Metal-ion Binding to Self-assembled Monolayers on Surfaces
Alexander Vaskevich,
Israel Rubinstein,
Alexander Vaskevich
Weizmann Institute of Science, Rehorot, Israel
Search for more papers by this authorIsrael Rubinstein
Weizmann Institute of Science, Rehorot, Israel
Search for more papers by this authorAlexander Vaskevich,
Israel Rubinstein,
Alexander Vaskevich
Weizmann Institute of Science, Rehorot, Israel
Search for more papers by this authorIsrael Rubinstein
Weizmann Institute of Science, Rehorot, Israel
Search for more papers by this authorFirst published: 15 December 2007
Abstract
The sections in this article are
- Introduction
- Binding of Metal Ions to Functionalized SAMs: General Phenomena and Case Studies
- Stoichiometry of Surface Metal-organic Complexes
- Solution-surface Equilibrium
- SAMs as Metal-ion Receptors
- Ion Binding to SAMs: Direct Electrochemical Reporting
- Binding of Electrochemically Inert Ions: Reporting by Redox Reactions of Solution Species
- Binding of Electrochemically Inert Ions: Reporting by Redox Centers in the SAM
- Binding of Electrochemically Inert Ions: Application of Electrochemical Impedance Spectroscopy (EIS)
- Optical Methods for Control and Reporting of Ion Binding to SAMs
- Bilayers Formed by Metal-organic Coordination
- Coordinated Organic Bilayers
- Immobilization of Biological Molecules through Coordination Binding
- Binding of Macrocycle Molecules
References
- 1 S. M. Barlow, R. Raval, Surf. Sci. Rep. 2003, 50, 201–341.
- 2 F. Rosei, M. Schunack, Y. Naitoh et al., Prog. Surf. Sci. 2003, 71, 95–146.
- 3 S. De Feyter, F. C. De Schryver, Chem. Soc. Rev. 2003, 32, 139–150.
- 4 R. G. Nuzzo, D. L. Allara, J. Am. Chem. Soc. 1983, 105, 4481–4483.
- 5 J. Sagiv, J. Am. Chem. Soc. 1980, 102, 92–98.
- 6 H. Lee, L. J. Kepley, H. G. Hong et al., J. Phys. Chem. 1988, 92, 2597–2601.
- 7 S. D. Evans, A. Ulman, K. E. Goppert-Berarducci et al., J. Am. Chem. Soc. 1991, 113, 5866–5868.
- 8 A. Hatzor, T. Moav, H. Cohen et al., J. Am. Chem. Soc. 1998, 120, 13469–13477.
- 9
J. M. Lehn,
Supramolecular Chemistry: Concepts and Perspectives,
VCH,
Weinheim,
1995.
10.1002/3527607439 Google Scholar
- 10 I. Rubinstein, S. Steinberg, Y. Tor et al., Nature 1988, 332, 426–429.
- 11 I. Rubinstein, S. Steinberg, Y. Tor et al., Nature 1989, 337, 217–217.
- 12 H. Lee, L. J. Kepley, H. G. Hong et al., J. Am. Chem. Soc. 1988, 110, 618–620.
- 13 A. Ulman, Chem. Rev. 1996, 96, 1533–1554.
- 14 H. O. Finklea, L. Liu, M. S. Ravenscroft et al., J. Phys. Chem. 1996, 100, 18852–18858.
- 15 H. O. Finklea in Electroanal. Chem. (Eds.: A. J. Bard, I. Rubinstein), Marcel Decker, New York, 1996, pp. 109–335, Vol. 19.
- 16 T. Moav, A. Hatzor, H. Cohen et al., Chem. Eur. J. 1998, 4, 502–507.
- 17 E. L. Schmid, T. A. Keller, Z. Dienes et al., Anal. Chem. 1997, 69, 1979–1985.
- 18 H. J. Himmel, A. Terfort, R. Arnold et al., Mater. Sci. Eng., C 1999, 8–9, 431–435.
- 19 F. Mirkhalaf, D. J. Schiffrin, J. Chem. Soc., Faraday Trans. 1998, 94, 1321–1327.
- 20 G. B. Sigal, C. Bamdad, A. Barberis et al., Anal. Chem. 1996, 68, 490–497.
