Conjugated Electrochromic Polymers: Structure-Driven Colour and Processing Control
Aubrey L. Dyer
Clayton State University, Department of Natural Sciences, College of Arts and Sciences, 2000 Clayton State Blvd., Morrow, GA, 30260, USA
Search for more papers by this authorAnna M. Österholm
Georgia Institute of Technology, School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
Search for more papers by this authorD. Eric Shen
Georgia Institute of Technology, School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
Search for more papers by this authorKeith E. Johnson
Georgia Institute of Technology, School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
Search for more papers by this authorJohn R. Reynolds
Georgia Institute of Technology, School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
Search for more papers by this authorAubrey L. Dyer
Clayton State University, Department of Natural Sciences, College of Arts and Sciences, 2000 Clayton State Blvd., Morrow, GA, 30260, USA
Search for more papers by this authorAnna M. Österholm
Georgia Institute of Technology, School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
Search for more papers by this authorD. Eric Shen
Georgia Institute of Technology, School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
Search for more papers by this authorKeith E. Johnson
Georgia Institute of Technology, School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
Search for more papers by this authorJohn R. Reynolds
Georgia Institute of Technology, School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
Search for more papers by this authorRoger J. Mortimer
Loughborough University, Department of Chemistry, Loughborough, LE11 3TU Leicestershire, UK
Search for more papers by this authorDavid R. Rosseinsky
University of Exeter, School of Physics, EX4 4QL Exeter, UK
Search for more papers by this authorPaul M. S. Monk
St. Barnabas' Vicarage, 1 Arundel Street, OL4 1NL Clarksfield, Oldham, UK
Search for more papers by this authorSummary
This chapter covers the structure-property relationships that control electrochemical properties (redox potentials), optical/colorimetric properties (electronic absorptions in the various redox states) and solubility/processability. Only polymers that are thin electrode-supported films are considered here. The chapter focuses on those properties most influenced by repeat unit structure alone: oxidation potentials and colour properties, along with solubility and processability. For a large majority of conjugated polymers in the chapter, the oxidation is of an electrode-supported polymer film. The chapter talks about the oxidative process, also called p-doping. There is a very small subset of polymers that exhibit reductive electrochromic behaviour via n-doping. The chapter further explains how properties of conjugated polymers applicable to electrochromics are manifested and altered. It also explains how chemists utilise synthetic design principles to tailor optical and electrochemical properties. The chapter concludes with a discussion on the processability of electrochromic polymers (ECPs).
References
- Amb, C.M., Dyer, A.L., and Reynolds, J.R. (2011) Navigating the color palette of solution-processable electrochromic polymers. Chem. Mater., 23 (3), 397–415.
- Beaujuge, P.M. and Reynolds, J.R. (2010) Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev., 110 (1), 268–320.
- Mortimer, R.J., Dyer, A.L., and Reynolds, J.R. (2006) Electrochromic organic and polymeric materials for display applications. Displays, 27 (1), 2–18.
- Mortimer, R.J. (2013) Switching colors with electricity. Ame. Sci., 101 (1), 38–45.
- Dyer, A.L. and Reynolds, J.R. (2007) Electrochromism in conjugated conducting polymers, in Handbook of Conducting Polymers, 3rd edn (eds T.A. Skotheim and J.R. Reynolds), CRC Press, Boca Raton, FL and London.
-
Gunbas, G. and Toppare, L. (2012) Electrochromic conjugated polyheterocycles and derivatives-highlights from the last decade towards realization of long lived aspirations. Chem. Commun. (Camb), 48 (8), 1083–1101.
10.1039/C1CC14992J Google Scholar
- Dyer, A.L., Craig, M.R., Babiarz, J.E., Kiyak, K., and Reynolds, J.R. (2010) Orange and red to transmissive electrochromic polymers based on electron-rich dioxythiophenes. Macromolecules, 43 (10), 4460–4467.
- Monk, P.M.S., Mortimer, R.J., and Rosseinsky, D.R. (2007) in Electrochromism and Electrochromic Devices (eds P.M.S. Monk, R.J. Mortimer, and D.R. Rosseinsky), Cambridge University Press, Cambridge, UK, pp. 312–335.
- Ritter, S.K., Noftle, R.E., and Ward, A.E. (1993) Synthesis, characterization, and oxidative polymerization of 3-(fluoromethyl)thiophenes. Chem. Mater., 5 (6), 752–754.
- Kumar, A., Welsh, D.M., Morvant, M.C., Piroux, F., Abboud, K.A., and Reynolds, J.R. (1998) Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios. Chem. Mater., 10 (3), 896–902.
- Walczak, R.M. and Reynolds, J.R. (2006) Poly (3,4-alkylenedioxypyrroles): the PXDOPS as versatile yet underutilized electroactive and conducting polymers. Adv. Mater., 18 (9), 1121–1131.
- Gaupp, C.L., Zong, K.W., Schottland, P., Thompson, B.C., Thomas, C.A., and Reynolds, J.R. (2000) Poly(3,4-ethylenedioxypyrrole): organic electrochemistry of a highly stable electrochromic polymer. Macromolecules, 33 (4), 1132–1133.
- Schottland, P., Zong, K., Gaupp, C.L., Thompson, B.C., Thomas, C.A., Giurgiu, I., Hickman, R., Abboud, K.A., and Reynolds, J.R. (2000) Poly(3,4-alkylenedioxypyrrole)s: highly stable electronically conducting and electrochromic polymers. Macromolecules, 33 (19), 7051–7061.
- Thomas, C.A., Zong, K., Schottland, P., and Reynolds, J.R. (2000) Poly(3,4-alkylenedioxypyrrole)s as highly stable aqueous-compatible conducting polymers, with biomedical implications. Adv. Mater., 12 (3), 222–225.
- Roncali, J. (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem. Rev., 97 (1), 173–205.
- deLeeuw, D.M., Simenon, M.M.J., Brown, A.R., and Einerhand, R.E.F. (1997) Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met., 87 (1), 53–59.
- Yasuda, T., Sakai, Y., Aramaki, S., and Yamamoto, T. (2005) New coplanar (ABA)(n)-type donor-acceptor π-conjugated copolymers constituted of alkylthiophene (unit A) and pyridazine (unit B): synthesis using hexamethylditin, self-organized solid structure, and optical and electrochemical properties of the copolymers. Chem. Mater., 17 (24), 6060–6068.
- Audebert, P., Sadki, S., Miomandre, F., and Clavier, G. (2004) First example of an electroactive polymer issued from an oligothiophene substituted tetrazine. Electrochem. Commun., 6 (2), 144–147.
- Salzner, U. (2002) Does the donor-acceptor concept work for designing synthetic metals? 1. Theoretical investigation of poly(3-cyano-3'-hydroxybithiophene). J. Phys. Chem. B, 106 (36), 9214–9220.
- Salzner, U. and Kose, M.E. (2002) Does the donor-acceptor concept work for designing synthetic metals? 2. Theoretical investigation of copolymers of 4-(dicyanomethylene)-4H-cyclopenta[2,1-b: 3,4-b ']dithiophene and 3,4-(ethylenedioxy)thiophene. J. Phys. Chem. B, 106 (36), 9221–9226.
- Ellinger, S., Graham, K.R., Shi, P.J., Farley, R.T., Steckler, T.T., Brookins, R.N., Taranekar, P., Mei, J.G., Padilha, L.A., Ensley, T.R., Hu, H.H., Webster, S., Hagan, D.J., Van Stryland, E.W., Schanze, K.S., and Reynolds, J.R. (2011) Donor-acceptor-donor-based π-conjugated oligomers for nonlinear optics and near-IR emission. Chem. Mater., 23 (17), 3805–3817.
