Biofiber-Reinforced Thermoplastic Composites
Susheel Kalia
Bahra University, Department of Chemistry, Waknaghat (Shimla Hills) 173 234, District Solan (H.P.), India
Search for more papers by this authorBalbir Singh Kaith
Dr. B. R. Ambedkar National Institute of Technology (Deemed University), Department of Chemistry, Jalandhar 144 011, Punjab, India
Search for more papers by this authorInderjeet Kaur
H.P. University, Department of Chemistry, Shimla 171 005, (H.P.), India
Search for more papers by this authorJames Njuguna
Cranfield University, Department of Sustainable Systems, Bedfordshire MK43 0AL, UK
Search for more papers by this authorSusheel Kalia
Bahra University, Department of Chemistry, Waknaghat (Shimla Hills) 173 234, District Solan (H.P.), India
Search for more papers by this authorBalbir Singh Kaith
Dr. B. R. Ambedkar National Institute of Technology (Deemed University), Department of Chemistry, Jalandhar 144 011, Punjab, India
Search for more papers by this authorInderjeet Kaur
H.P. University, Department of Chemistry, Shimla 171 005, (H.P.), India
Search for more papers by this authorJames Njuguna
Cranfield University, Department of Sustainable Systems, Bedfordshire MK43 0AL, UK
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, School of Chemical Sciences, Priyadarshini Hills P.O., School of Chemical Sciences, Kottayam 686 560, Kerala, India
Search for more papers by this authorKuruvilla Joseph
Indian Institute of Space Science and, Technology, ISRO P. O., Veli, Thiruvananthapuram 695 022, Kerala, India
Search for more papers by this authorDr. S. K. Malhotra
Flat-YA, Kings Mead, Srinagar Colony, South Mada Street 14/3, Srinagar Colony, Saidapet, Chennai 600 015, India
Search for more papers by this authorProf. Koichi Goda
Faculty of Engineering, Yamaguchi University, Tokiwadai 2-16-1, Yamaguchi University, 755-8611 Ube, Yamaguchi, Japan
Search for more papers by this authorDr. M. S. Sreekala
Department of Chemistry, Sree Sankara College, Kalady 683 574, Kerala, India
Search for more papers by this authorSummary
In recent years, thermoplastic composites reinforced with biofibers have received considerable attention of scientists and technologists for various applications, as these composites have several advantages over traditional material-reinforced composites. Biofibers have been widely used as reinforcing materials because they are strong, lightweight, abundant, renewable, nonabrasive, combustible, biodegradable, nonhazardous, and inexpensive. In order to develop composites with better mechanical properties and environmental performance, it becomes necessary to improve the interface between thermoplastics and biofibers. Various chemical treatments such as graft copolymerization of functional monomers onto biofibers and coating of biofibers with bacterial nanocellulose are the best methods to attain these improvements. In this chapter, we report on the various thermoplastic composites reinforced with different biofibers. Special emphasis is given to the composite boards and use of graft copolymers and bacterial cellulose-coated biofibers as reinforcing materials in the synthesis of thermoplastic composites. Applications of these composites in various fields are also discussed in this chapter.
References
- Balter, M. (2009) Clothes make the (Hu) man. Science, 325, 1329.
- Kvavadze, E., Bar-Yosef, O., Belfer-Cohen, A., Boaretto, E., Jakeli, N., Matskevich, Z., and Mashvelian, T. (2009) 30,000 year old wild flax fibres. Science, 325, 1359.
- Rao, K.M.M. and Rao, K.M. (2007) Extraction and tensile strength of natural fibres: vakka, date and bambo. Compos. Struct., 77, 288–295.
- Ghoreishi, S.R., Davies, P., Cartraud, P., and Messager, T. (2007) Analytical modeling of synthetic fiber ropes. Part II: a linear elastic model for 1 + 6 fibrous structures. Int. J. Solids Struct., 44, 2943–2960.
- Svennerstedt, M. (2002) Durability and life cycle aspects on bio-fibre composite materials. 9th International Conference on the Durability of Building Materials and Components, Paper 025, Brisbane, Australia, March 17–21, 2002.
- Barghoorn, P., Stebani, U., and Balsam, M. (1998) Trends in applied polymer chemistry. Adv. Mater., 10, 635–641.
- Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H., and Mai, C. (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Composites Part A, 41, 806–819.
- John, M.J. and Thomas, S. (2008) Biofibres and biocomposites. Carbohydr. Polym., 71, 343–364.
- Bledzki, A.K. and Gassan, J. (1999) Composites reinforced with cellulose based fibres. Prog. Polym. Sci., 24, 221–74.
- Sreenath, H.K., Shah, A., Yang, V., Gharia, M.M., and Jeffries, T.W. (1993) Enzymatic polishing of jute/cotton blended fabrics. J. Ferment. Bioeng., 84, 18–20.