- 21 N. J. van der Veen, S. Flink, M. A. Deij et al., J. Am. Chem. Soc. 2000, 122, 6112–6113.
- 22 M. Maskus, H. D. Abruna, Langmuir 1996, 12, 4455–4462.
- 23 J. Luo, S. S. Isied, Langmuir 1998, 14, 3602–3606.
- 24 H. Takagi, A. Ichimura, T. Yano et al., Electrochemistry 1999, 67, 1192–1193.
- 25 M. Nielsen, N. B. Larsen, K. V. Gothelf, Langmuir 2002, 18, 2795–2799.
- 26 C. Dicke, M. Morstein, G. Hahner, Langmuir 2002, 18, 336–344.
- 27 K. L. Yang, K. Cadwell, N. L. Abbott, Adv. Mater. 2003, 15, 1819–1823.
- 28 J. Li, K. S. Liang, G. Scoles et al., Langmuir 1995, 11, 4418–4427.
- 29 I. C. Stefan, D. Mandler, D. A. Scherson, Langmuir 2002, 18, 6976–6980.
- 30 M. Sastry, V. Patil, K. S. Mayya, J. Phys. Chem. B 1997, 101, 1167–1170.
- 31 T. L. Freeman, S. D. Evans, A. Ulman, Thin Solid Films 1994, 244, 784–788.
- 32 T. L. Freeman, S. D. Evans, A. Ulman, Langmuir 1995, 11, 4411–4417.
- 33 M. Brust, P. M. Blass, A. J. Bard, Langmuir 1997, 13, 5602–5607.
- 34 L. J. Kepley, R. M. Crooks, A. J. Ricco, Anal. Chem. 1992, 64, 3191–3193.
- 35 H. Zhang, P. C. M. Grim, D. Liu et al., Langmuir 2002, 18, 1801–1810.
- 36 H. Ohno, L. A. Nagahara, W. Mizutani et al., Jpn. J. Appl. Phys. Part 1 1999, 38, 180–185.
- 37 R. C. Major, X. Y. Zhu, J. Am. Chem. Soc. 2003, 125, 8454–8455.
- 38 S. D. Evans, T. L. Freeman, T. M. Flynn et al., Thin Solid Films 1994, 244, 778–783.
- 39 T. L. Brower, J. C. Garno, A. Ulman et al., Langmuir 2002, 18, 6207–6216.
- 40 R. Maoz, S. Matlis, E. DiMasi et al., Nature 1996, 384, 150–153.
- 41 T. Stora, R. Hovius, Z. Dienes et al., Langmuir 1997, 13, 5211–5214.
- 42 S. Steinberg, Y. Tor, E. Sabatani et al., J. Am. Chem. Soc. 1991, 113, 5176–5182.
- 43 N. J. Simmons, K. O. A. Chin, J. A. Harnisch et al., J. Electroanal. Chem. 2000, 482, 178–187.
- 44 S. Steinberg, I. Rubinstein, Langmuir 1992, 8, 1183–1187.
- 45 I. Turyan, D. Mandler, Isr. J. Chem. 1997, 37, 225–233.
- 46 I. Turyan, D. Mandler, Anal. Chem. 1994, 66, 58–63.
- 47 I. Turyan, D. Mandler, Anal. Chem. 1997, 69, 894–897.
- 48 S. Berchmans, S. Arivukkodi, V. Yegnaraman, Electrochem. Commun. 2000, 2, 226–229.
- 49 D. W. M. Arrigan, L. Le Bihan, Analyst 1999, 124, 1645–1649.
- 50 W. R. Yang, J. J. Gooding, D. B. Hibbert, J. Electroanal. Chem. 2001, 516, 10–16.
- 51 W. R. Yang, D. Jaramillo, J. J. Gooding et al., Chem. Commun. 2001, 1982–1983.
- 52 W. R. Yang, J. J. Gooding, D. B. Hibbert, Analyst 2001, 126, 1573–1577.
- 53 W. R. Yang, E. Chow, G. D. Willett et al., Analyst 2003, 128, 712–718.
- 54 A. C. Liu, D. C. Chen, C. C. Lin et al., Anal. Chem. 1999, 71, 1549–1552.
- 55 T. C. Miller, J. A. Holcombe, Anal. Chem. 1999, 71, 2667–2671.
- 56 T. C. Miller, J. A. Holcombe, Anal. Chim. Acta 2002, 454, 37–44.