- Arbizzani, C., Bongini, A., Mastragostino, M., Zanelli, A., Barbarella, G., and Zambianchi, M. (1995) Polyalkylthiophenes as electrochromic materials – a comparative-study of poly(3-Methylthiophenes) and poly(3-Hexylthiophenes). Adv. Mater., 7 (6), 571–574.
- Collombdunandsauthier, M.N., Langlois, S., and Genies, E. (1994) Spectroelectrochemical behavior of poly(3-Octylthiophene) – application to electrochromic windows with polyaniline and iridium oxide. J. Appl. Electrochem., 24 (1), 72–77.
- Osaka, I. and McCullough, R.D. (2008) Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res., 41 (9), 1202–1214.
-
Mastragostino, M., Arbizzani, C., Bongini, A., Barbarella, G., and Zambianchi, M. (1993) Polymer-based electrochromic devices. 1. Poly(3-methylthiophenes). Electrochim. Acta, 38 (1), 135–140.
10.1016/0013-4686(93)80020-Z Google Scholar
- Blohm, M.L., Pickett, J.E., and Vandort, P.C. (1993) Synthesis, characterization, and stability of poly(3,4-dibutoxythiophenevinylene) copolymers. Macromolecules, 26 (11), 2704–2710.
- Havinga, E.E., Mutsaers, C.M.J., and Jenneskens, L.W. (1996) Absorption properties of alkoxy-substituted thienylene-vinylene oligomers as a function of the doping level. Chem. Mater., 8 (3), 769–776.
- Jen, K.Y., Eckhardt, H., Jow, T.R., Shacklette, L.W., and Elsenbaumer, R.L. (1988) Optical, electrochemical, and conductive properties of poly(3-Alkoxy-2,5-Thienylene Vinylenes). J. Chem. Soc., Chem. Commun., (3), 215–217.
- Martinez, M., Reynolds, J.R., Basak, S., Black, D.A., Marynick, D.S., and Pomerantz, M. (1988) Electrochemical synthesis and optical analysis of poly[(2,2'-Dithienyl)-5,5'-Diylvinylene]. J. Polym. Sci., Part B: Polym. Phys., 26 (4), 911–920.
- Sotzing, G.A., Reynolds, J.R., and Steel, P.J. (1996) Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers. Chem. Mater., 8 (4), 882–889.
- Fu, Y.P. and Elsenbaumer, R.L. (1995) Structure-property relationships in conjugated polymers – oxidation potentials, reduction potentials, and band-gaps for a series of regiospecifically methoxy substituted thiophene vinylenes and poly(bithiophene vinylenes). Abstracts of Papers of the American Chemical Society, 209, 183-PMSE.
-
Bredas, J.L., Heeger, A.J., and Wudl, F. (1986) Towards organic polymers with very small intrinsic band-gaps.1. Electronic-structure of polyisothianaphthene and derivatives. J. Chem. Phys., 85 (8), 4673–4678.
10.1063/1.451741 Google Scholar
- Wudl, F., Kobayashi, M., and Heeger, A.J. (1984) Poly(Isothianaphthene). J. Org. Chem., 49 (18), 3382–3384.
- Yashima, H., Kobayashi, M., Lee, K.B., Chung, D., Heeger, A.J., and Wudl, F. (1987) Electrochromic switching of the optical-properties of polyisothianaphthene. J. Electrochem. Soc., 134 (1), 46–52.
- Kobayashi, M., Colaneri, N., Boysel, M., Wudl, F., and Heeger, A.J. (1985) The electronic and electrochemical properties of poly(isothianaphthene). J. Chem. Phys., 82 (12), 5717–5723.
- Lee, K. and Sotzing, G.A. (2001) Poly(thieno[3,4-b]thiophene). A new stable low band gap conducting polymer. Macromolecules, 34 (17), 5746–5747.
- Sotzing, G.A. and Lee, K.H. (2002) Poly(thieno[3,4-b]thiophene): a p- and n-dopable polythiophene exhibiting high optical transparency in the semiconducting state. Macromolecules, 35 (19), 7281–7286.
- Kumar, A., Buyukmumcu, Z., and Sotzing, G.A. (2006) Poly(thieno[3,4-b]furan). A new low band gap conjugated polymer. Macromolecules, 39 (8), 2723–2725.
- Kumar, A., Bokria, J.G., Buyukmumcu, Z., Dey, T., and Sotzing, G.A. (2008) Poly(thieno[3,4-b]furan), a new low band gap polymer: experiment and theory. Macromolecules, 41 (19), 7098–7108.
- Ferraris, J.P. and Lambert, T.L. (1991) Narrow bandgap polymers – poly-4-dicyanomethylene-4h-cyclopenta[2,1-B-3,4-B']dithiophene (Pcdm). J. Chem. Soc., Chem. Commun., (18), 1268–1270.
- Ferraris, J.P., Henderson, C., Torres, D., and Meeker, D. (1995) Synthesis, spectroelectrochemistry and application in electrochromic devices of an N-dopable and P-dopable conducting polymer. Synth. Met., 72 (2), 147–152.
- Ogawa, K. and Rasmussen, S.C. (2006) N-functionalized poly(dithieno[3,2-b: 2',3'-d]pyrrole)s: highly fluorescent materials with reduced band gaps. Macromolecules, 39 (5), 1771–1778.
- Mert, O., Sahin, E., Ertas, E., Ozturk, T., Aydin, E.A., and Toppare, L. (2006) Electrochromic properties of poly(diphenyldithieno[3,2-b; 2',3'-d]thiophene). J. Electroanal. Chem., 591 (1), 53–58.
- Dyer, A.L., Thompson, E.J., and Reynolds, J.R. (2011) Completing the color palette with spray-processable polymer electrochromics. ACS Appl. Mater. Interfaces, 3 (6), 1787–1795.
- Xu, C.X., Zhao, J.S., Yu, J.S., and Cui, C.S. (2013) Ethylenedioxythiophene derivatized polynapthalenes as active materials for electrochromic devices. Electrochim. Acta, 96, 82–89.
-
Oguzhan, E., Bilgili, H., Koyuncu, F.B., Ozdemir, E., and Koyuncu, S. (2013) A new processable donor-acceptor polymer displaying neutral state yellow electrochromism. Polymer, 54 (23), 6283–6292.
10.1016/j.polymer.2013.09.033 Google Scholar
-
Icli-Ozkut, M., Oztas, Z., Algi, F., and Cihaner, A. (2011) A neutral state yellow to navy polymer electrochrome with pyrene scaffold. Org. Electron., 12 (9), 1505–1511.
10.1016/j.orgel.2011.05.016 Google Scholar
-
Dey, T., Invernale, M.A., Ding, Y., Buyukmumcu, Z., and Sotzing, G.A. (2011) Poly(3,4-propylenedioxythiophene)s as a single platform for full color realization. Macromolecules, 44 (8), 2415–2417.
10.1021/ma102580x Google Scholar
- Nielsen, C.B., Angerhofer, A., Abboud, K.A., and Reynolds, J.R. (2008) Discrete photopatternable π-conjugated oligomers for electrochromic devices. J. Am. Chem. Soc., 130 (30), 9734–9746.
-
Amb, C.M., Kerszulis, J.A., Thompson, E.J., Dyer, A.L., and Reynolds, J.R. (2011) Propylenedioxythiophene (ProDOT)-phenylene copolymers allow a yellow-to-transmissive electrochrome. Polym. Chem., 2 (4), 812–814.
10.1039/c0py00405g Google Scholar
-
Kerszulis, J.A., Amb, C., Dyer, A., and Reynolds, J. (2014) Follow the yellow brick road—structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers. Macromolecules, 47 (16), 5462–5469, Manuscript ID: ma-2014-01080u.R01081.
10.1021/ma501080u Google Scholar
- Thompson, B.C., Schottland, P., Zong, K.W., and Reynolds, J.R. (2000) In situ colorimetric analysis of electrochromic polymers and devices. Chem. Mater., 12 (6), 1563–1571.
