Functionalized Nanomaterials for Supercapacitors and Hybrid Capacitor Devices
Shubham Mehta
Chemistry Department, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorGautam Patel
Chemistry Department, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorRohankumar Patel
Research and Development, Amneal Pharmaceuticals, Bridgewater, NJ, USA
Search for more papers by this authorTrilokkumar Akhani
Physics Department, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorArvnabh Mishra
Department of Chemistry, Shri Govind Guru University, Vinzol, Godhra, Gujarat, India
Search for more papers by this authorShubham Mehta
Chemistry Department, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorGautam Patel
Chemistry Department, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorRohankumar Patel
Research and Development, Amneal Pharmaceuticals, Bridgewater, NJ, USA
Search for more papers by this authorTrilokkumar Akhani
Physics Department, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorArvnabh Mishra
Department of Chemistry, Shri Govind Guru University, Vinzol, Godhra, Gujarat, India
Search for more papers by this authorGopal Rawat
Chief Technology Officer
Bharatah Cryogenics Pvt. Ltd., Uttar Pradesh, India
Search for more papers by this authorGautam Patel
Dept. of Chemistry, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorKalim Deshmukh
New Technologies Research Centre, University of West Bohemia, Pilsen, Czech Republic
Search for more papers by this authorChaudhery Mustansar Hussain
Dept. of Chemistry & Environmental Sciences, New Jersey Institute of Technology, Newark, New Jersey, United States
Search for more papers by this authorSummary
One of the crucial reasons for growing interest in supercapacitors and hybrid capacitor devices is increasing demand for efficient energy storage devices. The enhanced performance of these textiles is mainly attributed to the incorporation, as part of their structure, of functionalized nanomaterials that are crucial for producing an improvement in their operation and effectiveness. The objective of the present thorough review paper is to highlight the various aspects demonstrating a great scope for functionalized nanomaterial to be explored in supercapacitors and hybrid capacitor device. After discussing the broader space of energy storage devices, we introduced you to the basic principles of supercapacitors and hybrid capacitors. This, again, is indicative of the absolutely vital role that functionalized nanomaterials play in enhancing these device performance metrics, thus generating a comprehensive understanding for their promotion of this energy storage technology. The introduction further outlines what is to cover, presenting a broad view of the purpose and extent of the review consultation. Later sections focus in crazy detail on the whole world of nanomaterials and how they are used for electrode construction. In this context, a systematic classification of nanomaterials and a comprehensive description of various synthesis approaches to their functionalized forms will be provided as basic information in preparation for the subsequent more detailed presentation on different strategies for modification of electrodes to enhance their performance. Thus, the narrative now moves smoothly to advanced/nanocomposite materials designed for supercapacitors and hybrid capacitor devices. Understanding structural relationships through different types of synthesis and X-ray techniques gives important insight into the complex relationship between material composition and performance properties. It provides a critical assessment of current and future trends in research and development (including breakthroughs, reagents, products, applications, and emerging technologies). In addition, we explain the inherent difficulties faced when incorporating functionalized nanomaterials into more applied use cases and provide a detailed insight on the obstacles that need to be addressed to fully unlock their capabilities.
References
- Kebede , A.A. , Kalogiannis , T. , Van Mierlo , J. , Berecibar , M. , A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration . Renew. Sustain. Energy Rev. , 159 , 112213 , May 2022 .
- Hemmati , R. and Saboori , H. , Emergence of hybrid energy storage systems in renewable energy and transport applications – A review . Renew. Sustain. Energy Rev. , 65 , 11 – 23 , Nov. 2016 .
- Versteeg , T. , Baumann , M.J. , Weil , M. , Moniz , A.B. , Exploring emerging battery technology for grid-connected energy storage with Constructive Technology Assessment . Technol. Forecast. Soc. Change , 115 , 99 – 110 , Feb. 2017 .
- Luo , X. , Wang , J. , Dooner , M. , Clarke , J. , Overview of current development in electrical energy storage technologies and the application potential in power system operation . Appl. Energy , 137 , 511 – 536 , Jan. 2015 .
