Ultrasonic Force and Related Microscopies
Andrew Briggs
Oxford University, Department of Materials, 16 Parks Road, OX1 3PH Oxford, UK
Search for more papers by this authorOleg V. Kolosov
Lancaster University, Department of Physics, Room A30, Physics Building, Bailrigg, LA1 4YW Lancaster, UK
Search for more papers by this authorAndrew Briggs
Oxford University, Department of Materials, 16 Parks Road, OX1 3PH Oxford, UK
Search for more papers by this authorOleg V. Kolosov
Lancaster University, Department of Physics, Room A30, Physics Building, Bailrigg, LA1 4YW Lancaster, UK
Search for more papers by this authorProf. Roman Gr. Maev
University of Windsor, Institute for Diagnostic Imaging Research, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
Search for more papers by this authorSummary
This chapter describes an approach that depends on the nonlinear nature of the interaction between tip and sample; this has become known as ultrasonic force microscopy (UFM). The combination of acoustic excitation with scanning probe microscopy makes it possible to image and study the elastic and viscoelastic properties of materials with nanoscale spatial resolution. For the applications described in the chapter, the key components of the UFM and the mechanical diode principle are: the inertial stiffness of the cantilever at the ultrasonic vibration frequency; nonlinear detection of additional forces at low frequency and the compliance of the cantilever at the detection frequency. The shape of the force versus indentation curve depends on surface adhesive and elastic properties. In addition to the elastic properties that UFM is intended to image, anything else that affects the tip-surface interaction will also affect the UFM contrast.
Controlled Vocabulary Terms
diodes; elastic constants; plasma-wall interactions; scanning probe microscopy; vibrational modes; viscoelasticity
References
- Foster, J. and Quate, C.F. (1984) Acoustic microscopy in superfluid-helium. Phys. Today, 37, S4.
-
Zieniuk, J.K. and
Latuszek, A.
(1986)
Ultrasonic pin scanning microscope: a new approach to ultrasonic microscopy, in
IEEE 1986 Ultrasonics Symposium: Proceedings (ed.
B.R. McAvoy),
IEEE, pp. 1037–1039.
10.1109/ULTSYM.1986.198895 Google Scholar
- Zieniuk, J.K. and Latuszek, A. (1987) Ultrasonic pin scanning microscope: a new approach to ultrasonic microscopy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 34, 414.
- Kolosov, O. (1998) UFM shakes out the details at the nanoscopic scale. Mater. World, 6, 753–754.
- Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. (1982) Tunneling through a controllable vacuum gap. Appl. Phys. Lett., 40, 178–180.
- Martin, Y., Williams, C.C., and Wickramasinghe, H.K. (1987) Atomic force microscope force mapping and profiling on a sub 100-A scale. J. Appl. Phys., 61, 4723–4729.
- Weisenhorn, A.L., Maivald, P., Butt, H.J., and Hansma, P.K. (1992) Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B, 45, 11226–11232.
- Miyatani, T., Horii, M., Rosa, A., Fujihira, M., and Marti, O. (1997) Mapping of electrical double-layer force between tip and sample surfaces in water with pulsed-force-mode atomic force microscopy. Appl. Phys. Lett., 71, 2632–2634.
- Gunther, P., Fischer, U., and Dransfeld, K. (1989) Scanning near-field acoustic microscopy. Appl. Phys. B - Photophys. Laser Chem., 48, 89–92.
- Behrend, O.P., Oulevey, F., Gourdon, D., Dupas, E., Kulik, A.J., Gremaud, G., and Burnham, N.A. (1998) Intermittent contact: tapping or hammering? Appl. Phys. A - Mater. Sci. Process., 66, S219–SS21.
- Burnham, N.A., Behrend, O.P., Oulevey, F., Gremaud, G., Gallo, P.J., Gourdon, D., Dupas, E., Kulik, A.J., Pollock, H.M., and Briggs, G.A.D. (1997) How does a tip tap? Nanotechnology, 8, 67–75.
- Quate, C.F., Khuri-Yakub, B.T., Akamine, S., and Hadimioglu, B.B. (1994) Near field acoustic ultrasonic microscope system and method US Patent 5,319,977.
