Halogenation and Vanadium Haloperoxidases
Jean-Baptiste Fournier
Sorbonne Universitées, UPMC Univ Paris 06, UMR, 8227
Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, 90074, F-29688 Roscoff cedex, France
Search for more papers by this authorCatherine Leblanc
Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, 90074, F-29688 Roscoff cedex, France
Search for more papers by this authorJean-Baptiste Fournier
Sorbonne Universitées, UPMC Univ Paris 06, UMR, 8227
Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, 90074, F-29688 Roscoff cedex, France
Search for more papers by this authorCatherine Leblanc
Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, 90074, F-29688 Roscoff cedex, France
Search for more papers by this authorStéphane La Barre
Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
Search for more papers by this authorJean-Michel Kornprobst
Institut Mer et Littoral,Bâtiment Isomer, 2, rue de la Houssinière, 44322 Nantes, BP 92208,Cedex 3, France
Search for more papers by this authorSummary
In marine organisms, vanadium haloperoxidases (VHPO) are involved in the production of halogenated metabolites, which feature a large panel of biological roles, such as signal molecules or antibiotics. VHPO-based halogenation processes are likely to play a role in the biogeochemical cycling of halogens because of the formation of volatile halocarbons, especially in marine coastal environments where large seaweed beds dominate. At the biochemical level, these enzymes present different specificities, and are classified according to the most electronegative halide that they can oxidize. In this chapter, a review is provided of all data obtained from biochemical, molecular characterization and structural studies on these haloperoxidases, since their discovery in a marine brown alga 30 years ago.
References
- Albert, C.J. (2003) Eosinophil peroxidase-derived reactive brominating species target the vinyl ether bond of plasmalogens generating a novel chemoattractant, alpha-bromo fatty aldehyde. J. Biol. Chem., 278 (11), 8942–8950.
- Almeida, M., Humanes, M., and Melo, R. (2000) Purification and characterisation of vanadium haloperoxidases from the brown alga Pelvetia canaliculata . Phytochemistry, 54 (1), 5–11.
- Almeida, M., Filipe, S., Humanes, M., Maia, M.F., Melo, R., Severino, N., Da Silva, J.a., Fraústo da Silva, J.J., and Wever, R. (2001) Vanadium haloperoxidases from brown algae of the Laminariaceae family. Phytochemistry, 57 (5), 633–642.
- Amachi, S. (2008) Microbial contribution to global iodine cycling: volatilization, accumulation, reduction, oxidation, and sorption of iodine. Microbes Environ., 23 (4), 269–276.
- Arber, J., De Boer, E., Garner, C.D., Hasnain, S., and Wever, R. (1989) Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum . Biochemistry, 28 (19), 7968–7973.
- Arnoldsson, K., Andersson, P.L., and Haglund, P. (2012) Formation of environmentally relevant brominated dioxins from 2,4,6-tribromophenol via bromoperoxidase-catalyzed dimerization. Environ. Sci. Technol., 46 (13), 7239–7244.
- Baharum, H., Chu, W.-C., Teo, S.-S., Ng, K.-Y., Rahim, R.A., and Ho, C.-L. (2013) Molecular cloning, homology modeling and site-directed mutagenesis of vanadium-dependent bromoperoxidase (GcVBPO1) from Gracilaria changii (Rhodophyta). Phytochemistry, 92, 49–59.
- Barnett, P., Hemrika, W., Dekker, H.L., Muijsers, A.O., Renirie, R., and Wever, R. (1998) Isolation, characterization, and primary structure of the vanadium chloroperoxidase from the fungus Embellisia didymospora . J. Biol. Chem., 273 (36), 23381–23387.
- Berglin, M., Delage, L., Potin, P., Vilter, H., and Elwing, H. (2004) Enzymatic cross-linking of a phenolic polymer extracted from the marine alga Fucus serratus . Biomacromolecules, 5 (6), 2376–2383.
- Bernhardt, P., Okino, T., Winter, J.M., Miyanaga, A., and Moore, B.S. (2011) A stereoselective vanadium-dependent chloroperoxidase in bacterial antibiotic biosynthesis. J. Am. Chem. Soc., 133 (12), 4268–4270.
- Borchardt, S.A., Allain, E.J., Michels, J.J., Stearns, G.W., Kelly, R.F., and McCoy, W.F. (2001) Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl. Environ. Microbiol., 67 (7), 3174–3179.
- Butler, A. (1999) Mechanistic considerations of the vanadium haloperoxidases. Coordin. Chem. Rev., 187 (1), 17–35.
- Butler, A. and Sandy, M. (2009) Mechanistic considerations of halogenating enzymes. Nature, 460, 848–854.
