Computational Modeling of Graphene Systems Containing Transition Metal Atoms and Clusters
Mikhail V. Polynski
Russian Academy of Sciences, Zelinsky Institute of Organic Chemistry, Leninsky Prospekt 47, Moscow, 119991, Russia
Search for more papers by this authorValentine P. Ananikov
Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, Moscow, 119991, Russia
Search for more papers by this authorMikhail V. Polynski
Russian Academy of Sciences, Zelinsky Institute of Organic Chemistry, Leninsky Prospekt 47, Moscow, 119991, Russia
Search for more papers by this authorValentine P. Ananikov
Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, Moscow, 119991, Russia
Search for more papers by this authorValentine P. Ananikov
Russian Academy of Sciences, Zelinsky, Institute of Organic Chemistry, 47 Leninski Prospect, 119991 Moscow, Russia
Search for more papers by this authorSummary
In this chapter, we provide brief description of selected theoretical methods that take into account dispersion interactions with a view of modeling graphene and graphene/metal systems. Coupled cluster, quadratic configuration interaction, Møller–Plesset perturbation theory, and density functional methods are briefly compared. The models available for estimation of the accuracy of theoretical methods and benchmarking databases are considered. Representative graphene systems containing metals and metal clusters are discussed to emphesize possible application of computational methods in modeling of chemical transformations in these complex systems.
References
- Kepp, K.P. (2013) Consistent descriptions of metal–ligand bonds and spin-crossover in inorganic chemistry. Coord. Chem. Rev., 257, 196–209.
- Hobza, P. (2012) Calculations on noncovalent interactions and databases of benchmark interaction energies. Acc. Chem. Res., 45, 663–672.
- Bartlett, R.J. (1989) Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry. J. Phys. Chem., 93, 1697–1708.
- Řezáč, J. and Hobza, P. (2013) Describing noncovalent interactions beyond the common approximations: how accurate is the “gold standard,” CCSD(T) at the complete basis set limit? J. Chem. Theory Comput., 9, 2151–2155.
- Riley, K.E., Pitoňák, M., Jurečka, P., and Hobza, P. (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem. Rev., 110, 5023–5063.
- Sedlak, R., Janowski, T., Pitoňák, M., Řezáč, J., Pulay, P., and Hobza, P. (2013) Accuracy of quantum chemical methods for large noncovalent complexes. J. Chem. Theory Comput., 9, 3364–3374.
- Baker, J., Wolinski, K., Janowski, T., Saebo, S., and Pulay, P. (2012) PQS, Version 4.0, Parallel Quantum Solutions, Fayetteville, AR, www.pqs-chem.com.
- Janowski, T. and Pulay, P. (2007) High accuracy benchmark calculations on the benzene dimer potential energy surface. Chem. Phys. Lett., 447, 27–32.
- Jensen, F. (2007) Introduction to Computational Chemistry, John Wiley & Sons, Ltd.
- Sinnokrot, M.O., Valeev, E.F., and Sherrill, C.D. (2002) Estimates of the Ab initio limit for π–π interactions: the benzene dimer. J. Am. Chem. Soc., 124, 10887–10893.
- Sherrill, C.D., Takatani, T., and Hohenstein, E.G. (2009) An assessment of theoretical methods for nonbonded interactions: comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene–methane, and benzene–H2S. J. Phys. Chem. A, 113, 10146–10159.
- Ferre-Vilaplana, A. (2005) Numerical treatment discussion and ab initio computational reinvestigation of physisorption of molecular hydrogen on graphene. J. Chem. Phys., 122, 104709.
- Cremer, D. and He, Z. (1996) Sixth-order Møller–Plesset perturbation theory on the convergence of the MPn series. J. Phys. Chem., 100, 6173–6188.
- Grimme, S., Goerigk, L., and Fink, R.F. (2012) Spin-component-scaled electron correlation methods. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2, 886–906.
- Schwabe, T. and Grimme, S. (2008) Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost. Acc. Chem. Res., 41, 569–579.
- Gráfová, L., Pitoňák, M., Řezáč, J., and Hobza, P. (2010) Comparative study of selected wave function and density functional methods for noncovalent interaction energy calculations using the extended S22 data set. J. Chem. Theory Comput., 6, 2365–2376.
- Řezáč, J., Riley, K.E., and Hobza, P. (2011) S66: a well-balanced database of benchmark interaction energies relevant to biomolecular structures. J. Chem. Theory Comput., 7, 2427–2438.
- Pitoňák, M., Neogrády, P., Černý, J., Grimme, S., and Hobza, P. (2009) Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data. ChemPhysChem, 10, 282–289.