- 57 M. Venkataramanan, K. Murty, T. Pradeep et al., Langmuir 2000, 16, 7673–7678.
- 58 C. E. D. Chidsey, D. N. Loiacono, Langmuir 1990, 6, 682–691.
- 59 L. Sun, B. Johnson, T. Wade et al., J. Phys. Chem. 1990, 94, 8869–8871.
- 60 Q. Cheng, A. Brajter-Toth, Anal. Chem. 1992, 64, 1998–2000.
- 61 N. Nakashima, T. Taguchi, Y. Takada et al., Chem. Commun. 1991, 232–233.
- 62 K. Takehara, Y. Ide, M. Aihara et al., Bioelectrochem. Bioenerg. 1992, 29, 103–111.
- 63 K. Takehara, Y. Ide, M. Aihara, Bioelectrochem. Bioenerg. 1992, 29, 113–120.
- 64 K. Takehara, M. Aihara, N. Ueda, Electroanalysis 1994, 6, 1083–1086.
- 65 Z. W. Jiang, W. K. Xin, W. Y. Zhu et al., J. Rare Earths 1996, 14, 246–249.
- 66 M. Aihara, F. Tanaka, Y. Miyazaki et al., Anal. Lett. 2002, 35, 759–765.
- 67 N. Nakashima, T. Taguchi, Colloids Surf. A 1995, 103, 159–165.
- 68 S. W. Chen, K. Huang, Anal. Chem. 2000, 72, 2949–2956.
- 69 M. Takaya, P. Buhlmann, Y. Umezawa, Mikrochim. Acta 1999, 132, 55–60.
- 70 K. Takehara, M. Aihara, Y. Miura et al., Bioelectrochem. Bioenerg. 1996, 39, 135–138.
- 71 T. Ito, J. Electroanal. Chem. 2001, 495, 87–97.
- 72 A. J. Moore, L. M. Goldenberg, M. R. Bryce et al., Adv. Mater. 1998, 10, 395–398.
- 73 H. Y. Liu, S. G. Liu, L. Echegoyen, Chem. Commun. 1999, 1493–1494.
- 74 S. G. Liu, H. Y. Liu, K. Bandyopadhyay et al., J. Org. Chem. 2000, 65, 3292–3298.
- 75 M. Stelzle, G. Weissmuller, E. Sackmann, J. Phys. Chem. 1993, 97, 2974–2981.
- 76 A. L. Plant, Langmuir 1993, 9, 2764–2767.
- 77 Y. Gafni, H. Weizman, J. Libman et al., Chem. Eur. J. 1996, 2, 759–766.
- 78 S. Flink, B. A. Boukamp, A. van den Berg et al., J. Am. Chem. Soc. 1998, 120, 4652–4657.
- 79 S. Flink, F. van Veggel, D. N. Reinhoudt, J. Phys. Chem. B 1999, 103, 6515–6520.
- 80 S. Flink, H. Schonherr, G. J. Vancso et al., J. Chem. Soc., Perkin Trans. 1 2000, 2, 2141–2146.
- 81 K. Bandyopadhyay, H. Y. Liu, S. G. Liu et al., Chem. Commun. 2000, 141–142.
- 82 K. Bandyopadhyay, L. H. Shu, H. Y. Liu et al., Langmuir 2000, 16, 2706–2714.
- 83 M. A. Herranz, B. Colonna, L. Echegoyen, Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5040–5047.
- 84 J. Ekeroth, P. Konradsson, F. Hook, Langmuir 2002, 18, 7923–7929.
- 85 J. Ekeroth, P. Konradsson, F. Bjorefors et al., Anal. Chem. 2002, 74, 1979–1985.
- 86 C. Miller, P. Cuendet, M. Gratzel, J. Electroanal. Chem. 1990, 278, 175–192.
- 87 S. Terrettaz, H. Vogel, M. Gratzel, J. Electroanal. Chem. 1992, 326, 161–176.
- 88 C. P. Smith, H. S. White, Langmuir 1993, 9, 1–3.
- 89 M. A. Bryant, R. M. Crooks, Langmuir 1993, 9, 385–387.
- 90 K. J. C. van Bommel, A. Friggeri, D. Mateman et al., Adv. Funct. Mater. 2001, 11, 140–146.
