Algal Morpho-Inducers
Zofia Nehr
Sorbonne Universitées, UPMC Univ Paris 06, UMR, 8227
Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, 90074, F-29688 Roscoff cedex, France
Search for more papers by this authorBénédicte Charrier
Sorbonne Universitées, UPMC Univ Paris 06, UMR, 8227
Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, 90074, F-29688 Roscoff cedex, France
CNRS UMR 8227, Integrative Biology of Marine Models Station Biologique de Roscoff, CS, 90074, F-29688 Roscoff cedex, France
Search for more papers by this authorZofia Nehr
Sorbonne Universitées, UPMC Univ Paris 06, UMR, 8227
Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, 90074, F-29688 Roscoff cedex, France
Search for more papers by this authorBénédicte Charrier
Sorbonne Universitées, UPMC Univ Paris 06, UMR, 8227
Integrative Biology of Marine Models, Station Biologique de Roscoff, CS, 90074, F-29688 Roscoff cedex, France
CNRS UMR 8227, Integrative Biology of Marine Models Station Biologique de Roscoff, CS, 90074, F-29688 Roscoff cedex, France
Search for more papers by this authorStéphane La Barre
Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
Search for more papers by this authorJean-Michel Kornprobst
Institut Mer et Littoral,Bâtiment Isomer, 2, rue de la Houssinière, 44322 Nantes, BP 92208,Cedex 3, France
Search for more papers by this authorSummary
Algal morpho-inducers are factors (either physical or chemical) that can modify the morphology of macroalgae, or in turn, be chemical compounds produced by macroalgae, that can modify the development of surrounding organisms (animals, other algae or plants). Through several examples of the ancient or more recent literature, this chapter illustrates the complexity of this field, as chemical morpho-inducers are difficult to identify because of the multiple synergistic or interference effects which are at play in the marine environment, the presence of commensal bacteria with yet uncharacterized morphogenetic activities, and the biodiversity of cellular signaling mechanisms.
References
- Basu, S., Sun, H., Brian, L., Quatrano, R.L., and Muday, G.K. (2002) Early embryo development in Fucus distichus is auxin sensitive. Plant Physiol., 130, 292–302.
- Boettcher, A.A. and Targett, N.M. (1996) Induction of metamorphosis in queen conch, Strombus gigas Linnaeus, larvae by cues associated with red algae from their nursery grounds. J. Exp. Mar. Biol. Ecol., 196 (1–2), 29–52.
- Boettcher, A.A., Dyer, C., Casey, J., and Targett, N.M. (1997) Hydrogen peroxide induced metamorphosis of queen conch, Strombus gigas: Tests at the commercial scale. Aquaculture, 148 (2–3), 247–258.
- Bouget, F.Y., Corellou, F., and Kropf, D.L. (2001) Fucoïd algae as model organisms for investigating early embryogenesis. Proceedings of the International Workshop “Current approaches in basic and applied phycology”. Cah. Biol. Mar., 42 (1–2), 101–107.
- Bradley, P.M. (1991) Plant hormones do have a role in controlling growth and development of algae. J. Phycol., 27, 317–321.
- Cavalier-Smith, T. (2010) Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biology Lett., 6 (3), 342–345.
- Charrier, B., Le Bail, A., and de Reviers, B. (2012) Plant Proteus: Brown algae morphological plasticity and underlying developmental mechanisms. Trends Plant Sci., 17 (8), 468–477.
- Crouch, I.J. and Van Staden, J. (1993) Evidence for the presence of plant-growth regulators in commercial seaweed product. Plant Growth Regul., 13 (1), 21–29.
- Evans, L.V. and Trewavas, A.J. (1991) Is algal development controlled by plant growth substances? J. Phycol., 27, 322–326.
- Fritsch, F.E. (1945) The Structure and Reproduction of the Algae, Cambridge University Press.
- García-Jiménez, P. and Robaina, R.R. (2012) Effects of ethylene on tetrasporogenesis in Pterocladiella capillacea (Rhodophyta). J. Phycol., 48 (3), 710–715.
- Goecke, F., Labes, A., Wiese, J., and Imhoff, J.F. (2010) Chemical interactions between marine macroalgae and bacteria. Mar. Ecol. Prog. Ser., 409, 267–300.
- Graham, M.H., Vásquez, J.A., and Buschmann, A.H. (2007) Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanogr. Mar. Biol., 45, 39–88.
- Guzman-Uriostegui, A., Robaina, R., Freile-Pelegrin, Y., and Robledo, D. (2012) Polyamines increase carpospore output and growth during in vitro cultivation of Hydropuntia cornea . Biotechnol. Lett., 34 (4), 755–761.