- Kolosov, O. and Yamanaka, K. (1993) Nonlinear detection of ultrasonic vibrations in an atomic-force microscope. Jpn. J. Appl. Phys., 32, L1095–L1098.
- Rohrbeck, W., Chilla, E., Frohlich, H.J., and Riedel, J. (1991) Detection of surface acoustic-waves by scanning tunneling microscopy. Appl. Phys. A - Mater. Sci. Process., 52, 344–347.
- Burnham, N.A., Kulik, A.J., Gremaud, G., Gallo, P.J., and Oulevey, F. (1996) Scanning local-acceleration microscopy. J. Vac. Sci. Technol. B, 14, 794–799.
- Rabe, U. and Arnold, W. (1994) Acoustic microscopy by atomic-force microscopy. Appl. Phys. Lett., 64, 1493–1495.
- Yamanaka, K., Ogiso, H., and Kolosov, O. (1994) Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett., 64, 178–180.
- Dinelli, F., Castell, M.R., Ritchie, D.A., Mason, N.J., Briggs, G.A.D., and Kolosov, O.V. (2000) Mapping surface elastic properties of stiff and compliant materials on the nanoscale using ultrasonic force microscopy. Philos. Mag. A, 80, 2299–2323.
- Huey, B.D. (2007) AFM and acoustics: fast, quantitative nanomechanical mapping. Annu. Rev. Mater. Res., 37, 351–385.
- Inagaki, K., Kolosov, O.V., Briggs, G.A.D., and Wright, O.B. (2000) Waveguide ultrasonic force microscopy at 60 MHz. Appl. Phys. Lett., 76, 1836–1838.
- Hirsekorn, S., Rabe, U., and Arnold, W. (1997) Theoretical description of the transfer of vibrations from a sample to the cantilever of an atomic force microscope. Nanotechnology, 8, 57–66.
-
Dinelli, F.,
Assender, H.E.,
Takeda, N.,
Briggs, G.A.D., and
Kolosov, O.V.
(1999)
Elastic mapping of heterogeneous nanostructures with ultrasonic force microscopy (UFM).
Surf. Interface Anal., 27, 562–567.
10.1002/(SICI)1096-9918(199905/06)27:5/6<562::AID-SIA538>3.0.CO;2-K CAS Web of Science® Google Scholar
-
Inagaki, K.K.,
Briggs, G.A.D.,
Muto, S.,
Horisaki, Y., and
Wright, O.B.
(1998)
Ultrasonic force microscopy in waveguide mode up to 100 MHz, in
IEEE 1998 Ultrasonics Symposium – Proceedings, vol. 1 (eds
S.C. Schneider,
M. Levy, and
B.R. McAvoy),
IEEE, pp. 1255–1259.
10.1109/ULTSYM.1998.765067 Google Scholar
- Johnson, K.L., Kendall, K., and Roberts, A.D. (1971) Surface energy and contact of elastic solids. Proc. R. Soc. London, Ser. A - Math. Phys. Sci., 324, 301–313.
-
Johnson, K.L.
(1985)
Contact Mechanics,
Cambridge University Press,
Cambridge.
10.1017/CBO9781139171731 Google Scholar
- Greenwood, J.A. and Johnson, K.L. (2006) Oscillatory loading of a viscoelastic adhesive contact. J. Colloid Interface Sci., 296, 284–291.
- Johnson, K.L. and Greenwood, J.A. (1997) An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci., 192, 326–333.
- Luan, B.Q. and Robbins, M.O. (2005) The breakdown of continuum models for mechanical contacts. Nature, 435, 929–932.
- Kolosov, O.V., Castell, M.R., Marsh, C.D., Briggs, G.A.D., Kamins, T.I., and Williams, R.S. (1998) Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy. Phys. Rev. Lett., 81, 1046–1049.
- Kolosov, O.V., Ogiso, H., and Yamanaka, K. (1993) Ultrasonic force microscopy a new technique for a nondestructive investigation on nanometer scale viscoelastic properties, in Proceedings of the Third Japan International SAMPE Symposium, vol. 2 (eds T. Kishi, N. Takeda, and Y. Kagawa), Society of the Advancement of Material and Process Engineering, pp. 2196–2201.