- Angelini, L.G., Lazzeri, A., Levita, G., Fontanelli, D., and Bozzi, C. (2000) Ramie and spanish broom fibres for composite materials: agronomical aspects, morphology and mechanical properties. Ind. Crops Prod., 11, 145–161.
- Kalia, S., Kaith, B.S., and Kaur, I. (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites–a review. Polym. Eng. Sci., 49 (7), 1253–1273.
- Fries, W. (1998) Collagen-biomaterial for drug delivery. Eur. J. Pharm. Biopharma., 45, 113–136.
- Han, S.O., Lee, S.M., Park, W.H., and Cho, D. (2006) Mechanical and thermal properties of waste silk fiber-reinforced poly (butylene succinate) biocomposites. J. Appl. Polym. Sci., 100, 4972–4980.
-
Perez-Rigueiro, J., Viney, C., Llorca, J., and Elices, M. (1998) Silkworm silk as an engineering material. J. Appl. Polym. Sci., 70, 2439–2447.
10.1002/(SICI)1097-4628(19981219)70:12<2439::AID-APP16>3.0.CO;2-J CAS Web of Science® Google Scholar
- Hurter, R.W. and Riccio, F.A. (1998) Why CEOS don't want to hear about nonwoods-or should they? TAPPI Proceedings, NA Nonwood Fiber Symposium, Atlanta, Georgia, pp. 1–11.
- Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., and Santas, R. (2004) Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crops Prod., 19, 245–254.
- Han, J.S. (1998) Properties of nonwood fibers. Proceedings of the Korean Society of Wood Science and Technology Annual Meeting.
- White, N.M. and Ansell, M.P. (1983) Straw reinforced polyester composites. J. Mater. Sci., 18, 1549–1556.
- Hornsby, P.R., Hinrichsen, E., and Trivedi, K. (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: part II analysis of composite microstructure and mechanical properties. J. Mater. Sci., 32, 1009–1015.
- Tsai, W.T., Chang, C.Y., and Lee, S.L. (1998) A low cost adsorbent from agricultural waste corn cob by zinc chloride activation. Bioresour. Technol., 64, 211–217.
- Ishak, Z.A., Yow, B.N., Ng, B.L., Khalil, H.P.S.A., and Rozman, H.D. (2001) Hygrothermal aging and tensile behavior of injection-molded rice husk-filled polypropylene composites. J. Appl. Polym. Sci., 81, 742–753.
- Wang, D. and Sun, X.S. (2002) Low density particleboard from wheat straw and corn pith. Ind. Crops Prod., 15, 43–50.
- Yang, H.S., Kin, D.J., and Kim, H.J. (2003) Rice straw–wood particle composite for sound absorbing wooden construction materials. Bioresour. Technol., 86, 117–121.
- Pradhan, R., Misra, M., Erickson, L., and Mohanty, A. (2010) Compostability and biodegradation study of PLA–wheat straw and PLA–soy straw based green composites in simulated composting bioreactor. Bioresour. Technol., 101, 8489–8491.
- Sain, M. and Panthapulakkal, S. (2006) Bioprocess preparation of wheat straw fibres and their characterization. Ind. Crops Prod., 23, 1–8.
- Soest, P.V.J. (2006) Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. Technol., 130, 137–171.
- Agbagla-Dohnani, A., Nozière, P., Clément, G., and Doreau, M. (2001) In sacco degradability, chemical and morphological composition of 15 varities of European rice straw. Anim. Feed Sci. Technol., 94 (1–2), 15–27.
- Yao, F., Wu, Q., Lei, Y., and Xu, Y. (2008) Rice straw fiber-reinforced high-density polyethylenecomposite: effect of fiber type and loading. Ind. Crops Prod., 28, 63–72.
- Kozłowskiy, R. and Przybylak, M.W. (2008) Flammability and fire resistance of composites reinforced by natural fibres. Polym. Adv. Technol., 19, 446–453.
- Jacob, M., Varughese, K.T., and Thomas, S. (2006) A study on the moisture sorption characteristics in woven sisal fabric reinforced natural rubber biocomposites. J. Appl. Polym. Sci., 102, 416–423.
- Rosa, M.F., Chiou, B., Medeiros, E.S., Wood, D.F., Mattoso, L.H.C., Orts, W.J., and Imam, S.H. (2009) Biodegradable composites based on starch/EVOH/glycerol blends and coconut fibres. J. Appl. Polym. Sci., 111, 612–618.
- Kalia, S., Kaith, B.S., Sharma, S., and Bhardwaj, B. (2008) Mechanical properties of flax-g-poly(methyl acrylate) reinforced phenolic composites. Fibers Polym., 9, 416–422.
- Chabba, S. and Netravali, A.N. (2005) ‘Green’ composites part 2: characterization of flax yarn and glutaraldehyde/poly(vinyl alcohol) modified soy protein concentrate composites. J. Mater. Sci., 40, 6275–82.