- 91 R. S. Clegg, S. M. Reed, R. K. Smith et al., Langmuir 1999, 15, 8876–8883.
- 92 H. Rapaport, I. Kuzmenko, M. Berfeld et al., J. Phys. Chem. B 2000, 104, 1399–1428.
- 93 Z. X. Wang, M. J. Cook, A. M. Nygard et al., Langmuir 2003, 19, 3779–3784.
- 94 F. Mirkhalaf, D. Whittaker, D. J. Schiffrin, J. Electroanal. Chem. 1998, 452, 203–213.
- 95 F. Mirkhalaf, D. J. Schiffrin, J. Electroanal. Chem. 2000, 484, 182–188.
- 96 M. Crego-Calama, D. N. Reinhoudt, Adv. Mater. 2001, 13, 1171–1174.
- 97 D. W. J. McCallien, P. L. Burn, H. L. Anderson, J. Chem. Soc., Perkin Trans. 1 1997, 2581–2586.
- 98 N. Nishimura, M. Ooi, K. Shimazu et al., J. Electroanal. Chem. 1999, 473, 75–84.
- 99 T. Nann, U. Kielmann, C. Dietrich, Anal. Bioanal. Chem. 2002, 373, 749–753.
- 100 E. Sabatani, J. Cohenboulakia, M. Bruening et al., Langmuir 1993, 9, 2974–2981.
- 101 M. M. Fang, D. M. Kaschak, A. C. Sutorik et al., J. Am. Chem. Soc. 1997, 119, 12184–12191.
- 102
S. A. Levi,
P. Guatteri,
F. van Veggel et al.,
Angew. Chem., Int. Ed. Engl.
2001,
40,
1892–1896.
10.1002/1521-3773(20010518)40:10<1892::AID-ANIE1892>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 103
T. Fukuo,
H. Monjushiro,
H. G. Hong et al.,
Rapid Commun. Mass Spectrom.
2000,
14,
1301–1306.
10.1002/1097-0231(20000730)14:14<1301::AID-RCM29>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 104 R. C. Thomas, A. J. Ricco, C. R. Dirubio et al., Proc. Electrochem. Soc. 1997, 97-19, 202–211.
- 105 R. M. Crooks, H. C. Yang, L. J. McEllistrem et al., Faraday Discuss. 1997, 107, 285–305.
- 106 A. C. Templeton, F. P. Zamborini, W. P. Wuelfing et al., Langmuir 2000, 16, 6682–6688.
- 107 F. P. Zamborini, J. F. Hicks, R. W. Murray, J. Am. Chem. Soc. 2000, 122, 4514–4515.
- 108 M. Wanunu, A. Vaskevich, I. Rubinstein, J. Am. Chem. Soc. 2004, 126, 5569–5576.
- 109 A. Friggeri, H. Schonherr, H. J. van Manen et al., Langmuir 2000, 16, 7757–7763.
- 110 A. Friggeri, H. J. van Manen, T. Auletta et al., J. Am. Chem. Soc. 2001, 123, 6388–6395.
- 111 J. Porath, J. Carlsson, I. Olsson et al., Nature 1975, 258, 598–599.
- 112 E. K. M. Ueda, P. W. Gout, L. Morganti, J. Chromatogr., A 2003, 988, 1–23.
- 113 E. Hochuli, H. Dobeli, A. Schacher, J. Chromatogr. 1987, 411, 177–184.
- 114
M. Conti,
G. Falini,
B. Samori,
Angew. Chem., Int. Ed. Engl.
2000,
39,
215–218.
10.1002/(SICI)1521-3773(20000103)39:1<215::AID-ANIE215>3.0.CO;2-R CAS PubMed Web of Science® Google Scholar
- 115 L. Schmitt, M. Ludwig, H. E. Gaub et al., Biophys. J. 2000, 78, 3275–3285.
- 116 F. Kienberger, G. Kada, H. J. Gruber et al., Single Mol. 2000, 1, 59–65.
- 117 E. L. Florin, M. Rief, H. Lehmann et al., Biosens. Bioelectron. 1995, 10, 895–901.
- 118 M. Grandbois, M. Beyer, M. Rief et al., Science 1999, 283, 1727–1730.
- 119
T. A. Keller,
C. Duschi,
D. Kroeger et al.,
Supramol. Sci.
