and Craik, D.J. (2012) ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res., 40, D325–D330.
- Kang, T.S., Jois, S.D.S., and Kini, R.M. (2006) Solution structures of two structural isoforms of CMrVIA χ/λ-conotoxin. Biomacromolecules, 7, 2337–2346.
- Kauferstein, S., Huys, I., Kuch, U., Melaun, C., Tytgat, J., and Mebs, D. (2004) Novel conopeptides of the I-superfamily occur in several clades of cone snails. Toxicon, 44, 539–548.
- Kauferstein, S., Melaun, C., and Mebs, D. (2005) Direct cDNA cloning of novel conopeptide precursors of the O-superfamily. Peptides, 26, 361–367.
- Kerr, L.M. and Yoshikami, D. (1984) A venom peptide with a novel presynaptic blocking action. Nature, 308, 282–284.
- Kindahl, L., Sandström, C., Craig, A.G., Norberg, T., and Kenne, L. (2002) 1H NMR studies on the solution conformation of contulakin-G and analogues. Can. J. Chem., 80, 1022–1031.
- Klimis, H., Adams, D.J., Callaghan, B., Nevin, S., Alewood, P.F., Vaughan, C.W., Mozar, C.A., and Christie, M.J. (2011) A novel mechanism of inhibition of high-voltage activated calcium channels by α-conotoxins contributes to relief of nerve injury-induced neuropathic pain. Pain, 152, 259–266.
- Kohn, A.J., Saunders, P.R., and Wiener, S. (1960) Preliminary studies on the venom of the marine snail Conus . Ann. N. Y. Acad. Sci., 90, 706–725.
- Lee, S., Kim, Y., Back, S.K., Choi, H.-W., Lee, J.Y., Jung, H.H., Ryu, J.H., Suh, H.-W., Na, H.S., Kim, H.J. et al. (2010) Analgesic effect of highly reversible ω-conotoxin FVIA on N type Ca2+ channels. Mol. Pain, 6, 97.
- Leipold, E., Markgraf, R., Miloslavina, A., Kijas, M., Schirmeyer, J., Imhof, D., and Heinemann, S.H. (2011) Molecular determinants for the subtype specificity of μ-conotoxin SIIIA targeting neuronal voltage-gated sodium channels. Neuropharmacology., 61, 105–111.
- Lewis, R.J. (2009) Conotoxins: molecular and therapeutic targets. Prog. Mol. Subcell. Biol., 46, 45–65.
- Lewis, R.J. and Garcia, M.L. (2003) Therapeutic potential of venom peptides. Nat. Rev. Drug Discov., 2, 790–802.
- Lewis, R.J., Schroeder, C.I., Ekberg, J., Nielsen, K.J., Loughnan, M., Thomas, L., Adams, D.A., Drinkwater, R., Adams, D.J., and Alewood, P.F. (2007) Isolation and structure-activity of μ-conotoxin TIIIA, a potent inhibitor of tetrodotoxin-sensitive voltage-gated sodium channels. Mol. Pharmacol., 71, 676–685.
- Lewis, R.J., Dutertre, S., Vetter, I., and Christie, M.J. (2012) Conus venom peptide pharmacology. Pharmacol. Rev., 64, 259–298.
- Liu, Z., Xu, N., Hu, J., Zhao, C., Yu, Z., and Dai, Q. (2009) Identification of novel I-superfamily conopeptides from several clades of Conus species found in the South China Sea. Peptides, 30, 1782–1787.
- Livett, B.G., Gayler, K.R., and Khalil, Z. (2004) Drugs from the sea: conopeptides as potential therapeutics. Curr. Med. Chem., 11, 1715–1723.
- Livett, B.G., Sandall, D.W., Keays, D., Down, J., Gayler, K.R., Satkunanathan, N., and Khalil, Z. (2006) Therapeutic applications of conotoxins that target the neuronal nicotinic acetylcholine receptor. Toxicon, 48, 810–829.
- Lluisma, A.O., Milash, B.A., Moore, B., Olivera, B.M., and Bandyopadhyay, P.K. (2012) Novel venom peptides from the cone snail Conus pulicarius discovered through next-generation sequencing of its venom duct transcriptome. Mar. Genomics, 5, 43–51.
- Lopez-Vera, E., Walewska, A., Skalicky, J.J., Olivera, B.M., and Bulaj, G. (2008) Role of hydroxyprolines in the in vitro oxidative folding and biological activity of conotoxins. Biochemistry, 47, 1741–1751.
- Luo, S., Zhangsun, D., Lin, Q., Xie, L., Wu, Y., and Zhu, X. (2006) Sequence diversity of O-superfamily conopetides from Conus marmoreus native to Hainan. Peptides, 27, 3058–3068.
- Macgillivray, J. (1860) Zoological notes from Aneiteum, New Hebrides. Zoologist, 19, 7136–7138.
- Malmberg, A.B. and Yaksh, T.L. (1995) Effect of continuous intrathecal infusion of ω-conopeptides, N-type calcium-channel blockers, on behavior and antinociception in the formalin and hot-plate tests in rats. Pain, 60, 83–90.