- Carpenter, L.J., Archer, S.D., and Beale, R. (2012) Ocean-atmosphere trace gas exchange. Chem. Soc. Rev., 41 (19), 6473–6506.
- Carter, J.N., Beatty, K.E., Simpson, M.T., and Butler, A. (2002) Reactivity of recombinant and mutant vanadium bromoperoxidase from the red alga Corallina officinalis . J. Inorg. Biochem., 91 (1), 59–69.
- Carter-Franklin, J.N. and Butler, A. (2004) Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products. J. Am. Chem. Soc., 126 (46), 15060–15066.
- Casný, M., Rehder, D., Schmidt, H., Vilter, H., and Conte, V. (2000) A 17O NMR study of peroxide binding to the active centre of bromoperoxidase from Ascophyllum nodosum . J. Inorg. Biochem., 80 (1–2), 157–160.
- Chen, X. and Van Pée, K.-H. (2008) Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes. Acta Biochim. Biophys. Sin., 40 (3), 183–193.
- Christmann, U., Dau, H., Haumann, M., Kiss, E., Liebisch, P., Rehder, D., Santoni, G., and Schulzke, C. (2004) Substrate binding to vanadate-dependent bromoperoxidase from Ascophyllum nodosum: a vanadium K-edge XAS approach. Dalton Trans., (16), 2534–2540.
- Colin, C., Leblanc, C., Wagner, E., Delage, L., Leize-Wagner, E., Van Dorsselaer, A., Kloareg, B., and Potin, P. (2003) The brown algal kelp Laminaria digitata features distinct bromoperoxidase and iodoperoxidase activities. J. Biol. Chem., 278 (26), 23545–23552.
- Colin, C., Leblanc, C., Michel, G., Wagner, E., Leize-Wagner, E., Van Dorsselaer, A., and Potin, P. (2005) Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases. J. Biol. Inorg. Chem., 10 (2), 156–166.
- Colpas, G.J., Hamstra, B.J., Kampf, J.W., and Pecoraro, V.L. (1996) Functional models for vanadium haloperoxidase: Reactivity and mechanism of halide oxidation. J. Am. Chem. Soc., 118, 3469–3478.
- Coupe, E.E., Smyth, M.G., Fosberry, A.P., Hall, R.M., and Littlechild, J.A. (2007) The dodecameric vanadium-dependent haloperoxidase from the marine algae Corallina officinalis: cloning, expression, and refolding of the recombinant enzyme. Protein Expr. Purif., 52 (2), 265–272.
- Courtois, B. (1813) Découverte d'une substance nouvelle dans le Vareck. Ann. Chim., 88, 304–310.
- Dau, H., Dittmer, J., Epple, M., Hanss, J., Kiss, E., Rehder, D., Schulzke, C., and Vilter, H. (1999) Bromine K-edge EXAFS studies of bromide binding to bromoperoxidase from Ascophyllum nodosum . FEBS Lett., 457 (2), 237–240.
- De Boer, E. and Wever, R. (1988) The reaction mechanism of the novel vanadium-bromoperoxidase. A steady-state kinetic analysis. J. Biol. Chem., 263 (25), 12326–12332.
- De Boer, E., Van Kooyk, Y., Tromp, M.G.M., Plat, H., and Wever, R. (1986) Bromoperoxidase from Ascophyllum nodosum: a novel class of enzymes containing vanadium as a prosthetic group? Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol., 869 (1), 48–53.
- De Boer, E., Plat, H., Tromp, M.G., Wever, R., Franssen, M.C., Van der Plas, H.C., Meijer, E.M., and Schoemaker, H.E. (1987) Vanadium-containing bromoperoxidase: An example of an oxidoreductase with high operational stability in aqueous and organic media. Biotechnol. Bioeng., 30 (5), 607–610.
- De Boer, E., Keijzers, C.P., Klaassen, A.A.K., Reijerse, E.J., Collison, D., Garner, C.D., and Wever, R. (1988) 14N-coordination to VO2+ in reduced vanadium bromoperoxidase, an electron spin echo study. FEBS Lett., 235 (1–2), 93–97.
- De Boer, E., Boon, K., and Wever, R. (1988) Electron paramagnetic resonance studies on conformational states and metal ion exchange properties of vanadium bromoperoxidase. Biochemistry, 27 (5), 1629–1635.
- Deng, H. and O'Hagan, D. (2008) The fluorinase, the chlorinase and the duf-62 enzymes. Curr. Opin. Chem. Biol., 12 (5), 582–592.
- Everett, R.R., Soedjak, H.S., and Butler, A. (1990) Mechanism of dioxygen formation catalyzed by vanadium bromoperoxidase. Steady state kinetic analysis and comparison to the mechanism of bromination. J. Biol. Chem., 265 (26), 15671–15679.