- Zong, K. and Reynolds, J.R. (2001) 3,4-alkylenedioxypyrroles: functionalized derivatives as monomers for new electron-rich conducting and electroactive polymers. J. Org. Chem., 66 (21), 6873–6882.
- Merz, A., Schropp, R., and Dotterl, E. (1995) 3,4-Dialkoxypyrroles and 2,3,7,8,12,13,17,18-Octaalkoxyporphyrins. Synthesis (Stuttgart), (7), 795–800.
- Zotti, G., Zecchin, S., Schiavon, G., and Groenendaal, L. (2000) Conductive and magnetic properties of 3,4-dimethoxy- and 3,4-ethylenedioxy-capped polypyrrole and polythiophene. Chem. Mater., 12 (10), 2996–3005.
- Jonas, F.D., Heywang, G.D., Schmidtberg, W., Heinze, J. P. D. and Dietrich, M. (1989) Polythiophenes, process for their preparation and their use. EP Patent 0339340 (A2), filed Apr. 8, 1989 and issued Nov. 2, 1989.
- Heywang, G. and Jonas, F. (1992) Poly(Alkylenedioxythiophene)S – new, very stable conducting polymers. Adv. Mater., 4 (2), 116–118.
- Jonas, F. and Schrader, L. (1991) Conductive modifications of polymers with polypyrroles and polythiophenes. Synth. Met., 41 (3), 831–836.
-
Elschner, A., Kirchmeyer, S., Lovenich, W., Merker, U., and Reuter, K. (2010) PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, Taylor & Francis.
10.1201/b10318 Google Scholar
- Groenendaal, L., Zotti, G., Aubert, P.H., Waybright, S.M., and Reynolds, J.R. (2003) Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv. Mater., 15 (11), 855–879.
- Heuer, H.W., Wehrmann, R., and Kirchmeyer, S. (2002) Electrochromic window based on conducting poly (3,4-ethylenedioxythiophene)poly(styrene sulfonate). Adv. Funct. Mater., 12 (2), 89–94.
- Sonmez, G. et al (2004) Red, green, and blue colors in polymeric electrochromics. Adv. Mater., 16, 1905.
- Kumar, A. and Reynolds, J.R. (1996) Soluble alkyl-substituted poly(ethylenedioxythiophenes) as electrochromic materials. Macromolecules, 29 (23), 7629–7630.
- Sankaran, B. and Reynolds, J.R. (1997) High-contrast electrochromic polymers from alkyl-derivatized poly(3,4-ethylenedioxythiophenes). Macromolecules, 30 (9), 2582–2588.
- Sapp, S.A., Sotzing, G.A., and Reynolds, J.R. (1998) High contrast ratio and fast-switching dual polymer electrochromic devices. Chem. Mater., 10 (8), 2101–2108.
-
Welsh, D.M., Kumar, A., Morvant, M.C., and Reynolds, J.R. (1999) Fast electrochromic polymers based on new poly(3,4-alkylenedioxythiophene) derivatives. Synth. Met., 102 (1-3), 967–968.
10.1016/S0379-6779(98)01014-5 Google Scholar
- Dietrich, M., Heinze, J., Heywang, G., and Jonas, F. (1994) Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. J. Electroanal. Chem., 369 (1-2), 87–92.
- Krishnamoorthy, K., Ambade, A.V., Kanungo, M., Contractor, A.Q., and Kumar, A. (2001) Rational design of an electrochromic polymer with high contrast in the visible region: dibenzyl substituted poly(3,4-propylenedioxythiophene). J. Mater. Chem., 11 (12), 2909–2911.
-
Welsh, D.M., Kumar, A., Meijer, E.W., and Reynolds, J.R. (1999) Enhanced contrast ratios and rapid switching in electrochromics based on poly(3,4-propylenedioxythiophene) derivatives. Adv. Mater., 11 (16), 1379–1382.
10.1002/(SICI)1521-4095(199911)11:16<1379::AID-ADMA1379>3.0.CO;2-Q CAS Web of Science® Google Scholar
-
Gaupp, C.L., Welsh, D.M., and Reynolds, J.R. (2002) Poly(ProDOT-Et-2): a high-contrast, high-coloration efficiency electrochromic polymer. Macromol. Rapid Commun., 23 (15), 885–889.
10.1002/1521-3927(20021001)23:15<885::AID-MARC885>3.0.CO;2-X Google Scholar
- Welsh, D.M., Kloeppner, L.J., Madrigal, L., Pinto, M.R., Thompson, B.C., Schanze, K.S., Abboud, K.A., Powell, D., and Reynolds, J.R. (2002) Regiosymmetric dibutyl-substituted poly(3,4-propylenedioxythiophene)s as highly electron-rich electroactive and luminescent polymers. Macromolecules, 35 (17), 6517–6525.
- Cirpan, A., Argun, A.A., Grenier, C.R.G., Reeves, B.D., and Reynolds, J.R. (2003) Electrochromic devices based on soluble and processable dioxythiophene polymers. J. Mater. Chem., 13 (10), 2422–2428.
- Reeves, B.D., Grenier, C.R.G., Argun, A.A., Cirpan, A., McCarley, T.D., and Reynolds, J.R. (2004) Spray coatable electrochromic dioxythiophene polymers with high coloration efficiencies. Macromolecules, 37 (20), 7559–7569.
-
Aqad, E., Lakshmikantham, M.V., and Cava, M.P. (2001) Synthesis of 3,4-ethylenedioxyselenophene (EDOS): a novel building block for electron-rich π-conjugated polymers. Org. Lett., 3 (26), 4283–4285.
10.1021/ol0169473 Google Scholar
- Patra, A., Wijsboom, Y.H., Zade, S.S., Li, M., Sheynin, Y., Leitus, G., and Bendikov, M. (2008) Poly(3,4-ethylenedioxyselenophene). J. Am. Chem. Soc., 130 (21), 6734–6736.
- Li, M., Sheynin, Y., Patra, A., and Bendikov, M. (2009) Tuning the electrochromic properties of poly(alkyl-3,4-ethylenedioxyselenophenes) having high contrast ratio and coloration efficiency. Chem. Mater., 21 (12), 2482–2488.
- Li, M., Patra, A., Sheynin, Y., and Bendikov, M. (2009) Hexyl-derivatized poly(3,4-ethylenedioxyselenophene): novel highly stable organic electrochromic material with high contrast ratio, high coloration efficiency, and low-switching voltage. Adv. Mater., 21 (17), 1707–1711.
-
Ozkut, M.I., Atak, S., Onal, A.M., and Cihaner, A. (2011) A blue to highly transmissive soluble electrochromic polymer based on poly(3,4-propylenedioxyselenophene) with a high stability and coloration efficiency. J. Mater. Chem., 21 (14), 5268–5272.
10.1039/c0jm04285d Google Scholar
- Sotzing, G.A., Thomas, C.A., Reynolds, J.R., and Steel, P.J. (1998) Low band gap cyanovinylene polymers based on ethylenedioxythiophene. Macromolecules, 31 (11), 3750–3752.
- Thomas, C.A., Zong, K.W., Abboud, K.A., Steel, P.J., and Reynolds, J.R. (2004) Donor-mediated band gap reduction in a homologous series of conjugated polymers. J. Am. Chem. Soc., 126 (50), 16440–16450.
- Thompson, B.C., Kim, Y.G., McCarley, T.D., and Reynolds, J.R. (2006) Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications. J. Am. Chem. Soc., 128 (39), 12714–12725.
- Galand, E.M., Kim, Y.G., Mwaura, J.K., Jones, A.G., McCarley, T.D., Shrotriya, V., Yang, Y., and Reynolds, J.R. (2006) Optimization of narrow band-gap propylenedioxythiophene: cyanovinylene copolymers for optoelectronic applications. Macromolecules, 39 (26), 9132–9142.