- Summerscales, J., Dissanayake, N.P.J., Virk, A.S., and Hall, W. (2010) A review of bast fibres and their composites. Part 1, fibres as reinforcements. Composites Part A, 41, 1329–1335.
- Baley, C. (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composites Part A, 33, 939–948.
- Panthapulakkal, S. and Sain, M. (2007) Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites–mechanical, water absorption and thermal properties. J. Appl. Polym. Sci., 103, 2432–2441.
- Mohanty, A.K., Tummala, P., Liu, W., Misra, M., Mulukutla, P.V., and Drzal, L.T. (2005) Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J. Polym. Environ., 13, 279–283.
- Williams, G.I. and Wool, R.P. (2000) Composites from natural fibers and soy oil resins. Appl. Compos. Mater., 7, 421–432.
- Mehta, G., Drzal, L.T., Mohanty, A.K., and Misra, M. (2006) Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. J. Appl. Polym. Sci., 99, 1055–1068.
- Mishra, S., Naik, J.B., and Patil, Y.P. (2004) Studies on swelling properties of wood/polymer composites based on agro-waste and novolac. Adv. Polym. Technol., 23, 46–50.
- Bledzki, A.K., Fink, H.P., and Speecht, K. (2004) Unidirectional hemp and flax EP- and PP-composites: influence of defined fiber treatments. J. Appl. Polym. Sci., 93, 2150–2156.
- Behzad, T. and Sain, M. (2005) Cure simulation of hemp fibre acrylic based composites during sheet molding process. Polym. Polym. Compos., 13, 235–244.
- Ragoubia, M., Bienaiméb, D., Molinaa, S., Georgea, B., and Merlina, A. (2010) Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof. Ind. Crops Prod., 31, 344–349.
- Mishra, S. and Naik, J.B. (1998) Absorption of water at ambient temperature and steam in wood–polymer composites prepared from agrowaste and polystyrene. J. Appl. Polym. Sci., 68, 681–686.
- Plackett, D., Andersen, T.L., Batsberg, W., and Nielsen, P.L. (2003) Biodegradable composites based upon L-polylactic acid and jute fibre. Compos. Sci. Technol., 63, 1287–1296.
- Singh, B., Gupta, M., and Verma, A. (1996) Influence of fiber surface treatment on the properties of sisal-polyester composites. Polym. Compos., 17, 910–918.
- Dobreva, T., Peren, J.M., Perez, E., Benavente, R., and Garcıa, M. (2009) Crystallization behavior of poly(L-lactic acid)-based ecocomposites prepared with kenaf fiber and rice straw. Polym. Compos., 30 (1), 1–11.
- Amaducci, S., Amaducci, M.T., Benati, R., and Venturi, G. (2000) Crop yield and quality parameters of four annual fibre crops (hemp, kenaf, maize and sorghum) in the North of Italy. Ind. Crops Prod., 11, 179–186.
- Reis, J.M.L. (2006) Fracture and flexural characteristics of natural fiber reinforced polymer concrete. Constr. Build. Mater., 20, 673–678.
- Okubo, K., Fujii, T., and Yamamoto, Y. (2004) Development of bamboo-based polymer compositesand their mechanical properties. Composites Part A, 35, 377–383.
- Li, S.H., Zeng, Q.Y., Xiao, Y.L., Fu, S.Y., and Zhou, B.L. (1995) Biomimicry of bamboo bast fiber with engineering composite materials. Mater. Sci. Eng., C, 3, 125–130.
- Yoa, W. and Li, Z. (2003) Flexural behaviour of bamboo fiber reinforced mortar laminates. Cem. Conrcr. Res., 33, 15–19.
- Phillips, T.A., Belden, J.B., Henderson, K.L.D., and Coats, J.R. (2002) Phytoremediation of pesticide-contaminated soil using a mixture and individual prairie grasses. 224th ACS National Meeting, Boston, Massachusetts , August 2002.
- Ekpenyong, K.I., Arawo, J.D.E., Melaiye, A., Ekwenchi, M.M., and Abdullahi, H.A. (1995) Biogas production potential of unextracted, nutrient-rich elephant-grass lignocelluloses. Fuel, 74, 1080–1082.
- Stokke, D.D., Kuo, M., Curry, D.G., and Gieselman, H.H. (2001) Grassland flour/polyethylene composites. Sixth International Conference on Woodfiber–Plastic Composites, Madison, Wisconsin, pp. 43–53.
- George, J., Bhagawanb, S.S., and Thomas, S. (1998) Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre. Compos. Sci. Technol., 58, 1471–1485.
- Liu, W., Misra, M., Askelanda, P., Drzala, L.T., and Mohanty, A.K. (2005) ‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation. Polymer, 46, 2710–2721.
- Chand, N., Tiwari, R.K., and Rohtangi, P.K. (1998) Bibliography resource structure properties of natural cellulosic fibres–an annotated bibliography. J. Mater. Sci., 23, 381–387.