- Everett, R.R., Kanofsky, J.R., and Butler, A. (1990) Mechanistic investigations of the novel non-heme vanadium bromoperoxidases. Evidence for singlet oxygen production. J. Biol. Chem., 265 (9), 4908–4914.
- Feiters, M.C., Leblanc, C., Küpper, F.C., Meyer-Klaucke, W., Michel, G., and Potin, P. (2005) Bromine is an endogenous component of a vanadium bromoperoxidase. J. Am. Chem. Soc., 127 (44), 15340–15341.
- Gall, E.A., Küpper, F.C., and Kloareg, B. (2004) A survey of iodine content in Laminaria digitata . Botanica Marina, 47 (1).
- Garcia-Rodriguez, E., Ohshiro, T., Aibara, T., Izumi, Y., and Littlechild, J. (2005) Enhancing effect of calcium and vanadium ions on thermal stability of bromoperoxidase from Corallina pilulifera. J. Biol. Inorg. Chem., 10 (3), 275–282.
- Gay-Lussac, J. (1813a) Sur un nouvel acide formé avec la substance découverte par M. Courtois. Ann. Chim., 88, 311–318.
- Gay-Lussac, J. (1813b) Sur la combinaison de l'iode avec l'oxigène. Ann. Chim., 88, 319–321.
- Gribble, G.W. (2003) The diversity of naturally produced organohalogens. Chemosphere, 52 (2), 289–297.
- Gribble, G.W. (2012) Occurrence of halogenated alkaloids, in The Alkaloids. Chemistry and Biology (ed. H.-J. Knölker), Elsevier, pp. 1–142.
- Hager, L.P., Morris, D.R., Brown, F.S., and Eberwein, H. (1966) Chloroperoxidase. II. Utilization of halogen anions. J. Biol. Chem., 241 (8), 1769–1777.
- Hamstra, B.J., Colpas, G.J., and Pecoraro, V.L. (1998) Reactivity of Dioxovanadium(V) complexes with hydrogen peroxide: implications for vanadium haloperoxidase. Inorg. Chem., 37 (5), 949–955.
- Harder, T., Campbell, A.H., Egan, S., and Steinberg, P.D. (2012) Chemical mediation of ternary interactions between marine holobionts and their environment as exemplified by the red alga Delisea pulchra . J. Chem. Ecol., 38 (5), 442–450.
- Hartung, J., Brücher, O., Hach, D., Schulz, H., Vilter, H., and Ruick, G. (2008) Bromoperoxidase activity and vanadium level of the brown alga Ascophyllum nodosum . Phytochemistry, 69 (16), 2826–2830.
- Hasan, Z., Renirie, R., Kerkman, R., Ruijssenaars, H.J., Hartog, A.F., and Wever, R. (2006) Laboratory-evolved vanadium chloroperoxidase exhibits 100-fold higher halogenating activity at alkaline pH: catalytic effects from first and second coordination sphere mutations. J. Biol. Chem., 281 (14), 9738–9744.
- Hemrika, W. and Wever, R. (1997) A new model for the membrane topology of glucose-6-phosphatase: the enzyme involved in von Gierke disease. FEBS Lett., 409 (3), 317–319.
- Hemrika, W., Renirie, R., Dekker, H.L., Barnett, P., and Wever, R. (1997) From phosphatases to vanadium peroxidases: a similar architecture of the active site. Proc. Natl Acad. Sci. USA, 94 (6), 2145–2149.
- Hemrika, W., Renirie, R., Macedo-Ribeiro, S., Messerschmidt, A., and Wever, R. (1999) Heterologous expression of the vanadium-containing chloroperoxidase from Curvularia inaequalis in Saccharomyces cerevisiae and site-directed mutagenesis of the active site residues His(496), Lys(353), Arg(360), and Arg(490). J. Biol. Chem., 274 (34), 23820–23827.
- Hormes, J., Kuetgens, U., Chauvistre, R., Schreiber, W., Anders, N., Vilter, H., Rehder, D., and Weidemann, C. (1988) Vanadium K-edge absorption spectrum of bromoperoxidase from Ascophyllum nodosum . Biochim. Biophys. Acta, 956 (3), 293–299.
- Ishikawa, K., Mihara, Y., Gondoh, K., Suzuki, E., and Asano, Y. (2000) X-ray structures of a novel acid phosphatase from Escherichia blattae and its complex with the transition-state analog molybdate. EMBO J., 19 (11), 2412–2423.
- Isupov, M.N., Dalby, A.R., Brindley, A.A., Izumi, Y., Tanabe, T., Murshudov, G.N., Littlechild, J.A. (2000) Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis . J. Mol. Biol., 299 (4), 1035–1049.