- Amb, C.M., Beaujuge, P.M., and Reynolds, J.R. (2010) Spray-processable blue-to-highly transmissive switching polymer electrochromes via the donor-acceptor approach. Adv. Mater., 22 (6), 724–728.
- Icli, M., Pamuk, M., Algi, F., Onal, A.M., and Cihaner, A. (2010) Donor-acceptor polymer electrochromes with tunable colors and performance. Chem. Mater., 22 (13), 4034–4044.
-
Neo, W.T., Loo, L.M., Song, J., Wang, X.B., Cho, C.M., Chan, H.S.O., Zong, Y., and Xu, J.W. (2013) Solution-processable blue-to-transmissive electrochromic benzotriazole-containing conjugated polymers. Polym. Chem., 4 (17), 4663–4675.
10.1039/c3py00677h Google Scholar
-
Hellstrom, S., Henriksson, P., Kroon, R., Wang, E.G., and Andersson, M.R. (2011) Blue-to-transmissive electrochromic switching of solution processable donor-acceptor polymers. Org. Electron., 12 (8), 1406–1413.
10.1016/j.orgel.2011.05.008 Google Scholar
-
Akpinar, H., Balan, A., Baran, D., Unver, E.K., and Toppare, L. (2010) Donor-acceptor-donor type conjugated polymers for electrochromic applications: benzimidazole as the acceptor unit. Polymer, 51 (26), 6123–6131.
10.1016/j.polymer.2010.10.045 Google Scholar
- Wu, C.G., Lu, M.I., Chang, S.J., and Wei, C.S. (2007) A solution-processable high-coloration-efficiency low-switching-voltage electrochromic polymer based on polycyclopentadithiophene. Adv. Funct. Mater., 17 (7), 1063–1070.
- Chen, H.Y., Hou, J.H., Hayden, A.E., Yang, H., Houk, K.N., and Yang, Y. (2010) Silicon atom substitution enhances interchain packing in a thiophene-based polymer system. Adv. Mater., 22 (3), 371–375.
-
Lee, B., Seshadri, V., and Sotzing, G.A. (2005) Water dispersible low band gap conductive polymer based on thieno[3,4-b]thiophene. Synth. Met., 152 (1-3), 177–180.
10.1016/j.synthmet.2005.07.231 Google Scholar
- Turbiez, M., Frere, P., Leriche, P., Mercier, N., and Roncali, J. (2005) Poly(3,6-dimethoxy-thieno[3,2-b]thiophene): a possible alternative to poly(3,4-ethylenedioxythiophene) (PEDOT). Chem. Commun. (Camb), (9), 1161–1163.
- Sonmez, G., Sonmez, H.B., Shen, C.K.F., Jost, R.W., Rubin, Y., and Wudl, F. (2005) A processable green polymeric electrochromic. Macromolecules, 38 (3), 669–675.
- Dubois, C.J. and Reynolds, J.R. (2002) 3,4-ethylenedioxythiophene-pyridine-based polymers: redox or n-type electronic conductivity? Adv. Mater., 14 (24), 1844–1846.
- DuBois, C.J., Abboud, K.A., and Reynolds, J.R. (2004) Electrolyte-controlled redox conductivity and n-type doping in poly(bis-EDOT-pyridine)s. J. Phys. Chem. B, 108 (25), 8550–8557.
- Raimundo, J.M., Blanchard, P., Brisset, H., Akoudad, S., and Roncali, J. (2000) Proquinoid acceptors as building blocks for the design of efficient π-conjugated fluorophores with high electron affinity. Chem. Commun. (Camb), (11), 939–940.
- Blanchard, P., Raimundo, J.M., and Roncali, J. (2001) New synthetic strategies towards conjugated NLO-phores and fluorophores. Synth. Met., 119 (1-3), 527–528.
- Aldakov, D., Palacios, M.A., and Anzenbacher, P. (2005) Benzothiadiazoles and dipyrrolyl quinoxalines with extended conjugated chromophores-fluorophores and anion sensors. Chem. Mater., 17 (21), 5238–5241.
- Durmus, A., Gunbas, G.E., Camurlu, P., and Toppare, L. (2007) A neutral state green polymer with a superior transmissive light blue oxidized state. Chem. Commun. (Camb), (31), 3246–3248.
- Durmus, A., Gunbas, G.E., and Toppare, L. (2007) New, highly stable electrochromic polymers from 3,4-ethylenedioxythiophene-bis-substituted quinoxalines toward green polymeric materials. Chem. Mater., 19 (25), 6247–6251.
- Beaujuge, P.M., Ellinger, S., and Reynolds, J.R. (2008) Spray processable green to highly transmissive electrochromics via chemically polymerizable donor-acceptor heterocyclic pentamers. Adv. Mater., 20 (14), 2772–2776.
- Beaujuge, P.M., Ellinger, S., and Reynolds, J.R. (2008) The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nat. Mater., 7 (10), 795–799.
- Gunbas, G.E., Durmus, A., and Toppare, L. (2008) A unique processable green polymer with a transmissive oxidized state for realization of potential RGB-based electrochromic device applications. Adv. Funct. Mater., 18 (14), 2026–2030.
- Beaujuge, P.M., Vasilyeva, S.V., Ellinger, S., McCarley, T.D., and Reynolds, J.R. (2009) Unsaturated linkages in dioxythiophene-benzothiadiazole donor-acceptor electrochromic polymers: the key role of conformational freedom. Macromolecules, 42 (11), 3694–3706.
- Cihaner, A. and Algi, F. (2008) A novel neutral state green polymeric electrochromic with superior n- and p-doping processes: Closer to Red-Blue-Green (RGB) display realization. Adv. Funct. Mater., 18 (22), 3583–3589.
- Gunbas, G.E., Durmus, A., and Toppare, L. (2008) Could green be greener? Novel donor-acceptor-type electrochromic polymers: towards excellent neutral green materials with exceptional transmissive oxidized states for completion of RGB color space. Adv. Mater., 20 (4), 691–695.
-
Hellstrom, S., Cai, T.Q., Inganas, O., and Andersson, M.R. (2011) Influence of side chains on electrochromic properties of green donor-acceptor-donor polymers. Electrochim. Acta, 56 (10), 3454–3459.
10.1016/j.electacta.2010.11.018 Google Scholar
-
Ozdemir, S., Balan, A., Baran, D., Dogan, O., and Toppare, L. (2011) Green to highly transmissive switching multicolored electrochromes: Ferrocene pendant group effect on electrochromic properties. React. Funct. Polym., 71 (2), 168–174.
10.1016/j.reactfunctpolym.2010.11.024 Google Scholar
-
Celebi, S., Balan, A., Epik, B., Baran, D., and Toppare, L. (2009) Donor acceptor type neutral state green polymer bearing pyrrole as the donor unit. Org. Electron., 10 (4), 631–636.
10.1016/j.orgel.2009.02.018 Google Scholar
- Unur, E., Beaujuge, P.M., Ellinger, S., Jung, J.H., and Reynolds, J.R. (2009) Black to transmissive switching in a pseudo three-electrode electrochromic device. Chem. Mater., 21 (21), 5145–5153.
-
Vasilyeva, S.V., Beaujuge, P.M., Wang, S.J., Babiarz, J.E., Ballarotto, V.W., and Reynolds, J.R. (2011) Material strategies for black-to-transmissive window-type polymer electrochromic devices. ACS Appl. Mater. Interfaces, 3 (4), 1022–1032.
10.1021/am101148s Google Scholar
- Shin, H., Kim, Y., Bhuvana, T., Lee, J., Yang, X., Park, C., and Kim, E. (2012) Color combination of conductive polymers for black electrochromism. ACS Appl. Mater. Interfaces, 4 (1), 185–191.