- Herrera-Franco, P.J. and Valadez-Gonzalez, A. (2005) A study of the mechanical properties of short natural-fiber reinforced composites. Composites Part B, 36, 597–608.
- Canche-Escamilla, G., Cauich-Cupula, J.I., Mendizabalb, E., Puigb, J.E., Vazquez-Torres, H.E., and Herrera-Francoa, P.J. (1999) Mechanical properties of acrylate-grafted henequen cellulose fibers and their application in composites. Composites Part A, 30, 349–359.
- Barnett, R. and Bonham, V.A. (2004) Cellulose microfibril angle in the cell wall of wood fibres. J. Biol. Rev., 79, 461–472.
- Bledzki, A.K., Reihmane, S., and Gassang, J. (1998) Thermoplastics reinforced with wood fillers: a literature review. Polym. Plast. Technol. Eng., 37 (4), 451–468.
- Clapp, R.A. (2001) Policy review tree farming and forest conservation in chile: do replacement forests leave any originals behind? Soc. Nat. Resour., 14, 341–356.
- Balis, J.S. (1977) Tree plantations as resources for renewable energy production. Presentation at the 1977 Winter Meeting American Society of Agricultural Engineers.
- Bowyer, J. (2001) Environmental implications of wood production in intensively managed plantations. Wood and Fiber Science, 33, 318–333.
- Sedjo, R. (1999) The potential of high-yield plantation forestry for meeting timber needs. New Forests, 17, 339–359.
- Sedjo, R. and Botkin, D. (1997) Using forest plantations to spare national forests. Environment, 39, 14–20.
- Bhatia, C.L. (1984) Eucalyptus in India–its status and research needs. Indian Forester, 110, 91–96.
- Martin, B. (2003) in Eucalyptus Plantations: Research, Management and Development (eds R.-P. Wei and D. Xu), World Scientific, Singapore, pp. 3–18.
- Kudus, K.A., Kimber, A.C., and Lapongan, J. (2006) A parametric model for the interval censored survival times of acacia mangium plantation in a spacing trial. J. Appl. Stat., 33 (10), 1067–1074.
- Myers, N. (1983) Tropical moist forest: over-exploited and under-utilized? For. Ecol. Mamage., 6 (1), 59–79.
- Myers, N. (1988) Tropical forests: much more than stocks of wood. J. Trop. Ecol., 4, 209–221.
- Young, A. (1997) Agroforestry for Soil Management, CAB International, New York, p. 320.
- Auclair, D. and Dupraz, C. (eds) (1999) Agroforestry for Sustainable Land-Use, Kluwer Academic Publishers, Hardbound, p. 266.
- Cornell, J.D. and Miller, M. (2007) Agroforestry, in Encyclopedia of Earth (ed. C.J. Cleveland), Island Press, Washington.
- Encyclopaedia of Earth www.eoearth.org/article/agroforestry (accessed 2 April 2013).
- Beetz, A. (2002) Agroforestry Overview, Appropriate Technology Transfer for Rural Areas, pp. 1–6.
- Near.org www.attra.neat.org/attra.pub/PDF/agrofor.pdf (accessed 2 April 2013).
- American Bamboo Socity http://www.bamboo.org/abs/SpeciesSourceList.html (accessed 2 April 2013).
- American Bamboo Socity http://www.bamboo.org/abs/BooksOnBamboo.html (accessed 2 April 2013).
- Suddell, B.C. and Evans, W.J. (2003) The increasing use and application of natural fibre composite materials within the automotive industry. Proceeding 7th International Conference on Woodfiber-Plastic Composites, Forest Products Society, Madison, Wisconsin.
- Brouwer, W.D. Natural Fibre Composites in Structural Components: Alternative Applications for Sisal? Delft University, Buizerdlaan, http://www.fao.org/docrep/004/y1873e/y1873e0a.htm (accessed 2 April 2013).
- Wambua, P., Ivens, J., and Verpoest, I. (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos. Sci. Technol., 63, 1259–1264.
- Staniforth, A.R. (1979) Cereal Straw, Clarendon Press, pp. 116–123.
- Reddy, N. and Yang, Y. (2004) Structure and novel cellulose fiber from corn husk. Polym. Preprints Amer. Chem. Soc., Div. Polym. Sci., 45 (2), 411.
- Eichhorn, S.J., Baillie, C.A., Zafeipouls, N., Mwaikambo, L.Y., and Ansell, M.P. (2001) Current international research into cellulosic fibers and composites. J. Mater Sci., 36, 2107–2131.
-
Netravali, N. and Chabba, S. (2003) Composites get greener. Mater. Today, 6, 22–29.
10.1016/S1369-7021(03)00427-9 Google Scholar
- Geethamma, V.G., Mathew, K.T., Lakshminarayanan, R., and Thomas, S. (1998) Composites and short coir fibers and natural rubber: effect of chemical modification, loading and orientation of fibre. Polymer, 39, 1483–1491.