- Koçak , B. , Fernandez , A.I. , Paksoy , H. , Review on sensible thermal energy storage for industrial solar applications and sustainability aspects . Sol. Energy , 209 , 135 – 169 , Oct. 2020 .
- Nie , B. , Palacios , A. , Zou , B. , Liu , J. , Zhang , T. , Li , Y. , Review on phase change materials for cold thermal energy storage applications . Renew. Sustain. Energy Rev. , 134 , 110340 , Dec. 2020 .
- Gholamibozanjani , G. and Farid , M. , A comparison between passive and active PCM systems applied to buildings . Renew. Energy , 162 , 112 – 123 , Dec. 2020 .
- Aziz , M.B.A. , Zain , Z.M. , Baki , S.R.M.S. , Muslam , M.N. , Review on performance of Thermal Energy Storage system at S & T Complex, UiTM Shah Alam, Selangor , in: 2010 IEEE Control and System Graduate Research Colloquium (ICSGRC 2010) , pp. 49 – 54 , 2010 .
- Ali , M.H. , Wu , B. , Dougal , R.A. , An Overview of SMES Applications in Power and Energy Systems . IEEE Trans. Sustain. Energy , 1 , 1 , 38 – 47 , Apr. 2010 .
- Smith , S.C. , Sen , P.K. , Kroposki , B. , Advancement of energy storage devices and applications in electrical power system , in: 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century , pp. 1 – 8 , 2008 .
- Revankar , S.T. , Chemical Energy Storage , in: Storage and Hybridization of Nuclear Energy , pp. 177 – 227 , Elsevier , 2019 .
- Kampouris , K.P. , Drosou , V. , Karytsas , C. , Karagiorgas , M. , Energy storage systems review and case study in the residential sector . IOP Conf. Ser. Earth Environ. Sci. , 410 , 1 , 012033 , Jan. 2020 .
- Zhang , F. , Zhao , P. , Niu , M. , Maddy , J. , The survey of key technologies in hydrogen energy storage . Int. J. Hydrog. Energy , 41 , 33 , 14535 – 14552 , Sep. 2016 .
- Nadeem , F. , Hussain , S.M.S. , Tiwari , P.K. , Goswami , A.K. , Ustun , T.S. , Comparative Review of Energy Storage Systems, Their Roles, and Impacts on Future Power Systems . IEEE Access , 7 , 4555 – 4585 , 2019 .
- Hossain , E. , Faruque , H. , Sunny , M. , Mohammad , N. , Nawar , N. , A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects . Energies , 13 , 14 , 3651 , Jul. 2020 .
- Guney , M.S. and Tepe , Y. , Classification and assessment of energy storage systems . Renew. Sustain. Energy Rev. , 75 , 1187 – 1197 , Aug. 2017 .
- Mitali , J. , Dhinakaran , S. , Mohamad , A.A. , Energy storage systems: a review . Energy Storage Sav. , 1 , 3 , 166 – 216 , Sep. 2022 .
- Nizar , S.A.S. , Ramar , V. , Venkatesan , T. , Balaya , P. , Valiyaveettil , S. , Enhanced electrochemical performance of W incorporated VO2 nanocomposite cathode material for lithium battery application . Electrochim. Acta , 282 , 480 – 489 , Aug. 2018 .
- Deng , Y.-P. , Liang , R. , Jiang , G. , Jiang , Y. , Yu , A. , Chen , Z. , The Current State of Aqueous Zn-Based Rechargeable Batteries . ACS Energy Lett. , 5 , 5 , 1665 – 1675 , May 2020 .
- Yi , T.-F. , Qiu , L. , Qu , J.-P. , Liu , H. , Zhang , J.-H. , Zhu , Y.-R. , Towards high-performance cathodes: Design and energy storage mechanism of vanadium oxides-based materials for aqueous Zn-ion batteries . Coord. Chem. Rev. , 446 , 214124 , Nov. 2021 .
- Liu , Y. , Hu , P. , Liu , H. , Wu , X. , Zhi , C. , Tetragonal VO2 hollow nanospheres as robust cathode material for aqueous zinc ion batteries . Mater. Today Energy , 17 , 100431 , Sep. 2020 .