- Itoh, N. and Shinya, M. (1994) Seasonal evolution of bromomethanes from coralline algae (Corallinaceae) and its effect on atmospheric ozone. Mar. Chem., 45 (1–2), 95–103.
- Itoh, N., Izumi, Y., and Yamada, H. (1986) Characterization of nonheme type bromoperoxidase in Corallina pilulifera . J. Biol. Chem., 261 (11), 5194–5200.
- Itoh, N., Sasaki, H., Ohsawa, N., Shibata, M.S., and Miura, J. (1996) Bromoperoxidase in Corallina pilulifera is regulated by its vanadate content. Phytochemistry, 42 (2), 277–281.
- Jeandel, C., Caisso, M., and Minster, J. (1987) Vanadium behaviour in the global ocean and in the Mediterranean sea. Mar. Chem., 21 (1), 51–74.
- Johnson, T.L., Palenik, B., and Brahamsha, B. (2011) Characterization of a functional vanadium-dependent bromoperoxidase in the marine cyanobacterium Synechococcus sp. CC93111. J. Phycol., 47 (4), 792–801.
- Jordan, P. and Vilter, H. (1991) Extraction of proteins from material rich in anionic mucilages: partition and fractionation of vanadate-dependent bromoperoxidases from the brown algae Laminaria digitata and L. saccharina in aqueous polymer two-phase systems. Biochim. Biophys. Acta, 1073 (1), 98–106.
- Kaysser, L., Bernhardt, P., Nam, S.-J., Loesgen, S., Ruby, J.G., Skewes-Cox, P., Jensen, P.R., Fenical, W., and Moore, B.S. (2012) Merochlorins A–D, cyclic meroterpenoid antibiotics biosynthesized in divergent pathways with vanadium-dependent chloroperoxidases. J. Am. Chem. Soc., 134 (29), 11988–11991.
- Kimblin, C., Bu, X., and Butler, A. (2002) Modeling the catalytic site of vanadium bromoperoxidase: synthesis and structural characterization of intramolecularly H-bonded vanadium(V) oxoperoxo complexes, [VO(O(2))((NH)2pyg(2))]K and [VO(O(2))((BrNH)2pyg(2))]K. Inorg. Chem., 41, 161–163.
- Kostenko, A.V., Feiters, M.C., Kravtsova, A.N., and Soldatov, A.V. (2008) Determination of the local atomic structure of the active center of bromoperoxidase protein via the analysis of X-ray absorption spectra. J. Surf. Investig. X-Ray Synchrotron Neutron Tech., 2 (6), 900–903.
- Krenn, B.E., Plat, H., and Wever, R. (1988) Purification and some characteristics of a non-haem bromoperoxidase from Streptomyces aureofaciens . Biochim. Biophys. Acta, 952 (3), 255–260.
- Krenn, B.E., Tromp, M.G.M., and Wevers, R. (1989) The brown alga Ascophyllum nodosum contains two different vanadium bromoperoxidases. J. Biol. Chem., 32, 19287–19292.
- Küpper, F., Schweigert, N., Ar Gall, E., Legendre, J.M., Vilter, H., and Kloareg, B. (1998) Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta, 207 (2), 163–171.
- Küpper, F.C., Carpenter, L.J., McFiggans, G.B., Palmer, C.J., Waite, T.J., Boneberg, E.-M., Woitsch, S., Weiller, M., Abela, R., Grolimund, D. et al. (2008) Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc. Natl Acad. Sci. USA, 105 (19), 6954–6958.
- Küpper, F.C., Feiters, M.C., Olofsson, B., Kaiho, T., Yanagida, S., Zimmermann, M.B., Carpenter, L.J., Luther, G.W., Lu, Z., Jonsson, M. et al. (2011) Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angew Chem. Int. Ed. Engl., 50, 11598–11620.
- Küsthardt, U., Hedman, B., Hodgson, K., Hahn, R., and Yilter, H. (1993) High-resolution XANES studies on vanadium-containing haloperoxidase: pH-dependence and substrate binding. FEBS Lett., 329 (1-2), 5–8.
- La Barre, S., Potin, P., Leblanc, C., and Delage, L. (2010) The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance. Mar. Drugs, 8 (4), 988–1010.
- Latham, H. (2008) Temperature stress-induced bleaching of the coralline alga Corallina officinalis: a role for the enzyme bromoperoxidase. Biosci. Horizons, 1 (2), 104–113.
- Leblanc, C., Colin, C., Cosse, A., Delage, L., La Barre, S., Morin, P., Fiévet, B., Voiseux, C., Ambroise, Y., Verhaeghe, E. et al. (2006) Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie, 88 (11), 1773–1785.