- Burger, H. et al. (1995) Use of natural fibers and environmental aspects. Int. Polym. Sci. Technol., 22 (18), T/25–T/34.
- Kaith, B.S., Singha, A.S., Kumar, S., and Misra, B.N. (2005) FAS-H2O2 initiated graft polymerization of methylmethacrylate onto flax and evaluation of some physical and chemical properties. J. Polym. Mater., 22, 425–432.
- Tsukada, M., Islam, S., Arai, T., Boschi, A., and Freddi, G. (2005) Microwave irradiation technique to enhance protein fibre properties. Autex Res. J., 5, 40–48.
- Kaith, B.S. and Kalia, S. (2008) Preparation of micro-wave radiation induced graft copolymers and their applications as reinforcing material in phenolic composites. Polym. Compos., 29, 791–797.
- Kaith, B.S. and Kalia, S. (2008) Graft copolymerization of MMA onto flax under different reaction conditions: a comparative study. Express Polym. Lett., 2, 93–100.
- Kalia, S., Kumar, A. and Kaith, B.S. (2011) Sunn hemp cellulose graft copolymers polyhydroxybutyrate composites: morphological and mechanical studies. Adv. Mat. Lett., 2, 17–25.
- Shoda, M. and Sugano, Y. (2005) Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng., 10, 1–8.
- Pommet, M., Juntaro, J., Heng, J.Y.Y., Mantalaris, A., Lee, A.F., Wilson, K., Kalinka, G., Shaffer, M.S.P., and Bismarck, A. (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules, 9, 1643–1651.
- Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., and Peijs, T. (2010) Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci., 45, 1–33.
- Iguchi, M., Yamanaka, S., and Budhiono, A. (2000) Bacterial cellulose-a masterpiece of nature arts. J. Mater. Sci., 35, 261–270.
- Brown, E.E. and Laborie, M.P.G. (2007) Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules, 8, 3074–3081.
- Nakagaito, A.N. and Yano, H. (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano- order-unit web-like network structure. Appl. Phys. A: Mater. Sci. Process., 80, 155–159.
- Gardner, D.J., Oporto, G.S., Mills, R., and Samir, M. (2008) Adhesion and surface issues in cellulose and nanocellulose. J. Adhes. Sci. Technol., 22, 545–567.
- English, B., Chow, P., and Bajwa, D.S. (1997) Processing into composites, in Paper and Composites from Agro-Based Resources (eds R.M. Rowell et al.), CRC/Lewis Publishers, Boca Raton, FL.
- Mo, X., Wang, D., and Sun, X.S. (2005) Straw-based biomass and biocomposites, in Natural Fibers, Biopolymers, and Biocomposites (eds A.K. Mohanty, M. Misra, and L.T. Drzal) Chapter 14, CRC Press, Boca Raton, FL.
-
Kozlowski, R. and Wladyka-Przbylak, M. (2004) in Natural Fibers, Plastics and Composites (eds F.T. Wallenberger and N. Weston), Kluwer Academic Publisher, New York, pp. 249–274.
10.1007/978-1-4419-9050-1_14 Google Scholar
- Falk, R.H., Vos, D.J., Cramer, S.M., and English, B.W. (2001) Performance of fasteners in wood flour-thermoplastic composite panels. For. Prod. J., 51, 55–61.
- Papadopoulos, A.N. and Hague, J.R.B. (2003) The potential for using Flax (Linum usitatissimum L.) shiv as a lingo-cellulosic raw material for particleboard. Ind. Crops Prod., 17, 143–147.
- Kim, S., Kim, H.J., and Park, J.C. (2009) Application of recycled paper sludge and biomass materials in manufacture of green composite pallet. Resour. Conserv. Recycl., 53, 674–679.
- Maloney, T.M. (1977) Modern Particleboard and Dry-Process Fiberboard Manufacturing, Miller Freeman Publications, San Francisco, CA, p. 688.
- Taramian, A., Doosthoseini, K., Mirshokraii, S.A., and Faezipour, M. (2007) Particleboard manufacturing: an innovative way to recycle paper sludge. Waste Manage., 27, 1739–1746.
- Kozlowski, R., Mieleniak, B., and Przepiera, A. (1994) A Plant residues as materials for particleboards. Proceedings of the 28th International Particleboard/Composite Materials Symposium, Washington State University, Pullman, Washington.
- Maldas, D. and Kokta, B.V. (1991) Studies on the preparation and properties of particle boards made from bagasse and PVC: II. Influence of the addition of coupling agents. Bioresour. Technol., 35, 251–261.
- Akgul, M. and Camlibel, O. (2008) Manufacture of medium density fiberboard (MDF) panels from rhododendron (R. ponticum L.) biomass. Build. Environ., 43, 438–443.
- Hiziroglu, S., Jarusombuti, S., Bauchongkol, P., and Fueangvivat, V. (2008) Overlaying properties of fiberboard manufactured from bamboo and rice straw. Ind. Crops Prod., 28, 107–111.