- Shi, P.J., Amb, C.M., Knott, E.P., Thompson, E.J., Liu, D.Y., Mei, J.G., Dyer, A.L., and Reynolds, J.R. (2010) Broadly absorbing black to transmissive switching electrochromic polymers. Adv. Mater., 22 (44), 4949–4953.
- Sassi, M., Salamone, M.M., Ruffo, R., Mari, C.M., Pagani, G.A., and Beverina, L. (2012) Gray to colorless switching, crosslinked electrochromic polymers with outstanding stability and transmissivity from naphthalenediimmide-functionalized EDOT. Adv. Mater., 24 (15), 2004–2008.
-
Oktem, G., Balan, A., Baran, D., and Toppare, L. (2011) Donor-acceptor type random copolymers for full visible light absorption. Chem. Commun. (Camb), 47 (13), 3933–3935.
10.1039/c0cc04934d Google Scholar
- Icli, M., Pamuk, M., Algi, F., Onal, A.M., and Cihaner, A. (2010) A new soluble neutral state black electrochromic copolymer via a donor-acceptor approach. Org. Electron., 11 (7), 1255–1260.
-
Ding, G.Q., Cho, C.M., Chen, C.X., Zhou, D., Wang, X.B., Tan, A.Y.X., Xu, J.W., and Lu, X.H. (2013) Black-to-transmissive electrochromism of azulene-based donor-acceptor copolymers complemented by poly(4-styrene sulfonic acid)-doped poly(3,4-ethylenedioxythiophene). Org. Electron., 14 (11), 2748–2755.
10.1016/j.orgel.2013.07.037 Google Scholar
-
Lee, K.R. and Sotzing, G.A. (2013) Color tuning of black for electrochromic polymers using precursor blends. Chem. Commun. (Camb), 49 (45), 5192–5194.
10.1039/c3cc41584h Google Scholar
-
Siove, A., Ades, D., Ngbilo, E., and Chevrot, C. (1990) Chain-length effect on the electroactivity of poly(N-Alkyl-3,6-Carbazolediyl) thin-films. Synth. Met., 38 (3), 331–340.
10.1016/0379-6779(90)90086-Z Google Scholar
-
Chevrot, C., Ngbilo, E., Kham, K., and Sadki, S. (1996) Optical and electronic properties of undoped and doped poly(N-alkylcarbazole) thin layers. Synth. Met., 81 (2-3), 201–204.
10.1016/S0379-6779(96)03752-6 Google Scholar
-
Tran-Van, F., Henri, T., and Chevrot, C. (2002) Synthesis and electrochemical properties of mixed ionic and electronic modified polycarbazole. Electrochim. Acta, 47 (18), 2927–2936.
10.1016/S0013-4686(02)00171-8 Google Scholar
- Qiu, Y.J. and Reynolds, J.R. (1990) Poly[3,6-(Carbaz-9-Yl)propanesulfonate] – a self-doped polymer with both cation and anion-exchange properties. J. Electrochem. Soc., 137 (3), 900–904.
-
Verghese, M.M., Ram, M.K., Vardhan, H., Malhotra, B.D., and Ashraf, S.M. (1997) Electrochromic properties of polycarbazole films. Polymer, 38 (7), 1625–1629.
10.1016/S0032-3861(96)00655-6 Google Scholar
- Scherf, U. and Neher, D. (2008) Polyfluorenes, Springer.
-
Bezgin, B., Cihaner, A., and Onal, A.M. (2008) Electrochemical polymerization of 9-fluorenecarboxylic acid and its electrochromic device application. Thin Solid Films, 516 (21), 7329–7334.
10.1016/j.tsf.2008.02.003 Google Scholar
- Poriel, C., Liang, J.J., Rault-Berthelot, J., Barriere, F., Cocherel, N., Slawin, A.M.Z., Horhant, D., Virboul, M., Alcaraz, G., Audebrand, N., Vignau, L., Huby, N., Wantz, G., and Hirsch, L. (2007) Dispirofluorene-indenofluorene derivatives as new building blocks for blue organic electroluminescent devices and electroactive polymers. Chem. Eur. J., 13 (36), 10055–10069.
-
Yen, H.J. and Liou, G.S. (2012) Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem., 3 (2), 255–264.
10.1039/C1PY00346A Google Scholar
- Yen, H.J. and Liou, G.S. (2009) Solution-processable novel near-infrared electrochromic aromatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chem. Mater., 21 (17), 4062–4070.
-
Chang, C.W., Liou, G.S., and Hsiao, S.H. (2007) Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. J. Mater. Chem., 17 (10), 1007–1015.
10.1039/B613140A Google Scholar
- Natera, J., Otero, L., Sereno, L., Fungo, F., Wang, N.S., Tsai, Y.M., Hwu, T.Y., and Wong, K.T. (2007) A novel electrochromic polymer synthesized through electropolymerization of a new donor-acceptor bipolar system. Macromolecules, 40 (13), 4456–4463.
- Sonmez, G., Schwendeman, I., Schottland, P., Zong, K.W., and Reynolds, J.R. (2003) N-substituted poly(3,4-propylenedioxypyrrole)s: high gap and low redox potential switching electroactive and electrochromic polymers. Macromolecules, 36 (3), 639–647.
- Walcak, R.M., Jung, J.H., Cowart, J.S., and Reynolds, J.R. (2007) 3,4-alkylenedioxypyrrole-based conjugated polymers with finely tuned electronic and optical properties via a flexible and efficient N-functionalization method. Macromolecules, 40 (22), 7777–7785.
- Walczak, R.M., Leonard, J.K., and Reynolds, J.R. (2008) Processable, electroactive, and aqueous compatible poly(3,4-alkylenedioxypyrrole)s through a functionally tolerant delodination condensation polymerization. Macromolecules, 41 (3), 691–700.
- Schwendeman, I., Hickman, R., Sonmez, G., Schottland, P., Zong, K., Welsh, D.M., and Reynolds, J.R. (2002) Enhanced contrast dual polymer electrochromic devices. Chem. Mater., 14 (7), 3118–3122.
-
Knott, E.P., Craig, M.R., Liu, D.Y., Babiarz, J.E., Dyer, A.L., and Reynolds, J.R. (2012) A minimally coloured dioxypyrrole polymer as a counter electrode material in polymeric electrochromic window devices. J. Mater. Chem., 22 (11), 4953–4962.
10.1039/c2jm15057c Google Scholar
-
Arroyave, F.A. and Reynolds, J.R. (2012) Dioxypyrrole-based polymers via dehalogenation polycondensation using various electrophilic halogen sources. Macromolecules, 45 (15), 5842–5849.
10.1021/ma300684t Google Scholar
-
Vasilyeva, S.V., Unur, E., Walczak, R.M., Donoghue, E.P., Rinzler, A.G., and Reynolds, J.R. (2009) Color purity in polymer electrochromic window devices on indium-tin oxide and single-walled carbon nanotube electrodes. ACS Appl. Mater. Interfaces, 1 (10), 2288–2297.
10.1021/am900435j Google Scholar
- Bulloch, R.H., Kerszulis, J.A., Dyer, A.L., and Reynolds, J.R. (2014) Mapping the broad CMY subtractive primary color gamut using a dual-active electrochromic device. ACS Appl. Mater. Interfaces, 6 (9), 6623–6630.
- Druy, M.A. and Seymour, R.J. (1983) Poly (2,2' – Bithiophene): an electrochromic conducting polymer. J. Phys. Colloqyes, 44 (C3), C3-595–C3-598.
- Du Bois, C.J., Larmat, F., Irvin, D.J., and Reynolds, J.R. (2001) Multi-colored electrochromic polymers based on BEDOT-pyridines. Synth. Met., 119 (1-3), 321–322.
-
Ouyang, M., Wang, G., Zhang, Y., Hua, C., and Zhang, C. (2011) Multicolored electrochromic copolymer based on 1,4-di(thiophen-3-yl)benzene and 3,4-ethylenedioxythiophene. J. Electroanal. Chem., 653 (1-2), 21–26.