- Lei, K.J., Pan, C.J., Liu, J.L., Shelly, L.L., and Chou, J.Y. (1995) Structure-function analysis of human glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J. Biol. Chem., 270 (20), 11882–11886.
- Licini, G., Conte, V., Coletti, A., Mba, M., and Zonta, C. (2011) Recent advances in vanadium catalyzed oxygen transfer reactions. Coordin. Chem. Rev., 255 (19-20), 2345–2357.
- Lindqvist, Y., Schneider, G., and Vihko, P. (1994) Crystal structures of rat acid phosphatase complexed with the transition-state analogs vanadate and molybdate. Implications for the reaction mechanism. Eur. J. Biochem., 221 (1), 139–142.
- Littlechild, J. and Garcia-Rodriguez, E. (2003) Structural studies on the dodecameric vanadium bromoperoxidase from Corallina species. Coordin. Chem. Rev., 237 (1–2), 65–76.
- Littlechild, J., Garcia Rodriguez, E., and Isupov, M. (2009) Vanadium-containing bromoperoxidase – insights into the enzymatic mechanism using X-ray crystallography. J. Inorg. Biochem., 103 (4), 617–621.
- Macedo-Ribeiro, S., Hemrika, W., Renirie, R., Wever, R., and Messerschmidt, A. (1999) X-ray crystal structures of active site mutants of the vanadium-containing chloroperoxidase from the fungus Curvularia inaequalis . J. Biol. Inorg. Chem., 4 (2), 209–219.
- Macedo-Ribeiro, S., Renirie, R., Wever, R., and Messerschmidt, A. (2008) Crystal structure of a trapped phosphate intermediate in vanadium apochloroperoxidase catalyzing a dephosphorylation reaction. Biochemistry, 47 (3), 929–934.
- McFiggans, G., Bale, C.S.E., Ball, S.M., Beames, J.M., Bloss, W.J., Carpenter, L.J., Dorsey, J., Dunk, R., Flynn, M.J., Furneaux, K.L. et al. (2010) Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) Roscoff coastal study. J. Atmos. Chem. Phys., 10 (6), 2975–2999.
- Messerschmidt, A. and Wever, R. (1996) X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis . Proc. Natl Acad. Sci. USA, 93 (1), 392–396.
- Messerschmidt, A. and Wever, R. (1998) X-ray structures of apo and tungstate derivatives of vanadium chloroperoxidase from the fungus Curvularia inaequalis . Inorg. Chim. Acta, 273 (1-2), 160–166.
- Messerschmidt, A., Prade, L., and Wever, R. (1997) Implications for the catalytic mechanism of the vanadium-containing enzyme chloroperoxidase from the fungus Curvularia inaequalis by X-ray structures of the native and peroxide form. Biol. Chem., 378 (3-4), 309–315.
- Millero, F.J. (2007) The marine inorganic carbon cycle. Chem. Rev., 107 (2), 308–341.
- Moore, R.M., Webb, M., Tokarczyk, R., and Wever, R. (1996) Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures. J. Geophys. Res., 101 (C9), 20899.
- Neuwald, A.F. (1997) An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci., 6 (8), 1764–1767.
- Nicolai, M., Gonçalves, G., Natalio, F., and Humanes, M. (2011) Biocatalytic formation of synthetic melanin: the role of vanadium haloperoxidases, L-DOPA and iodide. J. Inorg. Biochem., 105 (6), 887–893.
- O'Dowd, C., Jimenez, J., Bahreini, R., and Flagan, R. (2002) Marine aerosol formation from biogenic iodine emissions. Nature, 417, 632–636.
- Ohsawa, N., Ogata, Y., Okada, N., and Itoh, N. (2001) Physiological function of bromoperoxidase in the red marine alga, Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide. Phytochemistry, 58 (5), 683–692.
- Ohshiro, T., Hemrika, W., Aibara, T., Wever, R., and Izumi, Y. (2002) Expression of the vanadium-dependent bromoperoxidase gene from a marine macro-alga Corallina pilulifera in Saccharomyces cerevisiae and characterization of the recombinant enzyme. Phytochemistry, 60 (6), 595–601.
- Ohshiro, T., Littlechild, J., Garcia-Rodriguez, E., Isupov, M.N., Iida, Y., Kobayashi, T., and Izumi, Y. (2004) Modification of halogen specificity of a vanadium-dependent bromoperoxidase. Protein Sci., 13 (6), 1566–1571.
- Ortiz-Bermúdez, P., Hirth, K.C., Srebotnik, E., and Hammel, K.E. (2007) Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production. Proc. Natl Acad. Sci. USA, 104 (10), 3895–3900.
- Paul, C. and Pohnert, G. (2011) Production and role of volatile halogenated compounds from marine algae. Nat. Prod. Rep., 28 (2), 186–195.