- Tang , B. , Shan , L. , Liang , S. , Zhou , J. , Issues and opportunities facing aqueous zinc-ion batteries . Energy Environ. Sci. , 12 , 11 , 3288 – 3304 , 2019 .
- Su , K. , Naka , T. , Azhan , N.H. , Okimura , K. , Higuchi , M. , Oriented growth of VO2(B) thin films on Mo foils by reactive sputtering for lithium ion batteries . Thin Solid Films , 616 , 95 – 100 , Oct. 2016 .
- Chen , L. , et al ., Ultrastable and High-Performance Zn/VO 2 Battery Based on a Reversible Single-Phase Reaction . Chem. Mater. , 31 , 3 , 699 – 706 , Feb. 2019 .
- Cai , Y. , et al ., Boosting Zn-Ion Storage Performance of Bronze-Type VO 2 via Ni-Mediated Electronic Structure Engineering . ACS Appl. Mater. Interfaces , 12 , 32 , 36110 – 36118 , Aug. 2020 .
- Cui , F. , Zhao , J. , Zhang , D. , Fang , Y. , Hu , F. , Zhu , K. , VO2(B) nanobelts and reduced graphene oxides composites as cathode materials for low-cost rechargeable aqueous zinc ion batteries . Chem. Eng. J. , 390 , 124118 , Jun. 2020 .
- Dai , X. , Wan , F. , Zhang , L. , Cao , H. , Niu , Z. , Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance . Energy Storage Mater. , 17 , 143 – 150 , Feb. 2019 .
- Yang , M. , et al ., A unique morphology and interface dual-engineering strategy enables the holey C@VO2 cathode with enhanced storage kinetics for aqueous Zn-ion batteries . J. Mater. Chem. A , 9 , 13 , 8792 – 8804 , 2021 .
- Zhang , W. , et al ., Adjusting the Valence State of Vanadium in VO2 (B) by Extracting Oxygen Anions for High-Performance Aqueous Zinc-Ion Batteries . ChemSusChem , 14 , 3 , 971 – 978 , Feb. 2021 .
- Chen , D. , Lu , M. , Cai , D. , Yang , H. , Han , W. , Recent advances in energy storage mechanism of aqueous zinc-ion batteries . J. Energy Chem. , 54 , 712 – 726 , Mar. 2021 .
- Liu , X. , et al ., Ultrathin hybrid nanobelts of single-crystalline VO2 and Poly(3,4-ethylenedioxythiophene) as cathode materials for aqueous zinc ion batteries with large capacity and high-rate capability . J. Power Sources , 463 , 228223 , Jul. 2020 .
- Wei , T. , Li , Q. , Yang , G. , Wang , C. , An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide . J. Mater. Chem. A , 6 , 17 , 8006 – 8012 , 2018 .
- Zhang , L. , et al ., A durable VO 2 (M)/Zn battery with ultrahigh rate capability enabled by pseudocapacitive proton insertion . J. Mater. Chem. A , 8 , 4 , 1731 – 1740 , 2020 .
- Li , W. , Huang , J. , Cao , L. , Li , X. , Chen , S. , Feng , L. , Polycrystalline VO2(M) with well-dispersed crystalline zones for enhanced electroactivity of lithium-ion batteries . J. Alloys Compd. , 812 , 152122 , Jan. 2020 .
- Jia , D. , et al ., VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries . Nano Res. , 13 , 1 , 215 – 224 , Jan. 2020 .
- Zhu , K. , Wu , T. , Sun , S. , van den Bergh , W. , Stefik , M. , Huang , K. , Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries . Energy Storage Mater. , 29 , 60 – 70 , Aug. 2020 .
- Ding , J. , Gao , H. , Ji , D. , Zhao , K. , Wang , S. , Cheng , F. , Vanadium-based cathodes for aqueous zinc-ion batteries: from crystal structures, diffusion channels to storage mechanisms . J. Mater. Chem. A , 9 , 9 , 5258 – 5275 , 2021 .
