Regression of Volterra Models
Carlos Crespo Cadenas
Search for more papers by this authorMaría José Madero Ayora
Search for more papers by this authorJuan Antonio Becerra González
Search for more papers by this authorCarlos Crespo Cadenas
Search for more papers by this authorMaría José Madero Ayora
Search for more papers by this authorJuan Antonio Becerra González
Search for more papers by this authorSummary
Chapter 5 is devoted to review the basics of linear regression in the Volterra models context. The least squares method is presented and contextualized in the covariance domain. Centering, normalization, and standardization are introduced as means to enhance the quality of the estimator. Next, performance indicators to measure the quality of the result are presented and a practical regression of real measurements is performed to illustrate the concepts of this chapter. Regularizations such as Ridge regression and LASSO are introduced as ways of overcoming overfitting and attain a sparse solution. Finally, a brief introduction of iterative techniques such as the steepest descent and the least mean squares algorithms are covered.
Bibliography
- J.A. Becerra , M.J. Madero-Ayora , E. Marqués-Valderrama , M. Nogales , and C. Crespo-Cadenas . Preconditioning the regression of power amplifier behavioral models and digital predistorters. In 2022 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR) , pages 58 – 61 , 2022 . doi: 10.1109/PAWR53092.2022.9719703.
- N.R. Draper and H. Smith . Applied Regression Analysis . Wiley series in probability and mathematical statistics . Wiley , New York , 1966 . ISBN 0471221708.
- F.M. Ghannouchi and O. Hammi . Behavioral modeling and predistortion . IEEE Microwave Magazine , 10 ( 7 ): 52 – 64 , 2009 . doi: 10.1109/MMM.2009.934516.
-
P.L. Gilabert
,
R.N. Braithwaite
, and
G. Montoro
.
Beyond the Moore-Penrose inverse: Strategies for the estimation of digital predistortion linearization parameters
.
IEEE Microwave Magazine
,
21
(
12
):
34
–
46
,
2020
. doi: 10.1109/MMM.2020.3023220.
10.1109/MMM.2020.3023220 Google Scholar
- L. Guan and A. Zhu . Optimized low-complexity implementation of least squares based model extraction for digital predistortion of RF power amplifiers . IEEE Transactions on Microwave Theory and Techniques , 60 ( 3 ): 594 – 603 , 2012 . doi: 10.1109/TMTT.2011.2182656.
- D.C. Hoaglin and R.E. Welsch . The hat matrix in regression and ANOVA . The American Statistician , 32 ( 1 ): 17 – 22 , 1978 . doi: 10.2307/2683469.
-
G. James
,
D. Witten
,
T. Hastie
, and
R. Tibshirani
.
An Introduction to Statistical Learning: with Applications in R
.
Springer
,
New Yok
,
2013
. ISBN 9781461471387.
10.1007/978-1-4614-7138-7 Google Scholar
- P. Landin , M. Isaksson , and P. Handel . Comparison of evaluation criteria for power amplifier behavioral modeling. In 2008 IEEE MTT-S International Microwave Symposium Digest , pages 1441 – 1444 , 2008 . doi: 10.1109/MWSYM.2008.4633050.
-
Y. Liu
,
X. Xia
,
Q. Xu
,
W. Pan
,
W. Ma
,
S. Shao
, and
Y. Tang
.
Relaxing requirements on training samples in digital predistortion by using Ridge regression
.
IEEE Microwave and Wireless Components Letters
,
31
(
6
):
616
–
619
,
2021
. doi: 10.1109/LMWC.2021.3067346.
10.1109/LMWC.2021.3067346 Google Scholar
- A.S. Tehrani , H. Cao , S. Afsardoost , T. Eriksson , M. Isaksson , and C. Fager . A comparative analysis of the complexity/accuracy tradeoff in power amplifier behavioral models . IEEE Transactions on Microwave Theory and Techniques , 58 ( 6 ): 1510 – 1520 , 2010 . doi: 10.1109/TMTT.2010.2047920.
- B. Widrow . Thinking about thinking: the discovery of the LMS algorithm . IEEE Signal Processing Magazine , 22 ( 1 ): 100 – 106 , 2005 . doi: 10.1109/MSP.2005.1407720.