- Paul, N., De Nys, R., and Steinberg, P. (2006) Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Mar. Ecol. Prog. Ser., 306, 87–101.
- Pedersén, M., Collen, J., Abrahamsson, K., and Ekdahl, A. (1996) Production of halocarbons from seaweeds: an oxidative stress reaction. Scientia Marina, 60 (1), 257–263.
- Persoon, I.F., Hoogenkamp, M.A., Bury, A., Wesselink, P.R., Hartog, A.F., Wever, R., and Crielaard, W. (2012) Effect of vanadium chloroperoxidase on Enterococcus faecalis biofilms. J. Endodont., 38 (1), 72–74.
- Plass, W. (2009) Vanadium haloperoxidases as supramolecular hosts: Synthetic and computational models. Pure Appl. Chem., 81 (7), 1229–1239.
- Plat, H., Krenn, B.E., and Wever, R. (1987) The bromoperoxidase from the lichen Xanthoria parietina is a novel vanadium enzyme. Biochem. J., 248 (1), 277–279.
- Rehder, D., Hoist, H., and Priebsch, W. (1991) Vanadate-dependent bromo/iodoperoxidase from Ascophyllum nodosum also contains unspecific low-affinity binding sites for vanadate (V): A 51V NMR investigation, including the model peptides Phe-Glu and Gly-Tyr. J. Inorg. Biochem., 41 (3), 171–185.
- Rehder, D., Casný, M., and Grosse, R. (2004) A vanadium-51 NMR study of the binding of vanadate and peroxovanadate to proteins. Magn. Reson. Chem., 42 (9), 745–749.
- Renirie, R., Hemrika, W., and Wever, R. (2000) Peroxidase and phosphatase activity of active-site mutants of vanadium chloroperoxidase from the fungus Curvularia inaequalis. Implications for the catalytic mechanisms. J. Biol. Chem., 275 (16), 11650–11657.
- Renirie, R., Charnock, J.M., Garner, C.D., and Wever, R. (2010) Vanadium K-edge XAS studies on the native and peroxo-forms of vanadium chloroperoxidase from Curvularia inaequalis . J. Inorg. Biochem., 104 (6), 657–664.
- Saiz-Lopez, A. and Von Glasow, R. (2012) Reactive halogen chemistry in the troposphere. Chem. Soc. Rev., 41 (19), 6448–6472.
- Saiz-Lopez, A., Plane, J.M.C., Baker, A.R., Carpenter, L.J., Von Glasow, R., Martín, J.C.G., McFiggans, G., and Saunders, R.W. (2012) Atmospheric chemistry of iodine. Chem. Rev., 112 (3), 1773–1804.
- Salaün, S., La Barre, S., Dos Santos-Goncalvez, M., Potin, P., Haras, D., and Bazire, A. (2012) Influence of exudates of the kelp Laminaria digitata on biofilm formation of associated and exogenous bacterial epiphytes. Microb. Ecol., 64 (2), 359–369.
- Salgado, L.T., Cinelli, L.P., Viana, N.B., Tomazetto de Carvalho, R., De Souza Mourão, P.A., Teixeira, V.L., Farina, M., and Filho, G.M.A. (2009) A Vanadium bromoperoxidase catalyzes the formation of high-molecular-weight complexes between brown algal phenolic substances and alginates. J. Phycol., 45 (1), 193–202.
- Sandy, M., Carter-Franklin, J.N., Martin, J.D., and Butler, A. (2011) Vanadium bromoperoxidase from Delisea pulchra: enzyme-catalyzed formation of bromofuranone and attendant disruption of quorum sensing. Chem. Commun. (Camb.), 47 (44), 12086–12088.
- Sheffield, D.J., Harry, T., Smith, A.J., and Rogers, L.J. (1992) Purification and characterization of the vanadium bromoperoxidase from the macroalga Corallina officinalis . Phytochemistry, 32 (1), 21–26.
- Sheffield, D.J., Smith, A.J., and Harry, R. (1993) Thermostability of the vanadium bromoperoxidase from Corallina officinalis . Biochem. Soc. Trans., 21 (4), 445S.
- Shimonishi, M., Kuwamoto, S., Inoue, H., Wever, R., Ohshiro, T., Izumi, Y., and Tanabe, T. (1998) Cloning and expression of the gene for a vanadium-dependent bromoperoxidase from a marine macro-alga, Corallina pilulifera . FEBS Lett., 428 (1-2), 105–110.
- Simons, B.H., Barnett, P., Vollenbroek, E.G., Dekker, H.L., Muijsers, A.O., Messerschmidt, A., and Wever, R. (1995) Primary structure and characterization of the vanadium chloroperoxidase from the fungus Curvularia inaequalis . Eur. J. Biochem., 229 (2), 566–574.