- Dinelli, F., Biswas, S.K., Briggs, G.A.D., and Kolosov, O.V. (2000) Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy. Phys. Rev. B, 61, 13995–14006.
- Rudd, R.E., Briggs, G.A.D., Sutton, A.P., Medeiros-Ribeiro, G., and Williams, R.S. (2007) Equilibrium distributions and the nanostructure diagram for epitaxial quantum dots. J. Comput. Theor. Nanosci., 4, 335–347.
- Cuberes, M.T., Stegemann, B., Kaiser, B., and Rademann, K. (2007) Ultrasonic force microscopy on strained antimony nanoparticles. Ultramicroscopy, 107, 1053–1060.
- Geer, R.E., Kolosov, O.V., Briggs, G.A.D., and Shekhawat, G.S. (2002) Nanometer-scale mechanical imaging of aluminum damascene interconnect structures in a low-dielectric-constant polymer. J. Appl. Phys., 91, 4549–4555.
- Porfyrakis, K., Kolosov, O.V., and Assender, H.E. (2001) AFM and UFM surface characterization of rubber-toughened poly(methyl methacrylate) samples. J. Appl. Polym. Sci., 82, 2790–2798.
- Grishin, I., Tinker, C., Allsop, D., Robson, A., and Kolosov, O. (2012) Nanoscale SPM characterisation of nacre aragonite plates and synthetic human amyloid fibres, in NSTI-Nanotech 2012, vol. 1, CRC Press-Taylor & Francis Group, Santa Clara, USA, pp. 110-113.
- Gourdon, D., Burnham, N.A., Kulik, A., Dupas, E., Oulevey, F., Gremaud G., Stamou, D., Liley, M., Dienes, Z., Vogel, H., and Duschl, C. (1997) The dependence of friction anisotropies on the molecular organisation of LB films as observed by AFM. Tribol. Lett., 3, 317-324.
- Dinelli, F., Biswas, S.K., Briggs, G.A.D., and Kolosov, O.V. (1997) Ultrasound induced lubricity in microscopic contact. Appl. Phys. Lett., 71, 1177–1179.
- McGuigan, A.P., Huey, B.D., Briggs, G.A.D., Kolosov, O.V., Tsukahara, Y., and Yanaka, M. (2002) Measurement of debonding in cracked nanocomposite films by ultrasonic force microscopy. Appl. Phys. Lett., 80, 1180–1182.
- Kolosov, O.V., Grishin, I., and Jones, R. (2011) Material sensitive scanning probe microscopy of subsurface semiconductor nanostructures via beam exit Ar ion polishing. Nanotechnology, 22, 8.
- Bowden, F.P. and Tabor, D. (1973) Friction: An Introduction to Tribology, Anchor Press/Doubleday, New York.
- Rosner, B.R.T. and van der Weide, D.W. (2002) High-frequency near-field microscopy. Rev. Sci. Instrum., 73, 2505–2525.
- Cuberes, M.T., Assender, H.E., Briggs, G.A.D., and Kolosov, O.V. (2000) Heterodyne force microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequencies. J. Phys. D - Appl. Phys., 33, 2347–2355.
- Kolosov, O.V. and Briggs, G.A.D. (1996) Atomic force microscopy and method thereof. In: UK patent application 9617380.2.
- Tomoda, M., Shiraishi, N., Kolosov, O.V., and Wright, O.B. (2003) Local probing of thermal properties at submicron depths with megahertz photothermal vibrations. Appl. Phys. Lett., 82, 622–624.
-
Kumano, N.,
Inagaki, K.,
Kolosov, O., and
Wright, O.
(1998)
Optical heterodyne force microscopy, in
IEEE 1998 Ultrasonics Symposium – Proceedings, vol. 1 (eds
S.C. Schneider,
M. Levy, and
B.R. McAvoy),
IEEE, pp. 1269–1272.
10.1109/ULTSYM.1998.765070 Google Scholar
- Gross, L., Mohn, F., Moll, N., Liljeroth, P., and Meyer, G. (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science, 325, 1110–1114.
- Binnig, G., Quate, C.F., and Gerber, C. (1986) Atomic force microscope. Phys. Rev. Lett., 56, 930–933.