- Yousefi, H. (2009) Canola straw as a bio-waste resource for medium density fibreboard (MDF) manufacture. Waste Manage., 29, 2644–2648.
- Akgul, M. and Tozluoglu, A. (2008) Utilizing peanut husk (Arachis hypogaea L.) in the manufacture of medium-density fibreboards. Bioresour. Technol., 99, 5590–5594.
- Çavdar, A.D., Ertas, M., Kalaycıoglu, H., and Alma, M.H. (2010) Some properties of thin medium density fiberboard panels treated with sunflower waste oil vapour. Mater. Des., 31, 2561–2567.
- Food and Agriculture Organization of the United Nations (FAO) (1958) Fiberboard and Particle Board Report of an International Consultation on Insulation Board, Hardboard and Particle Board, Food and Agriculture Organization of the United Nations, Rome.
- P.Ye, X., Julson, J., Kuo, M., Womac, A., and Myers, D. (2007) Properties of medium density fiberboards made from renewable biomass. Bioresour. Technol., 98, 1077–1084.
- Mi, Y., Chen, X., and Guo, Q. (1997) Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology. J. Appl. Polym. Sci., 64, 1267–1273.
- Liu, D., Zhong, T., Chang, P.R., Li, K., and Wuc, Q. (2010) Starch composites reinforced by bamboo cellulosic crystals. Bioresour. Technol., 101, 2529–2536.
- Trujillo, E., Osorio, L., Van Vuure, A.W., and Ivens, J., and Verpoest, I. (2010) Characterization of polymer composite materials based on bamboo fibres. 14th European Conference on Composite Materials, Budapest, Hungary, June 7–10, 2010.
- Tokoro, R., Vu, D.M., Okubo, K., Tanaka, T., Fujii, T., and Fujiura, T. (2008) How to improve mechanical properties of polylactic acid with bamboo fibers. J. Mater. Sci., 43, 775–787.
- Avella, M., Buzarovska, A., Errico, M.E., Gentile, G., and Grozdanov, A. (2009) Eco-challenges of bio-based polymer composites. Materials, 2, 911–925.
- Cook, J.G. (1964) Handbook of Textile Fibers, Merrow Publishing Co. Ltd., Watford.
- Kim, J.T. and Netravali, A.N. (2010) Effect of protein content in soy protein resins on their interfacial shear strength with ramie fibers. J. Adhes. Sci. Technol., 24, 203–215.
- Li-Ping, H., Yong, T., and Lu-Lin, W. (2008) Study on ramie fiber reinforced polypropylene composites (RF-PP) and its mechanical properties. Adv. Mater. Res., 41–42, 313–316.
- Mizuta, K., Ichihara, Y., Matsuoka, T., Hirayama, T., and Fujita, H. (2006) Mechanical properties of loosing natural fiber reinforced polypropylene, in High Performance Structures and Materials III (ed. C.A. Brebbia), WIT Press, Boston, MA.
- Chen, D., Li, J., and Ren, J. (2010) Study on sound absorption property of ramie fiber reinforced poly(L-lactic acid) composites: morphology and properties. Composites Part A, 41, 1012–1018.
- Xu, H., Wang, L., Teng, C., and Yu, M. (2008) Biodegradable composites: ramie fiber reinforced PLLA-PCL composite prepared by in situ polymerization process. Polym. Bull., 61, 663–670.
- Yu, T., Ren, J., Li, S., Yuan, H., and Li, Y. (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Composites Part A, 41, 499–505.
- Panigrahy, B.S., Rana, A., Panigrahi, S., and Chang, P. (2006) Overview of flax fiber reinforced thermoplastic composites. ASAE Annual Meeting, American Society of Agricultural and Biological Engineers, St. Joseph, Michigan.
- Li, X., Panigrahi, S., and Tabil, L.G. (2009) A study on flax fiber-reinforced polyethylene biocomposites. Appl. Eng. Agric., 25, 525–531.
- Wang, B., Panigrahi, S., Tabil, L., and Crerar, W. (2007) Pre-treatment of flax fibers for use in rotationally molded biocomposites. J. Reinf. Plast. Compos., 26, 447–463.
- Van de Velde, K. and Kiekens, P. (2001) Influence of fiber surface characteristics on the flax/polypropylene interface. J. Thermoplast. Compos. Mater., 14, 244–260.
- Bledzki, A.K., Mamun, A.A., Lucka-Gabor, M., and Gutowski, V.S. (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym. Lett., 2, 413–422.
- John, M.J. and Anandjiwala, R.D. (2009) Chemical modification of flax reinforced polypropylene composites. Composites Part A., 40, 442–448.