- Riley, K.E., Rezac, J., and Hobza, P. (2011) MP2.X: a generalized MP2.5 method that produces improved binding energies with, smaller basis sets. Phys. Chem. Chem. Phys., 13, 21121–21125.
- Heßelmann, A. (2008) Improved supermolecular second order Møller–Plesset intermolecular interaction energies using time-dependent density functional response theory. J. Chem. Phys., 128, 144112.
- Pitoňák, M. and Heßelmann, A. (2010) Accurate intermolecular interaction energies from a combination of MP2 and TDDFT, response theory. J. Chem. Theory Comput., 6, 168–178.
- Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865–3868.
- Perdew, J.P. (1991) in Electronic Structure of Solids '91 (eds P. Ziesche and H. Eschrig), Akademie Verlag, pp. 11–20.
- Klimes, J. and Michaelides, A. (2012) Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J. Chem. Phys., 137, 120901.
- Couronne, O. and Ellinger, Y. (1999) An ab initio and DFT study of (N2)2 dimers. Chem. Phys. Lett., 306, 71–77.
- Langreth, D.C., Dion, M., Rydberg, H., Schröder, E., Hyldgaard, P., and Lundqvist, B.I. (2005) Van der Waals density functional theory with applications. Int. J. Quantum Chem., 101, 599–610.
- Becke, A.D. (1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, 5648–5652.
- Grimme, S. (2011) Density functional theory with London dispersion corrections. Wiley Interdiscip. Rev. Comput. Mol. Sci., 1, 211–228.
- Kristyán, S. and Pulay, P. (1994) Can (semi)local density functional theory account for the London dispersion forces? Chem. Phys. Lett., 229, 175–180.
- Steinmetz, M. and Grimme, S. (2013) Benchmark study of the performance of density functional theory for bond activations with (Ni,Pd)-based transition-metal catalysts. ChemistryOpen, 2, 115–124.
- Risthaus, T. and Grimme, S. (2013) Benchmarking of London dispersion-accounting density functional theory methods on very large molecular complexes. J. Chem. Theory Comput., 9, 1580–1591.
- Jurečka, P., Černý, J., Hobza, P., and Salahub, D.R. (2007) Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. J. Comput. Chem., 28, 555–569.
- Seponer, J., Leszczynski, J., and Hobza, P. (1996) Base stacking in cytosine dimer. A comparison of correlated ab initio calculations with three empirical potential models and density functional theory calculations. J. Comput. Chem., 17, 841–850.
- London, F. (1937) The general theory of molecular forces. Trans. Faraday Soc., 33, 8b–26.
- Grimme, S., Antony, J., Ehrlich, S., and Krieg, H. (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction, (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 132, 154104.
- Wu, Q. and Yang, W. (2002) Empirical correction to density functional theory for van der Waals interactions. J. Chem. Phys., 116, 515–524.
- Grimme, S., Ehrlich, S., and Goerigk, L. (2011) Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 32, 1456–1465.
- Grimme, S. (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem., 25, 1463–1473.
- Grimme, S. (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 27, 1787–1799.
- Chai, J.-D. and Head-Gordon, M. (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys., 10, 6615–6620.
- Koide, A. (1976) A new expansion for dispersion forces and its application. J. Phys. B: At. Mol. Phys., 9, 3173.
- Becke, A.D. (1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys., 107, 8554–8560.
- Curtiss, L.A., Raghavachari, K., Redfern, P.C., and Pople, J.A. (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys., 106, 1063–1079.
- Řezáč, J., Fanfrlík, J., Salahub, D., and Hobza, P. (2009) Semiempirical quantum chemical PM6 method augmented by dispersion and H-bonding, correction terms reliably describes various types of noncovalent complexes. J. Chem. Theory Comput., 5, 1749–1760.
- Korth, M., Pitoňák, M., Řezáč, J., and Hobza, P. (2010) A transferable H-bonding correction for semiempirical quantum-chemical methods. J. Chem. Theory Comput., 6, 344–352.
- Korth, M. (2010) Third-generation hydrogen-bonding corrections for semiempirical QM methods and force fields. J. Chem. Theory Comput., 6, 3808–3816.
- Gordeev, E.G., Polynsk, M.V., and Ananikov, V.P. (2013) Fast and accurate computational modeling of adsorption on graphene: a dispersion interaction challenge. Phys. Chem. Chem. Phys., 15, 18815.
- Chai, J.-D. and Head-Gordon, M. (2008) Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys., 128, 084106.
- Tkatchenko, A. and von Lilienfeld, O.A. (2008) Popular Kohn-Sham density functionals strongly overestimate many-body interactions in van der Waals systems. Phys. Rev. B, 78, 045116.
- Grimme, S. (2012) Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem. Eur. J., 18, 9955–9964.