- Zhang , S. , Tan , H. , Rui , X. , Yu , Y. , Vanadium-Based Materials: Next Generation Electrodes Powering the Battery Revolution? Acc. Chem. Res. , 53 , 8 , 1660 – 1671 , Aug. 2020 .
- Zhou , J. , Shan , L. , Wu , Z. , Guo , X. , Fang , G. , Liang , S. , Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode . Chem. Commun. , 54 , 35 , 4457 – 4460 , 2018 .
- Song , M. , Tan , H. , Chao , D. , Fan , H.J. , Recent Advances in Zn-Ion Batteries . Adv. Funct. Mater. , 28 , 41 , 1802564 , Oct. 2018 .
- Qiu , Y. , et al ., Vanadium Oxide-Based Cathode Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Design Strategy . Inorganics , 11 , 3 , 118 , Mar. 2023 .
- Ding , J. , et al ., In Situ Lattice Tunnel Distortion of Vanadium Trioxide for Enhancing Zinc Ion Storage . Adv. Energy Mater. , 11 , 26 , Jul. 2021 .
- Jaeho Shin , J.W.C. , Choi , D.S. , Lee , H.J. , Jung , Y. , Hydrated Intercalation for High-Performance Aqueous Zinc Ion Batteries . Adv. Energy Mater. , 9 , 14 , 1900083 , 2019 .
- Luo , H. , et al ., Anodic Oxidation Strategy toward Structure-Optimized V2O3 Cathode via Electrolyte Regulation for Zn-Ion Storage . ACS Nano , 14 , 6 , 7328 – 7337 , Jun. 2020 .
- Chen , X. , Wang , L. , Li , H. , Cheng , F. , Chen , J. , Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries . J. Energy Chem. , 38 , 20 – 25 , Nov. 2019 .
- Li , Z. , Ganapathy , S. , Xu , Y. , Zhou , Z. , Sarilar , M. , Wagemaker , M. , Mechanistic Insight into the Electrochemical Performance of Zn/VO2 Batteries with an Aqueous ZnSO4 Electrolyte . Adv. Energy Mater. , 9 , 22 , 1900237 , Jun. 2019.
- Javed , M.S. , Lei , H. , Wang , Z. , Liu , B. , Cai , X. , Mai , W. , 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries . Nano Energy , 70 , 104573 , Apr. 2020 .
- Chen , L. , Yang , Z. , Huang , Y. , Monoclinic VO2 (D) hollow nanospheres with super-long cycle life for aqueous zinc ion batteries . Nanoscale , 11 , 27 , 13032 – 13039 , 2019 .
- Li , Y. , Zhang , D. , Huang , S. , Yang , H.Y. , Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries . Nano Energy , 85 , 105969 , Jul. 2021 .
- Kundu , D. , Adams , B.D. , Duffort , V. , Vajargah , S.H. , Nazar , L.F. , A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode . Nat. Energy , 1 , 10 , 16119 , Aug. 2016 .
- Yan , M. , et al ., Water-Lubricated Intercalation in V 2 O 5 ·nH 2 O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries . Adv. Mater. , 30 , 1 , 1703725 , Jan. 2018 .
- Lai , J. , Zhu , H. , Zhu , X. , Koritala , H. , Wang , Y. , Interlayer-Expanded V6O13 · nH2O Architecture Constructed for an Advanced Rechargeable Aqueous Zinc-Ion Battery . ACS Appl. Energy Mater. , 2 , 3 , 1988 – 1996 , Mar. 2019 .
- Lajnef , W. , Vinassa , J.-M. , Briat , O. , Azzopardi , S. , Woirgard , E. , Characterization methods and modelling of ultracapacitors for use as peak power sources . J. Power Sources , 168 , 2 , 553 – 560 , Jun. 2007 .
- Berrueta , A. , Ursua , A. , Martin , I.S. , Eftekhari , A. , Sanchis , P. , Supercapacitors: Electrical Characteristics, Modeling, Applications, and Future Trends . IEEE Access , 7 , 50869 – 50896 , 2019 .
- Chamoli , P. , Banerjee , S. , Raina , K.K. , Kar , K.K. , Characteristics of Graphene/Reduced Graphene Oxide , in: Handbook of Nanocomposite Supercapacitor Materials I: Characteristics , pp. 155 – 177 , Springer , Cham , 2020 .