- Kaith, B.S., Singha, A.S., Kumar, S., and Kalia, S. (2008) Mechanical properties of polystyrene composites reinforced with chemically treated flax fiber were investigated. Mercerization of flax fiber improves the mechanical properties of polystyrene composites. Int. J. Polym. Mater., 57, 54–72.
- Sala, G. and Cutolo, D. (1996) Heater chamber winding of thermoplastic powder impregnated composites: part 1. Technology and basic thermochemical aspects. Composites Part A, 27, 387–392.
- Svensson, N. and Shishoo, R. (1996) Fabrication and mechanical response of commingled GF/PET composites. Polym. Compos., 19, 360–369.
- Gu, H. and Liyan, L. (2008) Research on properties of thermoplastic composites reinforced by flax fabrics. Mater. Des., 29, 1075–1079.
- Li, Y., Mai, Y.W., and Ye, L. (2000) Sisal fibre and its composites: a review of recent developments. Compos. Sci. Technol., 60, 2037–2055.
- Joseph, K., Thomas, S., Pavithran, C., and Brahmakumar, M. (1993) Tensile properties of short sisal fibre-reinforced polyethylene composites. J. Appl. Polym. Sci., 47, 1731–1739.
- Mohanty, S., Nayak, S.K., Verma, S.K., and Tripathy, S.S. (2004) Effect of MAPP as coupling agent on the performance of sisal–PP composites. J. Reinf. Plast. Compos., 23, 2047–2063.
- Joseph, P.V., Joseph, K., and Thomas, S. (1999) Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Compos. Sci. Technol., 59, 1625–1640.
- Fung, K.L., Li, R.K.Y., and Tjong, S.C. (2002) Interface modification on the properties of sisal fibre reinforced polypropylene composites. J. Appl. Polym. Sci., 85, 169–176.
- Tjong, S.C., Xu, Y., and Meng, Y.Z. (1999) Composites based on maleated polypropylene and methyl cellulosic fiber: Mechanical and thermal properties. J. Appl. Polym. Sci., 72, 1647–1653.
- Li, T.Q., Ng, C.N., and Li, R.K.Y. (2001) Impact behavior of sawdust/recycled-PP composites. J. Appl. Polym. Sci., 81, 1420–1428.
- Mukhopadhyay, S. and Srikanta, R. (2008) Effect of ageing of sisal fibres on properties of sisal–polypropylene composites. Polym. Degrad. Stab., 93, 2048–2051.
-
Joseph, K., Dias, R., Filho, T., James, B., Thomas, S., and Hecker de Carvalho, L. (1999) A review on sisal fiber reinforced polymer composites. Rev. Bras. Eng. Agríc. Ambient. Campina Grande, 3, 367–379.
10.1590/1807-1929/agriambi.v3n3p367-379 Google Scholar
- Karmaker, A.C. and Youngquist, J.A. (1996) Injection moulding of polypropylene reinforced with short jute fibers. J. Appl. Polym. Sci., 62, 1147–1151.
- Gassan, J. and Bledzki, A.K. (2000) Possibilities to improve the properties of natural fiber reinforced plastics by fiber modification–jute polypropylene composites. Appl. Compos. Mater., 7, 373–385.
- Liu, X.Y. and Dai, G.C. (2007) Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites. Express Polym. Lett., 1, 299–307.
- Ray, D., Sarkar, B.K., Rana, A.K., and Bose, N.R. (2001) Effect of alkali treated jute fibers on composite properties. Bull. Mater. Sci., 24, 129–135.
- Hong, C.K., Hwang, I., Kim, N., Park, D.H., Hwang, B.S., and Nah, C. (2008) Mechanical properties of silanized jute–polypropylene composites. J. Ind. Eng. Chem., 14, 71–76.
- Haydar, U.Z., Khan, R.A., Khan, M.A., Khan, A.H., and Hossain, M.A. (2009) Effect of gamma radiation on the performance of jute fabrics-reinforced polypropylene composites. Radiat. Phys. Chem., 78, 986–993.
- Doan, T.T.L., Gao, S.L., and Mader, E. (2006) Jute/polypropylene composites I. Effect of matrix modification. Compos. Sci. Technol., 66, 952–963.
- Mohanty, A.K., Khan, M.A., and Hinrichsen, G. (2000) Influence of chemical surface modification on the properties of biodegradable jute fabrics–polyester amide composites. Composites Part A, 31, 143–150.
- Government of Manitoba (2000) Manitoba Industrial Hemp Association Market Opportunity for Industrial Hemp Fibre-based Products, December 2000, http://www.gov.mb.ca/agriculture/crops/hemp/bko07s01.html (accessed 2 April 2013).
- Wielage, B., Lampke, T., Utschick, H., and Soergel, F. (2003) Processing of natural fibre reinforced polymers and the resulting dynamic-mechanical properties. J. Mater. Process Technol., 139, 140–146.
- Keller, A. (2003) Compounding and mechanical properties of biodegradable hemp fibre composites. Compos. Sci. Technol., 63, 1307–1316.