- Smith, D.R., Grüschow, S., and Goss, R.J. (2013) Scope and potential of halogenases in biosynthetic applications. Curr. Opin. Chem. Biol., 17 (2), 276–283.
- Soedjak, H.S. and Butler, A. (1990) Characterization of vanadium bromoperoxidase from Macrocystis and Fucus: reactivity of vanadium bromoperoxidase toward acyl and alkyl peroxides and bromination of amines. Biochemistry, 29 (34), 7974–7981.
- Soedjak, H.S., Walker, J.V., and Butler, A. (1995) Inhibition and inactivation of vanadium bromoperoxidase by the substrate hydrogen peroxide and further mechanistic studies. Biochemistry, 34 (39), 12689–12696.
- Stukey, J. and Carman, G.M. (1997) Identification of a novel phosphatase sequence motif. Protein Sci., 6 (2), 469–472.
- Tanaka, N., Dumay, V., Liao, Q., Lange, A.J., and Wever, R. (2002) Bromoperoxidase activity of vanadate-substituted acid phosphatases from Shigella flexneri and Salmonella enterica ser. typhimurium . Eur. J. Biochem., 269 (8), 2162–2167.
- Tanaka, N., Hasan, Z., and Wever, R. (2003) Kinetic characterization of active site mutants Ser402Ala and Phe397His of vanadium chloroperoxidase from the fungus Curvularia inaequalis . Inorg. Chim. Acta, 356, 288–296.
- Tromp, M.G., Olafsson, G., Krenn, B.E., and Wever, R. (1990) Some structural aspects of vanadium bromoperoxidase from Ascophyllum nodosum . Biochim. Biophys. Acta, 1040 (2), 192–198.
- Tromp, M., Van, T.T., and Wever, R. (1991) Reactivation of vanadium bromoperoxidase; inhibition by metallofluoric compounds. Biochim. Biophys. Acta, 1079 (1), 53–56.
- Ullah, A.H., Sethumadhavan, K., and Mullaney, E.J. (2011) Vanadate inhibition of fungal PhyA and bacterial AppA2 histidine acid phosphatases. J. Agric Food Chem., 59 (5), 1739–1743.
- Vaillancourt, F.H., Yeh, E., Vosburg, D.A., O'Connor, S.E., and Walsh, C.T. (2005) Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature, 436 (7054), 1191–1194.
- Van Pée, K.H. and Lingens, F. (1984) Detection of a bromoperoxidase in Streptomyces phaeochromogenes . FEBS Lett., 173 (1), 5–8.
- Van Schijndel, J.W., Simons, L.H., Vollenbroek, E.G., and Wever, R. (1993) The vanadium chloroperoxidase from the fungus, Curvularia inaequalis. Evidence for the involvement of a histidine residue in the binding of vanadate. FEBS Lett., 336 (2), 239–242.
- Van Schijndel, J.W., Barnett, P., Roelse, J., Vollenbroek, E.G., and Wever, R. (1994) The stability and steady-state kinetics of vanadium chloroperoxidase from the fungus Curvularia inaequalis . Eur. J. Biochem., 225 (1), 151–157.
- Vanelslander, B., Paul, C., Grueneberg, J., Prince, E.K., Gillard, J., Sabbe, K., Pohnert, G., and Vyverman, W. (2012) Daily bursts of biogenic cyanogen bromide (BrCN) control biofilm formation around a marine benthic diatom. Proc. Natl Acad. Sci. USA, 109 (7), 2412–2417.
- Verhaeghe, E., Buisson, D., Zekri, E., Leblanc, C., Potin, P., and Ambroise, Y. (2008a) A colorimetric assay for steady-state analyses of iodo- and bromoperoxidase activities. Anal. Biochem., 379 (1), 60–65.
- Verhaeghe, E.F., Fraysse, A., Guerquin-Kern, J.-L., Wu, T.-D., Devès, G., Mioskowski, C., Leblanc, C., Ortega, R., Ambroise, Y., and Potin, P. (2008b) Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation. J. Biol. Inorg. Chem., 13 (2), 257–269.
- Vescina, C.M., Sálice, V.C., Cortizo, A.M., and Etcheverry, S.B. (1996) Effect of vanadium compounds on acid phosphatase activity. Biol. Trace Elem. Res., 53 (1-3), 185–191.
- Vilter, H. (1983) Peroxidases from Phaeophyceae. III: Catalysis of halogenation by peroxidases from Ascophyllum nodosum (L.) Le Jol. Botanica Marina, 26 (9), 429–435.
- Vilter, H. (1984) Peroxidases from phaeophyceae: A vanadium(V)-dependent peroxidase from Ascophylum nodosum . Phytochemistry, 23 (7), 1387–1390.