10.1016/j.jelechem.2011.01.014 Google Scholar
- Hyodo, K. and Omae, M. (1990) Colorimetric study of the electrochromic properties of a conducting polymer. J. Electroanal. Chem., 292 (1-2), 93–102.
- Macdiarmid, A.G. and Epstein, A.J. (1989) Polyanilines – a novel class of conducting polymers. Faraday Discuss., 88, 317–332.
-
Diaz, A.F. and Logan, J.A. (1980) Electroactive polyaniline films. J. Electroanal. Chem., 111 (1), 111–114.
10.1016/S0022-0728(80)80081-7 Google Scholar
- Macdiarmid, A.G., Yang, L.S., Huang, W.S., and Humphrey, B.D. (1987) Polyaniline – electrochemistry and application to rechargeable batteries. Synth. Met., 18 (1-3), 393–398.
- Kobayashi, T., Yoneyama, H., and Tamura, H. (1984) Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes. J. Electroanal. Chem., 177 (1-2), 281–291.
- Kobayashi, T., Yoneyama, H., and Tamura, H. (1984) Polyaniline film-coated electrodes as electrochromic display devices. J. Electroanal. Chem., 161 (2), 419–423.
- Leclerc, M., Guay, J., and Dao, L.H. (1989) Synthesis and characterization of poly(alkylanilines). Macromolecules, 22 (2), 649–653.
- Chevalier, J.W., Bergeron, J.Y., and Dao, L.H. (1992) Synthesis, characterization, and properties of poly(N-alkylanilines). Macromolecules, 25 (13), 3325–3331.
-
Lindfors, T. and Ivaska, A. (2002) pH sensitivity of polyaniline and its substituted derivatives. J. Electroanal. Chem., 531 (1), 43–52.
10.1016/S0022-0728(02)01005-7 Google Scholar
- Daprano, G., Leclerc, M., Zotti, G., and Schiavon, G. (1995) Synthesis and characterization of polyaniline derivatives – poly(2-alkoxyanilines) and poly(2,5-dialkoxyanilines). Chem. Mater., 7 (1), 33–42.
- Jiang, Y. and Epstein, A.J. (1990) Synthesis of self-doped conducting polyaniline. J. Am. Chem. Soc., 112 (7), 2800–2801.
- Tarver, J., Yoo, J.E., and Loo, Y.L. (2010) Polyaniline exhibiting stable and reversible switching in the visible extending into the near-IR in aqueous media. Chem. Mater., 22 (7), 2333–2340.
- Gaupp, C.L. and Reynolds, J.R. (2003) Multichromic copolymers based on 3,6-bis(2-(3,4-ethylenedioxythiophene))-N-alkylcarbazole derivatives. Macromolecules, 36 (17), 6305–6315.
- Yiğit, D., Udum, Y.A., Güllü, M., and Toppare, L. (2014) Electrochemical and optical properties of novel terthienyl based azobenzene, coumarine and fluorescein containing polymers: multicolored electrochromic polymers. J. Electroanal. Chem., 712, 215–222.
- Sicard, L., Navarathne, D., Skalski, T., and Skene, W.G. (2013) On-substrate preparation of an electroactive conjugated polyazomethine from solution-processable monomers and its application in electrochromic devices. Adv. Funct. Mater., 23 (28), 3549–3559.
- Irvin, D.J., DuBois, C.J., and Reynolds, J.R. (1999) Dual p- and n-type doping in an acid sensitive alternating bi(ethylenedioxythiophene) and pyridine polymer. Chem. Commun. (Camb), (20), 2121–2122.
-
Camurlu, P. and Karagoren, N. (2013) Both p and n-dopable, multichromic, napthalineimide clicked poly(2,5-dithienylpyrrole) derivatives. J. Electrochem. Soc., 160 (9), H560–H567.
10.1149/2.043309jes Google Scholar
-
Ferraris, J.P. and Skiles, G.D. (1987) Substitutional alloys of organic polymeric conductors. Polymer, 28 (2), 179–182.
10.1016/0032-3861(87)90400-9 Google Scholar
- Ferraris, J.P., Andrus, R.G., and Hrncir, D.C. (1989) Steric effects on the optical and electrochemical properties of n-substituted pyrrole thiophene monomers and polymers. J. Chem. Soc., Chem. Commun., (18), 1318–1320.
- Varis, S., Ak, M., Tanyeli, C., Akhmedov, I.M., and Toppare, L. (2006) A soluble and multichromic conducting polythiophene derivative. Eur. Polym. J., 42 (10), 2352–2360.
-
Yildiz, E., Camurlu, P., Tanyeli, C., Akhmedov, I., and Toppare, L. (2008) A soluble conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine and its multichromic copolymer with EDOT. J. Electroanal. Chem., 612 (2), 247–256.
10.1016/j.jelechem.2007.10.004 Google Scholar
- Song, H.K., Lee, E.J., and Oh, S.M. (2005) Electrochromism of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) incorporated into conducting polymer as a dopant. Chem. Mater., 17 (9), 2232–2233.
- Fei, J.F., Lim, K.G., and Palmore, G.T.R. (2008) Polymer composite with three electrochromic states. Chem. Mater., 20 (12), 3832–3839.
- Heinze, J., Frontana-Uribe, B.A., and Ludwigs, S. (2010) Electrochemistry of conducting polymers-persistent models and new concepts. Chem. Rev., 110 (8), 4724–4771.
- Sadki, S., Schottland, P., Brodie, N., and Sabouraud, G. (2000) The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev., 29 (5), 283–293.
- Poverenov, E., Li, M., Bitler, A., and Bendikov, M. (2010) Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films. Chem. Mater., 22 (13), 4019–4025.
- Sonmez, G., Meng, H., and Wudl, F. (2004) Organic polymeric electrochromic devices: polychromism with very high coloration efficiency. Chem. Mater., 16 (4), 574–580.
- Gaupp, C.L., Welsh, D.M., Rauh, R.D., and Reynolds, J.R. (2002) Composite coloration efficiency measurements of electrochromic polymers based on 3,4-alkylenedioxythiophenes. Chem. Mater., 14 (9), 3964–3970.
-
Shen, D.E., Estrada, L.A., Österholm, A.M., Salazar, D.H., Dyer, A.L., and Reynolds, J.R. (2014) Understanding the effects of electrochemical parameters on the areal capacitance of electroactive polymers. J. Mater. Chem. A, 2 (20), 7509.
10.1039/C4TA01375A Google Scholar
-
Zhu, Y., Otley, M.T., Alamer, F.A., Kumar, A., Zhang, X., Mamangun, D.M.D., Li, M., Arden, B.G., and Sotzing, G.A. (2014) Electrochromic properties as a function of electrolyte on the performance of electrochromic devices consisting of a single-layer polymer. Org. Electron., 15 (7), 1378–1386.
10.1016/j.orgel.2014.03.038 Google Scholar
- Argun, A.A., Cirpan, A., and Reynolds, J.R. (2003) The first truly all-polymer electrochromic devices. Adv. Mater., 15 (16), 1338–1341.
-
Seshadri, V., Padilla, J., Bircan, H., Radmard, B., Draper, R., Wood, M., Otero, T.F., and Sotzing, G.A. (2007) Optimization, preparation, and electrical short evaluation for 30cm2 active area dual conjugated polymer electrochromic windows. Org. Electron., 8 (4), 367–381.
10.1016/j.orgel.2007.01.004 Google Scholar
- Argun, A.A., Aubert, P.H., Thompson, B.C., Schwendeman, I., Gaupp, C.L., Hwang, J., Pinto, N.J., Tanner, D.B., MacDiarmid, A.G., and Reynolds, J.R. (2004) Multicolored electrochromism polymers: structures and devices. Chem. Mater., 16 (23), 4401–4412.