- Grimme, S., Mück-Lichtenfeld, C., and Antony, J. (2007) Noncovalent interactions between graphene sheets and in multishell (hyper)fullerenes. J. Phys. Chem. A, 111, 11199–11207.
- Hohenstein, E.G., Chill, S.T., and Sherrill, C.D. (2008) Assessment of the performance of the M05–2X and M06–2X exchange-correlation functionals for noncovalent interactions in biomolecules. J. Chem. Theory Comput., 4, 1996–2000.
- Goerigk, L., Kruse, H., and Grimme, S. (2011) Benchmarking density functional methods against the S66 and S66x8 datasets for non covalent interactions. ChemPhysChem, 12, 3421–3433.
- Rydberg, H., Dion, M., Jacobson, N., Schröder, E., Hyldgaard, P., Simak, S.I., Langreth, D.C., and Lundqvist, B.I. (2003) Van der Waals density functional for layered structures. Phys. Rev. Lett., 91, 126402.
- Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., and Lundqvist, B.I. (2004) Van der Waals density functional for general geometries. Phys. Rev. Lett., 92, 246401.
- Puzder, A., Dion, M., and Langreth, D.C. (2006) Binding energies in benzene dimers: nonlocal density functional calculations. J. Chem. Phys., 124, 164105.
- Thonhauser, T., Cooper, V.R., Li, S., Puzder, A., Hyldgaard, P., and Langreth, D.C. (2007) Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys. Rev. B, 76, 125112.
- Tognetti, V. and Joubert, L. (2011) On the influence of density functional approximations on some local Bader's atoms-in molecules properties. J. Phys. Chem. A, 115, 5505–5515.
- Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., and Sánchez-Portal, D. (2002) The SIESTA method for ab initio order- N materials simulation. J. Phys. Condens. Matter, 14, 2745.
- Gulans, A., Puska, M.J., and Nieminen, R.M. (2009) Linear-scaling self-consistent implementation of the van der Waals density functional. Phys. Rev. B, 79, 201105.
- Vydrov, O.A. and Van Voorhis, T. (2009) Nonlocal van der Waals density functional made simple. Phys. Rev. Lett., 103, 063004.
- Klimeš, J., Bowler, D.R., and Michaelides, A. (2010) Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter, 22, 022201.
- Vydrov, O.A., Wu, Q., and Voorhis, T.V. (2008) Self-consistent implementation of a nonlocal van der Waals density functional with a Gaussian basis set. J. Chem. Phys., 129, 014106.
- Shao, Y., Molnar, L.F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S.T., Gilbert, A.T., Slipchenko, L.V., Levchenko, S.V., O'Neill, D.P., DiStasio, R.A. Jr., Lochan, R.C., Wang, T., Beran, G.J., Besley, N.A., Herbert, J.M., Yeh Lin, C., Van Voorhis, T., Hung Chien, S., Sodt, A., Steele, R.P., Rassolov, V.A., Maslen, P.E., Korambath, P.P., Adamson, R.D., Austin, B., Baker, J., Byrd, E.F.C., Dachsel, H., Doerksen, R.J., Dreuw, A., Dunietz, B.D., Dutoi, A.D., Furlani, T.R., Gwaltney, S.R., Heyden, A., Hirata, S., Hsu, C.-P., Kedziora, G., Khalliulin, R.Z., Klunzinger, P., Lee, A.M., Lee, M.S., Liang, W., Lotan, I., Nair, N., Peters, B., Proynov, E.I., Pieniazek, P.A., Min Rhee, Y., Ritchie, J., Rosta, E., David Sherrill, C., Simmonett, A.C., Subotnik, J.E., Lee Woodcock, H. III, Zhang, W., Bell, A.T., Chakraborty, A.K., Chipman, D.M., Keil, F.J., Warshel, A., Hehre, W.J., Schaefer, H.F. III, Kong, J., Krylov, A.I., Gill, P.M.W., and Head-Gordon, M. (2006) Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys., 8, 3172–3191.
- Langreth, D.C., Lundqvist, B.I., Chakarova-Käck, S.D., Cooper, V.R., Dion, M., Hyldgaard, P., Kelkkanen, A., Kleis, J., Kong, L., Li, S., Moses, P.G., Murray, E., Puzder, A., Rydberg, H., Schröder, E., and Thonhauser, T. (2009) A density functional for sparse matter. J. Phys. Condens. Matter, 21, 084203.
- Jurecka, P., Sponer, J., Cerny, J., and Hobza, P. (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys. Chem. Chem. Phys., 8, 1985–1993.
- Vydrov, O.A. and Voorhis, T.V. (2009) Improving the accuracy of the nonlocal van der Waals density functional with minimal empiricism. J. Chem. Phys., 130, 104105.