- Vilter, H. (1994) Extraction of proteins from sources containing tannins and anionic mucilages. Methods Enzymol., 228, 665–672.
- Vilter, H. (1995) Vanadium-dependent haloperoxidases. Met. Ions Biol. Syst., 31, 325–362.
- Vilter, H. and Rehder, D. (1987) 51V NMR Investigation of a vanadate(V)-dependent peroxidase from Ascophyllum nodosum (L.) Le Jol. Inorg. Chim. Acta, 136 (1), L7–L10.
- Von Glasow, R. (2008) Atmospheric chemistry: sun, sea and ozone destruction. Nature, 453 (7199), 1195–1196.
- Vreeland, V., Ng, K.L., and Epstein, L. (1998) cDNA sequence and active recombinant vanadium bromoperoxidase from Fucus embryos. Mol. Biol. Cell., 9, 1041.
- Wagner, C., Molitor, I.M., and König, G.M. (2008) Critical view on the monochlorodimedone assay utilized to detect haloperoxidase activity. Phytochemistry, 69 (2), 323–332.
- Wagner, C., El Omari, M., and König, G.M. (2009) Biohalogenation: nature's way to synthesize halogenated metabolites. J. Nat. Prod., 72 (3), 540–553.
- Wever, R., Plat, H., and De Boer, E. (1985) Isolation procedure and some properties of the bromoperoxidase from the seaweed Ascophyllum nodosum . Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol., 830 (2), 181–186.
- Wever, R., Krenn, B.E., De Boer, E., Offenberg, H., and Plat, H. (1988) Structure and function of vanadium-containing bromoperoxidases. Prog. Clin. Biol. Res., 274, 477–493.
- Weyand, M., Hecht, H., Kieb, M., Liaud, M., Vilter, H., Schomburg, D., and Kiess, M. (1999) X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 A resolution. J. Mol. Biol., 293 (3), 595–611.
- Winter, M.G.E. and Butler, A. (1996) Inactivation of vanadium bromoperoxidase: formation of 2-oxohistidine. Biochemistry, 35 (36), 11805–11811.
- Winter, J.M. and Moore, B.S. (2009) Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J. Biol. Chem., 284 (28), 18577–18581.
- Winter, J.M., Moffitt, M.C., Zazopoulos, E., McAlpine, J.B., Dorrestein, P.C., and Moore, B.S. (2007) Molecular basis for chloronium-mediated meroterpene cyclization: cloning, sequencing, and heterologous expression of the napyradiomycin biosynthetic gene cluster. J. Biol. Chem., 282 (22), 16362–16368.
- Wischang, D. and Hartung, J. (2011) Parameters for bromination of pyrroles in bromoperoxidase-catalyzed oxidations. Tetrahedron, 67 (22), 4048–4054.
- Wischang, D. and Hartung, J. (2012) Bromination of phenols in bromoperoxidase-catalyzed oxidations. Tetrahedron, 68 (46), 9456–9463.
- Wischang, D., Brücher, O., and Hartung, J. (2011) Bromoperoxidases and functional enzyme mimics as catalysts for oxidative bromination – A sustainable synthetic approach. Coordin. Chem. Rev., 255 (19-20), 2204–2217.
- Wischang, D., Radlow, M., Schulz, H., Vilter, H., Viehweger, L., Altmeyer, M.O., Kegler, C., Herrmann, J., Müller, R., Gaillard, F. et al. (2012) Molecular cloning, structure, and reactivity of the second bromoperoxidase from Ascophyllum nodosum . Bioorg. Chem., 44, 25–34.
- Wuosmaa, A.M. and Hager, L.P. (1990) Methyl chloride transferase: a carbocation route for biosynthesis of halometabolites. Science, 249 (4965), 160–162.
- Yamada, H., Itoh, N., Murakami, S., and Izumi, Y. (1985) New bromoperoxidase from coralline algae that brominates phenol compounds. Agric. Biol. Chem., 49 (10), 2961–2967.
- Yudenfreund Kravitz, J. and Pecoraro, V.L. (2005) Synthetic and computational modeling of the vanadium-dependent haloperoxidases. Pure Appl. Chem., 77 (9), 1595–1605.
- Zampella, G., Fantucci, P., Pecoraro, V.L., and De Gioia, L. (2005) Reactivity of peroxo forms of the vanadium haloperoxidase cofactor. A DFT investigation. J. Am. Chem. Soc., 127 (3), 953–960.
- Zhang, Y. and Gascón, J.a. (2008) QM/MM investigation of structure and spectroscopic properties of a vanadium-containing peroxidase. J. Inorg. Biochem., 102 (8), 1684–1690.