- Vilaseca, F., Lopez, A., Llauro, X., Pelach, M.A., and Mutje, P. (2004) Hemp strands as reinforcement of polystyrene composites. Chem. Eng. Res. Des., 82, 1425–1431.
- Brydson, J.A. (1975) Plastic Materials, 3rd edn Chapter 11, Newnes Butterworths, London.
- Mutje, P., Lopez, A., Vallejos, M.E., Lopez, J.P., and Vilaseca, F. (2007) Full exploitation of cannabis sativa as reinforcement/filler of thermoplastic composite materials. Composites Part A, 38, 369–377.
- Tajvidi, M., Motie, N., Rassam, G., Falk, R.H., and Felton, C. (2009) Mechanical performance of hemp fiber polypropylene composites at different operating temperatures. J. Reinf. Plast. Compos., 29, 664–674.
- Mutje, P., Girones, J., Lopez, A., Llop, M.F., and Vilaseca, F. (2006) Hemp strands: PP composites by injection molding: effect of low cost physico-chemical treatments. J. Reinf. Plast. Compos., 25, 313–327.
- Beckermann, G.W. and Pickering, K.L. (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Composites Part A, 39, 979–988.
- Kaith, B.S., Jindal, R., Jana, A.K., and Maiti, M. (2010) Development of corn starch based green composites reinforced with saccharum spontaneum L fiber and graft copolymers–evaluation of thermal, physico-chemical and mechanical properties. Bioresour. Technol., 101, 6843–6851.
- Singha, A.S., Rana, R.K., and Rana, A. (2010) Natural fiber reinforced polystyrene matrix based composites. Adv. Mater. Res., 123–125, 1175–1178.
- Bledzki, A.K., Reihmane, S., and Gassan, J. (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci., 59, 1329–1336.
- Felix, J.M. and Gatenholm, P. (1991) The nature of adhesion in composites of modified cellulose fibers and polypropylene. J. Appl. Polym. Sci., 42, 609–620.
- Klemm, D., Schumann, D., Udhardt, U., and Marsch, S. (2001) Bacterial synthesized cellulose–artificial blood vessels for microsurgery. Prog. Polym. Sci., 26, 1561–1603.
- Chawla, P.R., Bajaj, I.B., Survase, S.A., and Singhal, R.S. (2009) Microbial cellulose: fermentative production and applications. Food Technol. Biotechnol., 47, 107–124.
- Pecoraro, E., Manzani, D., Messaddeq, Y., and Ribeiro, S. (2008) Bacterial cellulose from glucanacetobacter xylinus: preparation, properties and applications, in Monomers, Polymers and Composites from Renewable Resources (eds M.N. Belgacem and A. Gandini), Amsterdam, Elsevier.
- Gindl, W. and Keckes, J. (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos. Sci. Technol., 64, 2407–2413.
- Martins, I.M.G., Magina, S.P., Oliveira, L., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., and Gandini, A. (2009) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos. Sci. Technol., 69, 2163–2168.
- Woehl, M.A., Canestraro, C.D., Mikowski, A., Sierakowski, M.R., Ramos, L.P., and Wypych, F. (2010) Bionanocomposites of thermoplastic starch reinforced with bacterial cellulose nanofibres: effect of enzymatic treatment on mechanical properties. Carbohydr. Polym., 80, 866–873.
- Lee, K.Y., Blaker, J.J., and Bismarck, A. (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos. Sci. Technol., 69, 2724–2733.
- Wan, Y.Z., Luo, H., He, F., Liang, H., Huang, Y., and Li, X.L. (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos. Sci. Technol., 69, 1212–1217.
- Njuguna, J., Pena, I., Zhu, H. et al. (2009) Opportunities and environmental health challenges facing integration of polymer nanocomposites: technologies for automotive applications. Int. J. Polym. Technol., 1, 113–122.
- Automotive Industries (2000) DaimlerChrysler “Goes Natural” for Large Body Panel, DaimlerChrysler, p. 9.
- Pervaiz, M. and Sain, M.M. (2003) Sheet-molded polyolefin natural fiber composites for automotive applications. Macromol. Mater. Eng., 288, 553–557.
- Suddell, B.C., Evans, W.J., Mohanty, A.K., Misra, M., and Drzal, L.T. (2005) Natural fiber composites in automotive applications, in Natural Fibers, Biopolymers and Biocomposites (eds A.K. Mohanty, M. Misra, and L.T. Drzal) Chapter 7, CRC Press, Boca Raton, FL.
- Bledzki, A.K., Faruk, O., and Sperher, V.E. (2006) Cars from bio-fibres. Macromol. Mater. Eng., 291, 449–457.
- Diener, J. and Siehler, U. (1999) Ökologischer vergleich von NMT-und GMT-bauteilen. Angew. Makromol. Chem., 272, 1–1.
- Jolliet, O. (2001) Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resour. Conserv. Recycl., 33, 267–287.