- Marx, U.C., Daly, N.L., and Craik, D.J. (2006) NMR of conotoxins: structural features and an analysis of chemical shifts of post-translationally modified amino acids. Magn. Reson. Chem., 44, S41–50.
- Miljanich, G.P. (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem., 11, 3029–3040.
- Millard, E.L., Daly, N.L., and Craik, D.J. (2004) Structure-activity relationships of α-conotoxins targeting neuronal nicotinic acetylcholine receptors. Eur. J. Biochem., 271, 2320–2326.
- Möller, C., Rahmankhah, S., Lauer-Fields, J., Bubis, J., Fields, G.B., and Marí, F. (2005) A novel conotoxin framework with a helix-loop-helix (Cs α/α) fold. Biochemistry, 44, 15986–15996.
- Muttenthaler, M., Akondi, K.B., and Alewood, P.F. (2011) Structure-activity studies on α-conotoxins. Curr. Pharm. Des., 17, 4226–4241.
- Nagami, P. (2005) Bitten: True Medical Stories of Bites and Stings, St Martin's Griffin, New York.
- Nevin, S.T., Clark, R.J., Klimis, H., Christie, M.J., Craik, D.J., and Adams, D.J. (2007) Are α9α10 nicotinic acetylcholine receptors a pain target for α-conotoxins? Mol. Pharmacol., 72, 1406–1410.
- Olivera, B. (2002) Conus venom peptides: Reflections from the biology of clades and species. Annu. Rev. Ecol. Syst., 33, 25–47.
- Olivera, B.M. and Cruz, L.J. (2001) Conotoxins, in retrospect. Toxicon, 39, 7–14.
- Olivera, B.M. and Teichert, R.W. (2007) Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery. Mol. Interv., 7, 251–260.
- Olivera, B.M., McIntosh, J.M., Cruz, L.J., Luque, F.A., and Gray, W.R. (1984) Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry, 23, 5087–5090.
- Olivera, B.M., Gray, W.R., Zeikus, R., McIntosh, J.M., Varga, J., Rivier, J., de Santos, V., and Cruz, L.J. (1985a) Peptide neurotoxins from fish-hunting cone snails. Science, 230, 1338–1343.
- Olivera, B.M., McIntosh, J.M., Clark, C., Middlemas, D., Gray, W.R., and Cruz, L.J. (1985b) A sleep-inducing peptide from Conus geographus venom. Toxicon, 23, 277–282.
- Olivera, B.M., Rivier, J., Clark, C., Ramilo, C.A., Corpuz, G.P., Abogadie, F.C., Mena, E.E., Woodward, S.R., Hillyard, D.R., and Cruz, L.J. (1990) Diversity of Conus neuropeptides. Science, 249, 257–263.
- Petrel, C., Hocking, H.G., Reynaud, M., Upert, G., Favreau, P., Biass, D., Paolini-Bertrand, M., Peigneur, S., Tytgat, J., Gilles, N. et al. (2013) Identification, structural and pharmacological characterization of τ-CnVA, a conopeptide that selectively interacts with somatostatin sst3 receptor. Biochem. Pharmacol., 85, 1663–1671.
- Puillandre, N., Watkins, M., and Olivera, B.M. (2010) Evolution of Conus peptide genes: duplication and positive selection in the A-Superfamily. J. Mol. Evol., 70, 190–202.
- Puillandre, N., Koua, D., Favreau, P., Olivera, B.M., and Stöcklin, R. (2012) Molecular phylogeny, classification and evolution of conopeptides. J. Mol. Evol., 74, 297–309.
- Rigby, A.C., Lucas-Meunier, E., Kalume, D.E., Czerwiec, E., Hambe, B., Dahlqvist, I., Fossier, P., Baux, G., Roepstorff, P., Baleja, J.D. et al. (1999) A conotoxin from Conus textile with unusual posttranslational modifications reduces presynaptic Ca2+ influx. Proc. Natl Acad. Sci. USA, 96, 5758–5763.
- D. Röckel, W. Kom, and A. Kohn (eds) (1995) Manual of the living Conidae, Mal de Mer Enterprises, Wellington.
- Safavi-Hemami, H., Siero, W.A., Kuang, Z., Williamson, N.A., Karas, J.A., Page, L.R., MacMillan, D., Callaghan, B., Kompella, S.N., Adams, D.J. et al. (2011a) Embryonic toxin expression in the cone snail Conus victoriae: primed to kill or divergent function? J. Biol. Chem., 286, 22546–22557.
- Safavi-Hemami, H., Siero, W.A., Gorasia, D.G., Young, N.D., Macmillan, D., Williamson, N.A., and Purcell, A.W. (2011b) Specialisation of the venom gland proteome in predatory cone snails reveals functional diversification of the conotoxin biosynthetic pathway. J. Proteome Res., 10, 3904–3919.
- Santos, A.D., McIntosh, J.M., Hillyard, D.R., Cruz, L.J., and Olivera, B.M. (2004) The A-superfamily of conotoxins: structural and functional divergence. J. Biol. Chem., 279, 17596–17606.