- Hackett, J.D., Yoon, H.S., Li, S., Reyes-Prieto, A., Rümmele, S.E., and Bhattacharya, D. (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. Mol. Biol. Evol., 24 (8), 1702–1713.
- Le Bail, A., Billoud, B., Kowalczyk, N., Kowalczyk, M., Gicquel, M., Le Panse, S., Stewart, S., Scornet, D., Cock, J.M., Ljung, K., and Charrier, B. (2010) Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus . Plant Physiol., 153, 128–144.
- Leliaert, F., Smith, D.R., Moreau, H., Herron, M.D., Verbruggen, H., Delwiche, C.F., and De Clerck, O. (2012) Phylogeny and molecular evolution of the green algae. Crit. Rev. Plant Sci., 31, 1–46.
- Lewin, R.A. (1962) Growth substances, in Physiology and Biochemistry of Algae, Academic Press, New York & London.
-
Maruyama, A.,
Maeda, M., and
Simidu, U.
(1989)
Distribution and classification of marine bacteria with the ability of cytokinin and auxin production.
Bull. Jap. Soc. Microb. Ecol.,
5,
1–8.
10.1264/microbes1986.5.1 Google Scholar
- Matsuo, Y., Imagawa, H., Nishizawa, M., and Shizuri, Y. (2005) Isolation of an algal morphogenesis inducer from a marine bacterium. Science, 307 (5715), 1598.
- Morse, D.E. and Morse, E.N.C. (1991) Enzymatic characterization of the inducer recognized by Agaricia humilis (scleractinian coral) larvae. Biol. Bull., 181, 10–122.
- Moss, B. (1965) Apical dominance in Fucus vesiculosus . New Phytol., 64, 387–392.
- Parfrey, L.W., Lahr, D.J.G., Knoll, A.H., and Katz, L.A. (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA, 108 (33), 13624–13629.
- Pearce, C.M. and Scheibling, R.E. (1990) Induction of metamorphosis of larvae of the green sea urchin, Strongylocentrotus droebachiensis by Coralline red algae. Biol. Bull., 179, 304–311.
- Pedersén, M. (1968) Ectocarpus fasciculatus: marine brown alga requiring kinetin. Nature, 218, 776.
- Pedersén, M. (1973) Identification of a cytokinin, 6-(3 methyl-2-butenylamino) purine, in sea water and effect of cytokinins on brown algae. Physiol. Plantarum, 28, 101–105.
- Pratt, R. (1937) Influence of auxin ion growth of Chlorella vulgaris . Am. J. Botany, 25, 498–501.
- Riisberg, I., Orr, R.J.S., Kluge, R., Shalchian-Tabrizi, K., Bowers, H.A., Patil, V., Edvardsen, B., and Jakobsen, K.S. (2009) Seven gene phylogeny of heterokonts. Protist, 160 (2), 191–204.
- Sacramento, A.T., Garcia-Jimenez, P., and Robaina, R.R. (2007) The polyamine spermine induces cystocarp development in the seaweed Grateloupia (Rhodophyta). Plant Growth Regul., 53 (3), 147–154.
- Silberfeld, T., Leigh, J.W., Verbruggen, H., Cruaud, C., de Reviers, B., and Rousseau, F. (2011) Systematics and evolutionary history of pyrenoid-bearing taxa in brown algae (Phaeophyceae). Eur. J. Phycol., 46, 362–378.
- Spoerner, M., Wichard, T., Bachhuber, T., Stratmann, J., and Oertel, W. (2012) Growth and thallus morphogenesis of Ulva mutabilis (chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. J. Phycol., 48, 1433–1447.
- Stirk, W.A., Novák, O., Strand, M., and Van Staden, J. (2003) Cytokinins in macroalgae. Plant Growth Regul., 41, 13–24.
- Stirk, W.A., Novak, O., Hradecka, V., Pencik, A., Rolcik, J., Strnad, M., and Van Staden, J. (2009) Endogenous cytokinins, auxins and abscisic acid in Ulva fasciata (Chlorophyta) and Dictyota humifusa (Phaeophyta): towards understanding their biosynthesis and homoeostasis. Eur. J. Phycol., 44, 231–240.
- Tait, K., Joint, I., Daykin, M., Milton, D.L., Williams, P., and Cámara, M. (2005) Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ. Microbiol., 7, 229–240.
- Tarakhovskaya, E.R., Maslov, Y.I., and Shishova, M.F. (2007) Phytohormones in algae. Russ. J. Plant Physiol., 54, 163–170.
- Williams, L.G. (1949) Growth regulating substances in Laminaria agardhii . Sci. Total Environ., 110, 169–170.
- Yin, H.C. (1937) Effect of auxin on growth of Chlorella vulgaris . Proc. Natl Acad. Sci. USA, 23, 174–179