- Lee, K., Murray, É.D., Kong, L., Lundqvist, B.I., and Langreth, D.C. (2010) Higher-accuracy van der Waals density functional. Phys. Rev. B, 82, 081101.
- Murray, E.D., Lee, K., and Langreth, D.C. (2009) Investigation of exchange energy density functional accuracy for interacting molecules. J. Chem. Theory Comput., 5, 2754–2762.
- Molnar, L.F., He, X., Wang, B., and Merz, K.M. (2009) Further analysis and comparative study of intermolecular interactions using dimers from the S22 database. J. Chem. Phys., 131, 065102.
- Sato, T., Tsuneda, T., and Hirao, K. (2007) Long-range corrected density functional study on weakly bound systems: balanced descriptions of various types of molecular interactions. J. Chem. Phys., 126, 234114.
- Gill, P.M.W., Adamson, R.D., and Pople, J.A. (1996) Coulomb-attenuated exchange energy density functionals. Mol. Phys., 88, 1005–1009.
- Perdew, J.P. and Wang, Y. (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 45, 13244–13249.
- Lynch, B.J. and Truhlar, D.G. (2003) Small representative benchmarks for thermochemical calculations. J. Phys. Chem. A, 107, 8996–8999.
- Lynch, B.J. and Truhlar, D.G. (2004) Small representative benchmarks for thermochemical calculations. J. Phys. Chem. A, 108, 1460.
- Vydrov, O.A. and Van Voorhis, T. (2010) Dispersion interactions from a local polarizability model. Phys. Rev. A, 81, 062708.
- Vydrov, O.A. and Voorhis, T.V. (2010) Implementation and assessment of a simple nonlocal van der Waals density functional. J. Chem. Phys., 132, 164113.
- Vydrov, O.A. and Voorhis, T.V. (2010) Nonlocal van der Waals density functional: the simpler the better. J. Chem. Phys., 133, 244103.
- Takatani, T., Hohenstein, E.G., Malagoli, M., Marshall, M.S., and Sherrill, C.D. (2010) Basis set consistent revision of the S22 test set of noncovalent interaction energies. J. Chem. Phys., 132, 144104.
- Helgaker, T., Klopper, W., Koch, H., and Noga, J. (1997) Basis-set convergence of correlated calculations on water. J. Chem. Phys., 106, 9639–9646.
- Řezáč, J., Riley, K.E., and Hobza, P. (2011) Extensions of the S66 data set: more accurate interaction energies and angular-displaced nonequilibrium geometries. J. Chem. Theory Comput., 7, 3466–3470.
- Řezáč, J., Riley, K.E., and Hobza, P. (2012) Benchmark calculations of noncovalent interactions of halogenated molecules. J. Chem. Theory Comput., 8, 4285–4292.
- Jiang, W., Laury, M.L., Powell, M., and Wilson, A.K. (2012) Comparative study of single and double hybrid density functionals for the prediction of 3d transition metal thermochemistry. J. Chem. Theory Comput., 8, 4102–4111.
- Hamprecht, F.A., Cohen, A.J., Tozer, D.J., and Handy, N.C. (1998) Development and assessment of new exchange-correlation functionals. J. Chem. Phys., 109, 6264–6271.
- Schwabe, T. and Grimme, S. (2006) Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. Phys. Chem. Chem. Phys., 8, 4398–4401.
- Jiang, W., DeYonker, N.J., Determan, J.J., and Wilson, A.K. (2012) Toward accurate theoretical thermochemistry of first row transition metal complexes. J. Phys. Chem. A, 116, 870–885.
- Ernzerhof, M. and Scuseria, G.E. (1999) Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys., 110, 5029–5036.
- Goerigk, L. and Grimme, S. (2011) Efficient and accurate double-hybrid-meta-GGA density functionals-evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput., 7, 291–309.
- Zhang, W., Truhlar, D.G., and Tang, M. (2013) Tests of exchange-correlation functional approximations against reliable experimental data for average bond energies of 3d transition metal compounds. J. Chem. Theory Comput., 9, 3965–3977.
- Boese, A.D. and Handy, N.C. (2002) New exchange-correlation density functionals: the role of the kinetic-energy density. J. Chem. Phys., 116, 9559–9569.
- Lee, C., Yang, W., and Parr, R.G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37, 785–789.
- Handy, N.C. and Cohen, A.J. (2001) Left-right correlation energy. Mol. Phys., 99, 403–412.
- Thakkar, A.J. and McCarthy, S.P. (2009) Toward improved density functionals for the correlation energy. J. Chem. Phys., 131, 134109.