- Satkunanathan, N., Livett, B., Gayler, K., Sandall, D., Down, J., and Khalil, Z. (2005) α-Conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurones. Brain Res., 1059, 149–158.
- Scanlon, M.J., Naranjo, D., Thomas, L., Alewood, P.F., Lewis, R.J., and Craik, D.J. (1997) Solution structure and proposed binding mechanism of a novel potassium channel toxin κ-conotoxin PVIIA. Structure, 5, 1585–1597.
- Schroeder, C.I., Ekberg, J., Nielsen, K.J., Adams, D., Loughnan, M.L., Thomas, L., Adams, D.J., Alewood, P.F., and Lewis, R.J. (2008) Neuronally μ-conotoxins from Conus striatus utilize an α-helical motif to target mammalian sodium channels. J. Biol. Chem., 283, 21621–21628.
- Sharpe, I.A., Gehrmann, J., Loughnan, M.L., Thomas, L., Adams, D.A., Atkins, A., Palant, E., Craik, D.J., Adams, D.J., Alewood, P.F. et al. (2001) Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter. Nat. Neurosci., 4, 902–907.
- Skjaerbaek, N., Nielsen, K.J., Lewis, R.J., Alewood, P., and Craik, D.J. (1997) Determination of the solution structures of conantokin-G and conantokin-T by CD and NMR spectroscopy. J. Biol. Chem., 272, 2291–2299.
- Sun, D., Ren, Z., Zeng, X., You, Y., Pan, W., Zhou, M., Wang, L., and Xu, A. (2011) Structure-function relationship of conotoxin lt14a, a potential analgesic with low cytotoxicity. Peptides, 32, 300–305.
- Tayo, L.L., Lu, B., Cruz, L.J., and Yates, J.R. III (2010) Proteomic analysis provides insights on venom processing in Conus textile . J. Proteome Res., 9, 2292–2301.
- Teichert, R.W. and Olivera, B.M. (2010) Natural products and ion channel pharmacology. Future Med. Chem., 2, 731–744.
- Terlau, H. and Olivera, B.M. (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol. Rev., 84, 41–68.
- Terlau, H., Shon, K.J., Grilley, M., Stocker, M., Stühmer, W., and Olivera, B.M. (1996) Strategy for rapid immobilization of prey by a fish-hunting marine snail. Nature, 381, 148–151.
- Terrat, Y., Biass, D., Dutertre, S., Favreau, P., Remm, M., Stöcklin, R., Piquemal, D., and Ducancel, F. (2012) High-resolution picture of a venom gland transcriptome: case study with the marine snail Conus consors . Toxicon, 59, 34–46.
- Tranberg, C.E., Yang, A., Vette, I., McArthur, J.R., Baell, J.B., Lewis, R.J., Tuck, K.L., and Duggan, P.J. (2012) ω-Conotoxin GVIA mimetics that bind and inhibit neuronal Cav2.2 ion channels. Mar. Drugs, 10, 2349–2368.
- Twede, V.D., Miljanich, G., Olivera, B.M., and Bulaj, G. (2009) Neuroprotective and cardioprotective conopeptides: an emerging class of drug leads. Curr. Opin. Drug Discov. Devel., 12, 231–239.
- Vetter, I., Dekan, Z., Knapp, O., Adams, D.J., Alewood, P.F., and Lewis, R.J. (2012) Isolation, characterization and total regioselective synthesis of the novel μO-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels. Biochem. Pharmacol., 84, 540–548.
- Vincler, M. and McIntosh, J.M. (2007) Targeting the α9α10 nicotinic acetylcholine receptor to treat severe pain. Expert Opin. Ther. Targets, 11, 891–897.
- Violette, A., Biass, D., Dutertre, S., Koua, D., Piquemal, D., Pierrat, F., Stöcklin, R., and Favreau, P. (2012) Large-scale discovery of conopeptides and conoproteins in the injectable venom of a fish-hunting cone snail using a combined proteomic and transcriptomic approach. J. Proteomics., 75, 5215–5225.
- Walker, C.S., Steel, D., Jacobsen, R.B., Lirazan, M.B., Cruz, L.J., Hooper, D., Shetty, R., DelaCruz, R.C., Nielsen, J.S., Zhou, L.M. et al. (1999) The T-superfamily of conotoxins. J. Biol. Chem., 274, 30664–30671.
- Wang, Q., Jiang, H., Han, Y.-H., Yuan, D.-D., and Chi, C.-W. (2008) Two different groups of signal sequence in M-superfamily conotoxins. Toxicon, 51, 813–822.
- Woodward, S.R., Cruz, L.J., Olivera, B.M., and Hillyard, D.R. (1990) Constant and hypervariable regions in conotoxin propeptides. EMBO J., 9, 1015–1020.
- Yoshiba, S. (1984) An estimation of the most dangerous species of cone shell, Conus (Gastridium) geographus Linne, 1758, venom's lethal dose in humans (in Japanese). J. Hyg., 39, 565–572.