- Czagany , M. , et al ., Supercapacitors: An Efficient Way for Energy Storage Application . Materials (Basel) , 17 , 3 , 702 , Feb. 2024 .
- Huang , S. , Zhu , X. , Sarkar , S. , Zhao , Y. , Challenges and opportunities for supercapacitors . APL Mater. , 7 , 10 , Oct. 2019 .
- Zhang , Z. , et al ., A review of technologies and applications on versatile energy storage systems . Renew. Sustain. Energy Rev. , 148 , 111263 , Sep. 2021 .
- Chmiola , J. , Yushin , G. , Gogotsi , Y. , Portet , C. , Simon , P. , Taberna , P.L. , Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer . Science (80-. ) , 313 , 5794 , 1760 – 1763 , Sep. 2006 .
- Pandolfo , A.G. and Hollenkamp , A.F. , Carbon properties and their role in supercapacitors . J. Power Sources , 157 , 1 , 11 – 27 , Jun. 2006 .
- Kurzweil , P. and Chwistek , M. , Electrochemical stability of organic electrolytes in supercapacitors: Spectroscopy and gas analysis of decomposition products . J. Power Sources , 176 , 2 , 555 – 567 , Feb. 2008 .
- Adán-Más , A. , Duarte , R.G. , Silva , T.M. , Guerlou-Demourgues , L. , Montemor , M.F.G. , Enhancement of the Ni-Co hydroxide response as Energy Storage Material by Electrochemically Reduced Graphene Oxide . Electrochim. Acta , 240 , 323 – 340 , Jun. 2017 .
- Zhang , L.L. and Zhao , X.S. , Carbon-based materials as supercapacitor electrodes . Chem. Soc. Rev. , 38 , 9 , 2520 , 2009 .
- Lokhande , C.D. , Dubal , D.P. , Joo , O.-S. , Metal oxide thin film based supercapacitors . Curr. Appl. Phys. , 11 , 3 , 255 – 270 , May 2011 .
- Kötz , R. and Carlen , M. , Principles and applications of electrochemical capacitors . Electrochim. Acta , 45 , 15–16 , 2483 – 2498 , May 2000 .
- Sharma , P. and Kumar , V. , Current Technology of Supercapacitors: A Review . J. Electron. Mater. , 49 , 6 , 3520 – 3532 , Jun. 2020 .
- González , A. , Goikolea , E. , Barrena , J.A. , Mysyk , R. , Review on supercapacitors: Technologies and materials . Renew. Sustain. Energy Rev. , 58 , 1189 – 1206 , May 2016 .
- Ortega , P.F.R. , González , Z. , Blanco , C. , Silva , G.G. , Lavall , R.L. , Santamaría , R. , Biliquid Supercapacitors: a Simple and New Strategy to Enhance Energy Density in Asymmetric/Hybrid Devices . Electrochim. Acta , 254 , 384 – 392 , Nov. 2017 .
- Halper , M.S. and Ellenbogen , J.C. , Supercapacitors: A Brief Overview , MITRE Corp ., 2006 .
- Burke , A. , Ultracapacitors: why, how, and where is the technology . J. Power Sources , 91 , 1 , 37 – 50 , Nov. 2000 .
- Meet Gidwani , N.R. and Bhagwani , A. , Supercapacitors: the near Future of Batteries . Int. J. Eng. Invent. , 4 , 5 , 22 – 7 , 2014 .
- Muzaffar , A. , Ahamed , M.B. , Deshmukh , K. , Thirumalai , J. , A review on recent advances in hybrid supercapacitors: Design, fabrication and applications . Renew. Sustain. Energy Rev. , 101 , 123 – 145 , Mar. 2019 .
- Viswanathan , A. and Shetty , A.N. , The high energy supercapacitor from rGO/Ni(OH)2/PANI nanocomposite with methane sulfonic acid as dopant . J. Colloid Interface Sci. , 557 , 367 – 380 , Dec. 2019 .