- Liu, C., Peterson, C., and Wilson, A.K. (2013) C–O bond cleavage of dimethyl ether by transition metal ions: a systematic study on catalytic properties of metals and performance of DFT functionals. J. Phys. Chem. A, 117, 5140–5148.
- Becke, A.D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098–3100.
- Tao, J., Perdew, J.P., Staroverov, V.N., and Scuseria, G.E. (2003) Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett., 91, 146401.
- Luo, S., Averkiev, B., Yang, K.R., Xu, X., and Truhlar, D.G. (2014) Density functional theory of open-shell systems. The 3d-series transition-metal atoms and their cations. J. Chem. Theory Comput., 10, 102–121.
- Keal, T.W. and Tozer, D.J. (2005) Semiempirical hybrid functional with improved performance in an extensive chemical assessment. J. Chem. Phys., 123, 121103.
- Chen, M., Craciun, R., Hoffman, N., and Dixon, D.A. (2012) Ligand bond energies in cis- and trans-[L-Pd(PH3)2Cl] + complexes from coupled cluster theory (CCSD(T)) and density functional theory. Inorg. Chem., 51, 13195–13203.
- Laury, M.L. and Wilson, A.K. (2013) Performance of density functional theory for second row (4d) transition metal thermochemistry. J. Chem. Theory Comput., 9, 3939–3946.
- Luo, S. and Truhlar, D.G. (2012) How evenly can approximate density functionals treat the different multiplicities and ionization states of 4d transition metal atoms? J. Chem. Theory Comput., 8, 4112–4126.
- Peverati, R. and Truhlar, D.G. (2011) Communication: a global hybrid generalized gradient approximation to the exchange-correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry. J. Chem. Phys., 135, 191102.
- Adamo, C. and Barone, V. (1997) Toward reliable adiabatic connection models free from adjustable parameters. Chem. Phys. Lett., 274, 242–250.
- Chan, B. and Ball, G.E. (2013) A benchmark Ab initio and DFT study of the structure and binding of methane in the σ alkane complex CpRe(CO)2(CH4). J. Chem. Theory Comput., 9, 2199–2208.
- Becke, A.D. (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact exchange mixing. J. Chem. Phys., 104, 1040–1046.
- Chan, B. and Yim, W.-L. (2013) Accurate computation of cohesive energies for small to medium-sized gold clusters. J. Chem. Theory Comput., 9, 1964–1970.
- Sun, Y. and Chen, H. (2014) Performance of density functionals for activation energies of Re-catalyzed organic reactions. J. Chem. Theory Comput., 10, 579–588.
- Karton, A., Tarnopolsky, A., Lamère, J.-F., Schatz, G.C., and Martin, J.M.L. (2008) Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics. J. Phys. Chem. A, 112, 12868–12886.
- Cramer, C.J. and Truhlar, D.G. (2009) Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys., 11, 10757–10816.
- Xu, X. and Truhlar, D.G. (2012) Performance of effective core potentials for density functional calculations on 3d transition metals. J. Chem. Theory Comput., 8, 80–90.
- Narendrapurapu, B.S., Richardson, N.A., Copan, A.V., Estep, M.L., Yang, Z., and Schaefer, H.F. (2013) Investigating the effects of basis Set on metal–metal and metal–ligand bond distances in stable transition metal carbonyls: performance of correlation consistent basis sets with 35 density functionals. J. Chem. Theory Comput., 9, 2930–2938.
- Valencia, H., Gil, A., and Frapper, G. (2010) Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces: a DFT study and molecular orbital analysis. J. Phys. Chem. C, 114, 14141–14153.
- Banhart, F., Kotakoski, J., and Krasheninnikov, A.V. (2011) Structural defects in graphene. ACS Nano, 5, 26–41.
- Granatier, J., Lazar, P., Otyepka, M., and Hobza, P. (2011) The nature of the binding of Au, Ag, and Pd to benzene, coronene, and graphene: from benchmark CCSD(T) calculations to plane-wave DFT calculations. J. Chem. Theory Comput., 7, 3743–3755.
- Zólyomi, V., Rusznyák, Á., Kürti, J., and Lambert, C.J. (2010) First principles study of the binding of 4d and 5d transition metals to graphene. J. Phys. Chem. C, 114, 18548–18552.
- Ishii, A., Yamamoto, M., Asano, H., Fujiwara, K., Johansson, L., Andersen, J., Gothelid, M., Helmersson, U., Montelius, L., Rubel, M., Setina, J. and Wernersson, L. (eds) (2008) DFT calculation for adatom adsorption on graphene sheet as a prototype of carbon nano tube functionalization, Proceedings of the 17th International Vacuum Congress/13th International Conference on Surface Science/International Conference on Nanoscience and Technology, vol. 100.