- Inganas, O., Carlberg, C., and Yohannes, T. (1998) Polymer electrolytes in optical devices. Electrochim. Acta, 43 (10-11), 1615–1621.
-
Ding, Y., Invernale, M.A., Mamangun, D.M.D., Kumar, A., and Sotzing, G.A. (2011) A simple, low waste and versatile procedure to make polymer electrochromic devices. J. Mater. Chem., 21 (32), 11873.
10.1039/c1jm11141h Google Scholar
- Invernale, M.A., Ding, Y., Mamangun, D.M., Yavuz, M.S., and Sotzing, G.A. (2010) Preparation of conjugated polymers inside assembled solid-state devices. Adv. Mater., 22 (12), 1379–1382.
- Alamer, F.A., Otley, M.T., Ding, Y., and Sotzing, G.A. (2013) Solid-state high-throughput screening for color tuning of electrochromic polymers. Adv. Mater., 25 (43), 6256–6260.
- Otley, M.T., Alamer, F.A., Zhu, Y., Singhaviranon, A., Zhang, X., Li, M., Kumar, A., and Sotzing, G.A. (2014) Acrylated poly(3,4-propylenedioxythiophene) for enhancement of lifetime and optical properties for single-layer electrochromic devices. ACS Appl. Mater. Interfaces, 6 (3), 1734–1739.
- İçli, M., Pamuk, M., Algi, F., Önal, A.M., and Cihaner, A. (2010) Donor–acceptor polymer electrochromes with tunable colors and performance. Chem. Mater., 22 (13), 4034–4044.
- Elsenbaumer, R.L., Jen, K.Y., and Oboodi, R. (1986) Processible and environmentally stable conducting polymers. Synth. Met., 15 (2-3), 169–174.
- Jen, K.Y., Miller, G.G., and Elsenbaumer, R.L. (1986) Highly conducting, soluble, and environmentally-stable poly(3-alkylthiophenes). J. Chem. Soc., Chem. Commun., (17), 1346–1347.
- Hotta, S., Rughooputh, D.D.V., Heeger, A.J., and Wudl, F. (1987) Spectroscopic studies of soluble poly(3-Alkylthienylenes). Macromolecules, 20 (1), 212–215.
- Groenendaal, B.L., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J.R. (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater., 12 (7), 481–494.
-
Mortimer, R.J., Graham, K.R., Grenier, C.R., and Reynolds, J.R. (2009) Influence of the film thickness and morphology on the colorimetric properties of spray-coated electrochromic disubstituted 3,4-propylenedioxythiophene polymers. ACS Appl. Mater. Interfaces, 1 (10), 2269–2276.
10.1021/am900431z Google Scholar
- Andersson, P., Nilsson, D., Svensson, P.O., Chen, M.X., Malmstrom, A., Remonen, T., Kugler, T., and Berggren, M. (2002) Active matrix displays based on all-organic electrochemical smart pixels printed on paper. Adv. Mater., 14 (20), 1460–1464.
- Andersson, P., Forchheimer, R., Tehrani, P., and Berggren, M. (2007) Printable all-organic electrochromic active-matrix displays. Adv. Funct. Mater., 17 (16), 3074–3082.
- Berggren, M., Nilsson, D., and Robinson, N.D. (2007) Organic materials for printed electronics. Nat. Mater., 6 (1), 3–5.
- Freund, M.S., Svenda, N. and Deore, B.A. (2012) In situ polymerization of conducting poly(3,4-ethylenedioxythiophene). EP Patent 2451850 A1, filed Jul. 9, 2010 and issued May 16, 2012.
- Jonas, F.D. and Krafft, W.D. (1996) New polythiophene dispersions, their preparation and their use. EP Patent 0440957 B1, filed Dec. 20, 1990 and issued Mar. 27, 1996.
- Krafft, W.D., Jonas, F.D., Muys, B. and Quintens, D. D. (1993) Antistatic Plastic Parts: Google Patents. US Patent 5370981 A, filed Mar. 24, 1993 and issued Dec 6, 1994.
- Jonas, F., Krafft, W., and Muys, B. (1995) Poly(3,4-Ethylenedioxythiophene) – conductive coatings, technical applications and properties. Macromol. Symp., 100, 169–173.
- Lim, J.A., Cho, J.H., Park, Y.D., Kim, D.H., Hwang, M., and Cho, K. (2006) Solvent effect of inkjet printed source/drain electrodes on electrical properties of polymer thin-film transistors. Appl. Phys. Lett., 88 (8), 082102.
- Krebs, F.C. (2009) All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org. Electron., 10 (5), 761–768.
- Ersman, P.A., Kawahara, J., and Berggren, M. (2013) Printed passive matrix addressed electrochromic displays. Org. Electron., 14 (12), 3371–3378.
- Ding, Y., Invernale, M.A., and Sotzing, G.A. (2010) Conductivity trends of PEDOT-PSS impregnated fabric and the effect of conductivity on electrochromic textile. ACS Appl. Mater. Interfaces, 2 (6), 1588–1593.
- Lee, B., Seshadri, V., and Sotzing, G.A. (2005) Poly(thieno[3,4-b]thiophene)-poly(styrene sulfonate): a low band gap, water dispersible conjugated polymer. Langmuir, 21 (23), 10797–10802.
-
Somboonsub, B., Thongyai, S., Scola, D.A., Sotzing, G.A., and Praserthdam, P. (2012) Sulfonated polyimide as a thermally stable template for water processable conductive polymers. Synth. Met., 162 (11-12), 941–947.
10.1016/j.synthmet.2012.03.023 Google Scholar
-
Ner, Y., Invernale, M.A., Grote, J.G., Stuart, J.A., and Sotzing, G.A. (2010) Facile chemical synthesis of DNA-doped PEDOT. Synth. Met., 160 (5-6), 351–353.
10.1016/j.synthmet.2009.11.003 Google Scholar
-
Tarver, J. and Loo, Y.-L. (2011) Mesostructures of polyaniline films affect polyelectrochromic switching. Chem. Mater., 23 (19), 4402–4409.
10.1021/cm2023289 Google Scholar
- Shi, P., Amb, C.M., Dyer, A.L., and Reynolds, J.R. (2012) Fast switching water processable electrochromic polymers. ACS Appl. Mater. Interfaces, 4 (12), 6512–6521.
- Hoven, C.V., Garcia, A., Bazan, G.C., and Nguyen, T.-Q. (2008) Recent applications of conjugated polyelectrolytes in optoelectronic devices. Adv. Mater., 20 (20), 3793–3810.
- Huang, F., Wu, H., and Cao, Y. (2010) Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chem. Soc. Rev., 39 (7), 2500–2521.
- Zhu, C., Liu, L., Yang, Q., Lv, F., and Wang, S. (2012) Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev., 112 (8), 4687–4735.
- Jiang, H., Taranekar, P., Reynolds, J.R., and Schanze, K.S. (2009) Conjugated polyelectrolytes: synthesis, photophysics, and applications. Angew. Chem. Int. Ed., 48 (24), 4300–4316.
- Patil, A.O., Ikenoue, Y., Basescu, N., Colaneri, N., Chen, J., Wudl, F., and Heeger, A.J. (1987) Self-doped conducting polymers. Synth. Met., 20 (2), 151–159.
- Patil, A.O., Ikenoue, Y., Wudl, F., and Heeger, A.J. (1987) Water-soluble conducting polymers. J. Am. Chem. Soc., 109 (6), 1858–1859.
- Sundaresan, N.S., Basak, S., Pomerantz, M., and Reynolds, J.R. (1987) Electroactive copolymers of pyrrole containing covalently bound dopant ions – poly(Pyrrole-Co-[3-(Pyrrol-1-Yl)propanesulphonate]). J. Chem. Soc., Chem. Commun., (8), 621–622.