- Cheng , J. , et al ., High-Performance Supercapacitor Applications of NiO-Nanoparticle-Decorated Millimeter-Long Vertically Aligned Carbon Nanotube Arrays via an Effective Supercritical CO2-Assisted Method . Adv. Funct. Mater. , 25 , 47 , 7381 – 7391 , Dec. 2015 .
- Jiang , C. , et al ., Hydrothermal synthesis of Ni(OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors . Electrochim. Acta , 173 , 399 – 407 , Aug. 2015 .
- Tasis , D. , Tagmatarchis , N. , Bianco , A. , Prato , M. , Chemistry of Carbon Nanotubes . Chem. Rev. , 106 , 3 , 1105 – 1136 , Mar. 2006 .
- Balasubramanian , K. and Burghard , M. , Chemically Functionalized Carbon Nanotubes . Small , 1 , 2 , 180 – 192 , Feb. 2005 .
- Karousis , N. , Tagmatarchis , N. , Tasis , D. , Current Progress on the Chemical Modification of Carbon Nanotubes . Chem. Rev. , 110 , 9 , 5366 – 5397 , Sep. 2010 .
- Khabashesku , V.N. and Pulikkathara , M.X. , Chemical modification of carbon nanotubes . Mendeleev Commun. , 16 , 2 , 61 – 66 , Jan. 2006 .
- Yan , Y. , et al ., Carbon nanotube catalysts: recent advances in synthesis, characterization and applications . Chem. Soc. Rev. , 44 , 10 , 3295 – 3346 , 2015 .
- Feng , Y. , et al ., Room Temperature Purification of Few-Walled Carbon Nanotubes with High Yield . ACS Nano , 2 , 8 , 1634 – 1638 , Aug. 2008 .
- Li , Y. , et al ., Progress of synthesizing methods and properties of fluorinated carbon nanotubes . Sci. China Technol. Sci. , 53 , 5 , 1225 – 1233 , May 2010 .
- Feng , W. , Fujii , A. , Ozaki , M. , Yoshino , K. , Perylene derivative sensitized multi-walled carbon nanotube thin film . Carbon N. Y. , 43 , 12 , 2501 – 2507 , Oct. 2005 .
- Feng , Y. , Lv , P. , Zhang , X. , Li , Y. , Feng , W. , Selective electroless coating of palladium nanoparticles on metallic single-walled carbon nanotube . Appl. Phys. Lett. , 97 , 8 , Aug. 2010 .
- Novoselov , K.S. , et al ., Two-dimensional gas of massless Dirac fermions in graphene . Nature , 438 , 7065 , 197 – 200 , Nov. 2005 .
- Li , Z. , Wang , L. , Li , Y. , Feng , Y. , Feng , W. , Carbon-based functional nanomaterials: Preparation, properties and applications . Compos. Sci. Technol. , 179 , 10 – 40 , Jul. 2019 .
- Geim , A.K. and Novoselov , K.S. , The rise of graphene . Nat. Mater. , 6 , 3 , 183 – 191 , Mar. 2007 .
- Lee , C. , Wei , X. , Kysar , J.W. , Hone , J. , Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene . Science (80-. ) , 321 , 5887 , 385 – 388 , Jul. 2008 .
- Chen , Y. , Zhang , B. , Liu , G. , Zhuang , X. , Kang , E.-T. , Graphene and its derivatives: switching ON and OFF . Chem. Soc. Rev. , 41 , 13 , 4688 , 2012 .
- Kuila , T. , Bose , S. , Mishra , A.K. , Khanra , P. , Kim , N.H. , Lee , J.H. , Chemical functionalization of graphene and its applications . Prog. Mater. Sci. , 57 , 7 , 1061 – 1105 , Sep. 2012 .
- Lü , P. , Feng , Y. , Zhang , X. , Li , Y. , Feng , W. , Recent progresses in application of functionalized graphene sheets . Sci. China Technol. Sci. , 53 , 9 , 2311 – 2319 , Sep. 2010 .
- Zhang , X. , Feng , Y. , Tang , S. , Feng , W. , Preparation of a graphene oxide–phthalocyanine hybrid through strong π–π interactions . Carbon N. Y. , 48 , 1 , 211 – 216 , Jan. 2010 .