- Nakada, K. and Ishii, A. (2011) Migration of adatom adsorption on graphene using DFT calculation. Solid State Commun., 151, 13–16.
- Furlan, S. and Giannozzi, P. (2013) The interactions of nitrogen dioxide with graphene-stabilized Rh clusters: a DFT study. Phys. Chem. Chem. Phys., 15, 15896–15904.
- Hardcastle, T.P., Seabourne, C.R., Zan, R., Brydson, R.M.D., Bangert, U., Ramasse, Q.M., Novoselov, K.S., and Scott, A.J. (2013) Mobile metal adatoms on single layer, bilayer, and trilayer graphene: an ab initio DFT study with van der Waals corrections correlated with electron microscopy data. Phys. Rev. B, 87, 195430.
- Rudenko, A.N., Keil, F.J., Katsnelson, M.I., and Lichtenstein, A.I. (2012) Adsorption of cobalt on graphene: electron correlation effects from a quantum chemical perspective. Phys. Rev. B, 86, 075422.
- Sanchez-Paisal, Y., Sanchez-Portal, D., Garmendia, N., Muñoz, R., Obieta, I., Arbiol, J., Calvo-Barrio, L., and Ayuela, A. (2008) Zr-metal adhesion on graphenic nanostructures. Appl. Phys. Lett., 93, 053101.
- Semidey-Flecha, L., Teng, D., Habenicht, B.F., Sholl, D.S., and Xu, Y. (2013) Adsorption and diffusion of the Rh and Au adatom on graphene moiré/Ru(0001). J. Chem. Phys., 138, 184710.
- Chan, K.T., Neaton, J.B., and Cohen, M.L. (2008) First-principles study of metal adatom adsorption on graphene. Phys. Rev. B, 77, 235430.
- Ramos-Sanchez, G. and Balbuena, P.B. (2013) Interactions of platinum clusters with a graphite substrate. Phys. Chem. Chem. Phys., 15, 11950–11959.
- Pulido, A., Boronat, M., and Corma, A. (2011) Theoretical investigation of gold clusters supported on graphene sheets. New J. Chem., 35, 2153–2161.
- Srivastava, M.K., Wang, Y., Kemper, A.F., and Cheng, H.-P. (2012) Density functional study of gold and iron clusters on perfect and defected graphene. Phys. Rev. B, 85, 165444.
- Liu, X., Meng, C., and Han, Y. (2012) Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene. Nanoscale, 4, 2288–2295.
- Cabria, I., López, M.J., and Alonso, J.A. (2010) Theoretical study of the transition from planar to three-dimensional structures of palladium clusters supported on graphene. Phys. Rev. B, 81, 035403.
- Kim, G., Kawazoe, Y., and Lee, K.-R. (2012) Controlled catalytic properties of platinum clusters on strained graphene. J. Phys. Chem. Lett., 3, 1989–1996.
- Zhou, M., Zhang, A., Dai, Z., Feng, Y.P., and Zhang, C. (2010) Strain-enhanced stabilization and catalytic activity of metal nanoclusters on graphene. J. Phys. Chem. C, 114, 16541–16546.
- Lazar, P., Zhang, S., Šafářová, K., Li, Q., Froning, J.P., Granatier, J., Hobza, P., Zbořil, R., Besenbacher, F., Dong, M., and Otyepka, M. (2013) Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions. ACS Nano, 7, 1646–1651.
-
B. Hammer, J. Nørskov, C. Bruce, and H.K. Gates (eds) (2000) Impact of Surface Science on Catalysis, vol. 45, Academic Press, pp. 71–129.
10.1016/S0360-0564(02)45013-4 Google Scholar
- Tang, Y., Yang, Z., and Dai, X. (2011) Trapping of metal atoms in the defects on graphene. J. Chem. Phys., 135, 224704.
- Kim, G., Jhi, S.-H., Lim, S., and Park, N. (2009) Effect of vacancy defects in graphene on metal anchoring and hydrogen adsorption. Appl. Phys. Lett., 94, 173102.
- Huang, B., Yu, J., and Wei, S.-H. (2011) Strain control of magnetism in graphene decorated by transition-metal atoms. Phys. Rev. B, 84, 075415.
- Fampiou, I. and Ramasubramaniam, A. (2012) Binding of Pt nanoclusters to point defects in graphene: adsorption, morphology, and electronic structure. J. Phys. Chem. C, 116, 6543–6555.
- Lee, S., Lee, M., and Chung, Y.-C. (2013) Geometric and magnetic properties of Co adatom decorated nitrogen-doped graphene. J. Appl. Phys., 113, 17B503.