- Reynolds, J.R., Sundaresan, N.S., Pomerantz, M., Basak, S., and Baker, C.K. (1988) Self-doped conducting copolymers – a charge and mass-transport study of poly(pyrrole-Co[3-(pyrrol-1-Yl)propanesulfonate]). J. Electroanal. Chem., 250 (2), 355–371.
- Havinga, E.E., Vanhorssen, L.W., Tenhoeve, W., Wynberg, H., and Meijer, E.W. (1987) Self-doped water-soluble conducting polymers. Polym. Bull., 18 (3), 277–281.
-
Stephan, O., Schottland, P., Le Gall, P.Y., Chevrot, C., Mariet, C., and Carrier, M. (1998) Electrochemical behaviour of 3,4-ethylenedioxythiophene functionalized by a sulphonate group. Application to the preparation of poly(3,4-ethylenedioxythiophene) having permanent cation-exchange properties. J. Electroanal. Chem., 443 (2), 217–226.
10.1016/S0022-0728(97)00548-2 Google Scholar
- Decher, G., Hong, J.D., and Schmitt, J. (1992) Buildup of ultrathin multilayer films by a self-assembly process. 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 210 (1-2), 831–835.
- Decher, G. (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science, 277 (5330), 1232–1237.
- Decher, G., Lvov, Y., and Schmitt, J. (1994) Proof of multilayer structural organization in self-assembled polycation polyanion molecular films. Thin Solid Films, 244 (1-2), 772–777.
- DeLongchamp, D. and Hammond, P.T. (2001) Layer-by-layer assembly of PEDOT/polyaniline electrochromic devices. Adv. Mater., 13 (19), 1455–1459.
- Cutler, C.A., Bouguettaya, M., and Reynolds, J.R. (2002) PEDOT polyelectrolyte based electrochromic films via electrostatic adsorption. Adv. Mater., 14 (9), 684–688.
- Cutler, C.A., Bouguettaya, M., Kang, T.S., and Reynolds, J.R. (2005) Alkoxysulfonate-functionalized PEDOT polyelectrolyte multilayer films: electrochromic and hole transport materials. Macromolecules, 38 (8), 3068–3074.
- Jain, V., Sahoo, R., Mishra, S.P., Sinha, J., Montazami, R., Yochum, H.M., Heflin, J.R., and Kumar, A. (2009) Synthesis and characterization of regioregular water-soluble 3,4-propylenedioxythiophene derivative and its application in the fabrication of high-contrast solid-state electrochromic devices. Macromolecules, 42 (1), 135–140.
- Jia, P., Argun, A.A., Xu, J., Xiong, S., Ma, J., Hammond, P.T., and Lu, X. (2010) High-contrast electrochromic thin films via layer-by-layer assembly of starlike and sulfonated polyaniline. Chem. Mater., 22 (22), 6085–6091.
- Duarte, A., Pu, K.-Y., Liu, B., and Bazan, G.C. (2011) Recent advances in conjugated polyelectrolytes for emerging optoelectronic applications. Chem. Mater., 23 (3), 501–515.
- Huang, F., Wu, H.B., Wang, D., Yang, W., and Cao, Y. (2004) Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem. Mater., 16 (4), 708–716.
- Sinha, J., Sahoo, R., and Kumar, A. (2009) Processable, regioregular, and “Click”able monomer and polymers based on 3,4-propylenedioxythiophene with tunable solubility. Macromolecules, 42 (6), 2015–2022.
- Beaujuge, P.M., Amb, C.M., and Reynolds, J.R. (2010) A side-chain defunctionalization approach yields a polymer electrochrome spray-processable from water. Adv. Mater., 22 (47), 5383–5387.
- Søndergaard, R.R., Hösel, M., and Krebs, F.C. (2013) Roll-to-Roll fabrication of large area functional organic materials. J. Polym. Sci., Part B: Polym. Phys., 51 (1), 16–34.
- Krebs, F.C. (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells, 93 (4), 394–412.
- Jensen, J., Dam, H.F., Reynolds, J.R., Dyer, A.L., and Krebs, F.C. (2012) Manufacture and demonstration of organic photovoltaic-powered electrochromic displays using roll coating methods and printable electrolytes. J. Polym. Sci., Part B: Polym. Phys., 50 (8), 536–545.
- Small, W.R., Masdarolomoor, F., Wallace, G.G., and in het Panhuis, M. (2007) Inkjet deposition and characterization of transparent conducting electroactive polyaniline composite films with a high carbon nanotube loading fraction. J. Mater. Chem., 17 (41), 4359.
- Shim, G.H., Han, M.G., Sharp-Norton, J.C., Creager, S.E., and Foulger, S.H. (2008) Inkjet-printed electrochromic devices utilizing polyaniline–silica and poly(3,4-ethylenedioxythiophene)–silica colloidal composite particles. J. Mater. Chem., 18 (5), 594.
- Brotherston, I.D., Mudigonda, D.S.K., Osborn, J.M., Belk, J., Chen, J., Loveday, D.C., Boehme, J.L., Ferraris, J.P., and Meeker, D.L. (1999) Tailoring the electrochromic properties of devices via polymer blends, copolymers, laminates and patterns. Electrochim. Acta, 44 (18), 2993–3004.
-
Tehrani, P., Isaksson, J., Mammo, W., Andersson, M.R., Robinson, N.D., and Berggren, M. (2006) Evaluation of active materials designed for use in printable electrochromic polymer displays. Thin Solid Films, 515 (4), 2485–2492.
10.1016/j.tsf.2006.07.149 Google Scholar
- Yu, J.F., Abley, M., Yang, C., and Holdcroft, S. (1998) Chemically amplified photolithography of a conjugated polymer. Chem. Commun. (Camb), (15), 1503–1504.
- Gordon, T.J., Yu, J.F., Yang, C., and Holdcroft, S. (2007) Direct thermal patterning of a π-conjugated polymer. Chem. Mater., 19 (9), 2155–2161.
- Abdou, M.S.A., Diazguijada, G.A., Arroyo, M.I., and Holdcroft, S. (1991) Photoimaging of electronically conducting polymeric networks. Chem. Mater., 3 (6), 1003–1006.
- Lowe, J. and Holdcroft, S. (1995) Synthesis and photolithography of polymers and copolymers based on poly(3-(2-(methacryloyloxy)ethyl)thiophene). Macromolecules, 28 (13), 4608–4616.
- Jensen, J. et al. (2013) Standard direct photopatterning of electrochromic polymers. Adv. Funct. Mater., 23, 3728.
- Kim, J., You, J., and Kim, E. (2010) Flexible conductive polymer patterns from vapor polymerizable and photo-cross-linkable EDOT. Macromolecules, 43 (5), 2322–2327.
- Choi, J., Kumar, A., and Sotzing, G.A. (2007) Nanopatterned electrochromic conjugated poly(terthiophene)s via thermal nanoimprint lithography of precursor polymer. J. Macromol. Sci., Part A, 44 (12), 1305–1309.
-
Admassie, S. and Inganäs, O. (2004) Electrochromism in diffractive conducting polymer gratings. J. Electrochem. Soc., 151 (6), H153.
10.1149/1.1738676 Google Scholar
-
Takamatsu, S., Takahata, T., Matsumoto, K., and Shimoyama, I. (2011) Micro-patterning of a conductive polymer and an insulation polymer using the Parylene lift-off method for electrochromic displays. J. Micromech. Microeng., 21 (7), 075021.
10.1088/0960-1317/21/7/075021 Google Scholar
-
Tehrani, P., Hennerdal, L.-O., Dyer, A.L., Reynolds, J.R., and Berggren, M. (2009) Improving the contrast of all-printed electrochromic polymer on paper displays. J. Mater. Chem., 19 (13), 1799.
10.1039/b820677e Google Scholar