1996,
2,
155–160.
10.1016/0968-5677(96)89670-2 Google Scholar
- 120 M. Liley, T. A. Keller, C. Duschl et al., Langmuir 1997, 13, 4190–4192.
- 121 G. Kada, C. K. Riener, P. Hinterdorfer et al., Single Mol. 2002, 3, 119–125.
- 122 O. Du Roure, C. Debiemme-Chouvy, J. Malthete et al., Langmuir 2003, 19, 4138–4143.
- 123 P. Rigler, W. P. Ulrich, P. Hoffmann et al., Chem. Phys. Chem. 2003, 4, 268–275.
- 124 S. W. Keller, H. N. Kim, T. E. Mallouk, J. Am. Chem. Soc. 1994, 116, 8817–8818.
- 125 L. Schmitt, T. M. Bohanon, S. Denzinger et al., Angew. Chem., Int. Ed. Engl. 1996, 35, 317–320.
- 126 L. Nieba, S. E. NiebaAxmann, A. Persson et al., Anal. Biochem. 1997, 252, 217–228.
- 127 D. Kroger, M. Liley, W. Schiweck et al., Biosens. Bioelectron. 1999, 14, 155–161.
- 128 T. Stora, Z. Dienes, H. Vogel et al., Langmuir 2000, 16, 5471–5478.
- 129 C. K. Riener, F. Kienberger, C. D. Hahn et al., Anal. Chim. Acta 2003, 497, 101–114.
- 130 G. Nonglaton, I. O. Benitez, I. Guisle et al., J. Am. Chem. Soc. 2004, 126, 1497–1502.
- 131 L. H. Guo, G. McLendon, H. Razafitrimo et al., J. Mater. Chem. 1996, 6, 369–374.
- 132 J. P. Collman, M. S. Ennis, D. A. Offord et al., Inorg. Chem. 1996, 35, 1751–1752.
- 133 D. A. Offord, S. B. Sachs, M. S. Ennis et al., J. Am. Chem. Soc. 1998, 120, 4478–4487.
- 134 G. Kalyuzhny, A. Vaskevich, S. Matlis et al., Rev. Anal. Chem. 1999, 18, 237–242.
- 135 G. Kalyuzhny, A. Vaskevich, G. Ashkenasy et al., J. Phys. Chem. B 2000, 104, 8238–8244.
- 136 N. Kanayama, T. Kanbara, H. Kitano, J. Phys. Chem. B 2000, 104, 271–278.
- 137 F. Da Cruz, K. Driaf, C. Berthier et al., Thin Solid Films 1999, 349, 155–161.
- 138 V. Huc, M. Saveyroux, J. P. Bourgoin et al., Langmuir 2000, 16, 1770–1776.
- 139 D. M. Sarno, B. W. Jiang, D. Grosfeld et al., Langmuir 2000, 16, 6191–6199.
- 140 Z. J. Zhang, R. S. Hu, Z. F. Liu, Langmuir 2000, 16, 1158–1162.
- 141 V. Huc, J. P. Bourgoin, C. Bureau et al., J. Phys. Chem. B 1999, 103, 10489–10495.
- 142 T. A. Eberspacher, J. P. Collman, C. E. D. Chidsey et al., Langmuir 2003, 19, 3814–3821.
- 143 D. Q. Li, L. W. Moore, B. I. Swanson, Langmuir 1994, 10, 1177–1185.
- 144 Z. J. Zhang, S. F. Hou, Z. H. Zhu et al., Langmuir 2000, 16, 537–540.
- 145 S. Z. Zou, R. S. Clegg, F. C. Anson, Langmuir 2002, 18, 3241–3246.
- 146 Z. J. Zhang, T. Imae, H. Sato et al., Langmuir 2001, 17, 4564–4568.
- 147 V. Huc, F. Armand, J. P. Bourgoin et al., Langmuir 2001, 17, 1928–1935.
- 148
G. Ashkenasy,
G. Kalyuzhny,
J. Libman et al.,
Angew. Chem., Int. Ed. Engl.
1999,
38,
1257–1261.
10.1002/(SICI)1521-3773(19990503)38:9<1257::AID-ANIE1257>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 149 G. Ashkenasy, A. Ivanisevic, R. Cohen et al., J. Am. Chem. Soc. 2000, 122, 1116–1122.