- Muhich, C.L., Westcott, J.Y., Morris, T.C., Weimer, A.W., and Musgrave, C.B. (2013) The effect of N and B doping on graphene and the adsorption and migration behavior of Pt atoms. J. Phys. Chem. C, 117, 10523–10535.
- Fair, K.M., Cui, X.Y., Li, L., Shieh, C.C., Zheng, R.K., Liu, Z.W., Delley, B., Ford, M.J., Ringer, S.P., and Stampfl, C. (2013) Hydrogen adsorption capacity of adatoms on double carbon vacancies of graphene: a trend study from first principles. Phys. Rev. B, 87, 014102.
- Lim, D.-H., Negreira, A.S., and Wilcox, J. (2011) DFT studies on the interaction of defective graphene-supported Fe and Al nanoparticles. J. Phys. Chem. C, 115, 8961–8970.
- Lim, D.-H. and Wilcox, J. (2011) DFT-based study on oxygen adsorption on defective graphene-supported Pt nanoparticles. J. Phys. Chem. C, 115, 22742–22747.
- Liu, X., Meng, C., and Han, Y. (2012) Unique reactivity of Fe nanoparticles-defective graphene composites toward NHx (x = 0, 1, 2, 3) adsorption: a first-principles study. Phys. Chem. Chem. Phys., 14, 15036–15045.
- Aguiar, A.L., Fagan, S.B., da Silva, L.B., Filho, J.M., and Souza Filho, A.G. (2010) Benzonitrile adsorption on Fe-doped carbon nanostructures. J. Phys. Chem. C, 114, 10790–10795.
- Pinto, H., Jones, R., Goss, J.P., and Briddon, P.R. (2010) Unexpected change in the electronic properties of the Au-graphene interface caused by toluene. Phys. Rev. B, 82, 125407.
- Zhang, Y.-H., Zhou, K.-G., Xie, K.-F., Zhang, H.-L., Peng, Y., and Wang, C.-W. (2012) Tuning the magnetic and transport properties of metal adsorbed graphene by co-adsorption with 1,2-dichlorobenzene. Phys. Chem. Chem. Phys., 14, 11626–11632.
- Bui, V.Q., Le, H.M., Kawazoe, Y., and Nguyen-Manh, D. (2013) Graphene-Cr-graphene intercalation nanostructures: stability and magnetic properties from density functional theory investigations. J. Phys. Chem. C, 117, 3605–3614.
- Le, H.M., Hirao, H., Kawazoe, Y., and Nguyen-Manh, D. (2013) First-principles modeling of C60-Cr-graphene nanostructures for supporting metal clusters. Phys. Chem. Chem. Phys., 15, 19395–19404.
- Avdoshenko, S.M., Ioffe, I.N., Cuniberti, G., Dunsch, L., and Popov, A.A. (2011) Organometallic complexes of graphene: toward atomic spintronics using a graphene web. ACS Nano, 5, 9939–9949.
- Avdoshenko, S.M., Ioffe, I.N., Cuniberti, G., Dunsch, L., and Popov, A.A. (2012) Correction to organometallic complexes of graphene: toward atomic spintronics using a graphene web. ACS Nano, 6, 2860.
- Dai, J., Zhao, Y., Wu, X., Zeng, X.C., and Yang, J. (2013) Organometallic hexahapto-functionalized graphene: band gap engineering with minute distortion to the planar structure. J. Phys. Chem. C, 117, 22156–22161.
- Marocchi, S., Ferriani, P., Caffrey, N.M., Manghi, F., Heinze, S., and Bellini, V. (2013) Graphene-mediated exchange coupling between a molecular spin and magnetic substrates. Phys. Rev. B, 88, 144407.
- Parida, P., Kundu, A., and Pati, S.K. (2010) One-dimensional organometallic V-anthracene wire and its B-N analogue: efficient half-metallic spin filters. Phys. Chem. Chem. Phys., 12, 6924–6927.
- Sarkar, S., Zhang, H., Huang, J.-W., Wang, F., Bekyarova, E., Lau, C.N., and Haddon, R.C. (2013) Organometallic hexahapto functionalization of single layer graphene as a route to high mobility graphene devices. Adv. Mater., 25, 1131–1136.
- Wang, Y.-L., Ren, J., Song, C.-L., Jiang, Y.-P., Wang, L.-L., He, K., Chen, X., Jia, J.-F., Meng, S., Kaxiras, E., Xue, Q.-K., and Ma, X.-C. (2010) Selective adsorption and electronic interaction of F16CuPc on epitaxial graphene. Phys. Rev. B, 82, 245420.
- Cárdenas-Jirón, G.I., Leon-Plata, P., Cortes-Arriagada, D., and Seminario, J.M. (2011) Electrical characteristics of cobalt phthalocyanine complexes adsorbed on graphene. J. Phys. Chem. C, 115, 16052–16062.
- Cárdenas-Jirón, G.I., León-Plata, P., Cortes-Arriagada, D., and Seminario, J.M. (2013) Electron transport properties through graphene oxide–cobalt phthalocyanine complexes. J. Phys. Chem. C, 117, 23664–23675.
- Zanella, I., Guerini, S., Fagan, S.B., Mendes Filho, J., and Souza Filho, A.G. (2008) Chemical doping-induced gap opening and spin polarization in graphene. Phys. Rev. B, 77, 073404.
- Durgun, E., Ciraci, S., and Yildirim, T. (2008) Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage. Phys. Rev. B, 77, 085405.
- Bhattacharya, A., Bhattacharya, S., Majumder, C., and Das, G.P. (2010) Transition-metal decoration enhanced room-temperature hydrogen storage in a defect-modulated graphene sheet. J. Phys. Chem. C, 114, 10297–10301.
- Orellana, W. (2013) Catalytic properties of transition metal–N4 moieties in graphene for the oxygen reduction reaction: evidence of spin-dependent mechanisms. J. Phys. Chem. C, 117, 9812–9818.
- Li, Y., Zhou, Z., Yu, G., Chen, W., and Chen, Z. (2010) CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J. Phys. Chem. C, 114, 6250–6254.
- Wannakao, S., Nongnual, T., Khongpracha, P., Maihom, T., and Limtrakul, J. (2012) Reaction mechanisms for CO catalytic oxidation by N2O on Fe-embedded graphene. J. Phys. Chem. C, 116, 16992–16998.
- Zhang, P., Chen, X.F., Lian, J.S., and Jiang, Q. (2012) Structural selectivity of CO oxidation on Fe/N/C catalysts. J. Phys. Chem. C, 116, 17572–17579.
- Kattel, S., Atanassov, P., and Kiefer, B. (2013) Catalytic activity of Co-Nx/C electrocatalysts for oxygen reduction reaction: a density functional theory study. Phys. Chem. Chem. Phys., 15, 148–153.
- López-Corral, I., Germán, E., Juan, A., Volpe, M.A., and Brizuela, G.P. (2011) DFT study of hydrogen adsorption on palladium decorated graphene. J. Phys. Chem. C, 115, 4315–4323.
- Tang, Y., Yang, Z., and Dai, X. (2012) A theoretical simulation on the catalytic oxidation of CO on Pt/graphene. Phys. Chem. Chem. Phys., 14, 16566–16572.
- Zhang, T., Xue, Q., Shan, M., Jiao, Z., Zhou, X., Ling, C., and Yan, Z. (2012) Adsorption and catalytic activation of O2 molecule on the surface of Au-doped graphene under an external electric field. J. Phys. Chem. C, 116, 19918–19924.
- Lu, Y.-H., Zhou, M., Zhang, C., and Feng, Y.-P. (2009) Metal-embedded graphene: a possible catalyst with high activity. J. Phys. Chem. C, 113, 20156–20160.
- Tang, S. and Cao, Z. (2012) Adsorption and dissociation of ammonia on graphene oxides: a first-principles study. J. Phys. Chem. C, 116, 8778–8791.
- Kaukonen, M., Krasheninnikov, A.V., Kauppinen, E., and Nieminen, R.M. (2013) Doped graphene as a material for oxygen reduction reaction in hydrogen fuel cells: a computational study. ACS Catal., 3, 159–165.
- Cabria, I., López, M.J., Fraile, S., and Alonso, J.A. (2012) Adsorption and dissociation of molecular hydrogen on palladium clusters supported on graphene. J. Phys. Chem. C, 116, 21179–21189.
- Kim, G. and Jhi, S.-H. (2011) Carbon monoxide-tolerant platinum nanoparticle catalysts on defect-engineered graphene. ACS Nano, 5, 805–810.
- Lim, D.-H. and Wilcox, J. (2012) Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. J. Phys. Chem. C, 116, 3653–3660.
- Psofogiannakis, G.M. and Froudakis, G.E. (2009) DFT study of the hydrogen spillover mechanism on Pt-doped graphite. J. Phys. Chem. C, 113, 14908–14915.
- Zhou, M., Zhang, A., Dai, Z., Zhang, C., and Feng, Y.P. (2010) Greatly enhanced adsorption and catalytic activity of Au and Pt clusters on defective graphene. J. Chem. Phys., 132, 194704.
- Chen, G., Li, S.J., Su, Y., Wang, V., Mizuseki, H., and Kawazoe, Y. (2011) Improved stability and catalytic properties of Au16 cluster supported on graphane. J. Phys. Chem. C, 115, 20168–20174.