- Chen , M. , et al ., Preparation of activated carbon from cotton stalk and its application in supercapacitor . J. Solid State Electrochem. , 17 , 4 , 1005 – 1012 , Apr. 2013 .
- Danish , M. and Ahmad , T. , A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application . Renew. Sustain. Energy Rev. , 87 , 1 – 21 , May 2018 .
- Vo , A.T. , et al ., Efficient Removal of Cr(VI) from Water by Biochar and Activated Carbon Prepared through Hydrothermal Carbonization and Pyrolysis: Adsorption-Coupled Reduction Mechanism . Water , 11 , 6 , 1164, Jun. 2019 .
- Zhang , X. , Wang , Y. , Yu , X. , Tu , J. , Ruan , D. , Qiao , Z. , High-performance discarded separator-based activated carbon for the application of supercapacitors . J. Energy Storage , 44 , 103378 , Dec. 2021 .
- Yang , K. , et al ., Enhanced functional properties of porous carbon materials as high-performance electrode materials for supercapacitors . Green Energy Resour. , 1 , 3 , 100030 , Sep. 2023 .
- Lobato-Peralta , D.R. , et al ., Activated carbon from wasp hive for aqueous electrolyte supercapacitor application . J. Electroanal. Chem. , 901 , 115777 , Nov. 2021 .
- Salunkhe , R.R. , Lin , J. , Malgras , V. , Dou , S.X. , Kim , J.H. , Yamauchi , Y. , Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application . Nano Energy , 11 , 211 – 218 , Jan. 2015 .
- Wang , A. , Xu , W. , Sun , Y. , Sun , K. , Jiang , J. , Heterogeneous activated carbon with graphitized shell and hydrophilic pores integrating high conductivity and pore affinity for excellent rate performance supercapacitors . Fuel , 310 , 122410 , Feb. 2022 .
- Liu , J. , et al ., Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design . Adv. Sci. , 5 , 1 , 1700322 , Jan. 2018 .
- Xie , Y. , Kocaefe , D. , Chen , C. , Kocaefe , Y. , Review of Research on Template Methods in Preparation of Nanomaterials . J. Nanomater. , 2016 , 1 – 10 , 2016 .
- Wu , G. , et al ., High performance stretchable fibrous supercapacitors and flexible strain sensors based on CNTs/MXene-TPU hybrid fibers . Electrochim. Acta , 395 , 139141 , Nov. 2021 .
- Xu , Y. , Lin , Z. , Huang , X. , Wang , Y. , Huang , Y. , Duan , X. , Functionalized Graphene Hydrogel-Based High-Performance Supercapacitors . Adv. Mater. , 25 , 40 , 5779 – 5784 , Oct. 2013 .
- Ke , Q. , Liu , Y. , Liu , H. , Zhang , Y. , Hu , Y. , Wang , J. , Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors . RSC Adv. , 4 , 50 , 26398 – 26406 , 2014 .
- Yu , Y. , et al ., Alkaline-carbonate-templated carbon: Effect of template nature on morphology, oxygen species and supercapacitor performances . Appl. Surf. Sci. , 575 , 151771 , Feb. 2022 .
- Xue , D. , et al ., Deep-eutectic-solvent synthesis of N/O self-doped hollow carbon nanorods for efficient energy storage . Chem. Commun. , 55 , 75 , 11219 – 11222 , 2019 .
- Guo , H.-L. , Su , P. , Kang , X. , Ning , S.-K. , Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents . J. Mater. Chem. A , 1 , 6 , 2248 – 2255 , 2013 .
- Chen , J. , Xu , J. , Zhou , S. , Zhao , N. , Wong , C.-P. , Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors . Nano Energy , 25 , 193 – 202 , Jul. 2016 .
- Nie , Z. , et al ., Heteroatom-doped hierarchical porous carbon from corn straw for high-performance supercapacitor . J. Energy Storage , 44 , 103410 , Dec. 2021 .
- Wang , R. , Li , X. , Nie , Z. , Zhao , Y. , Wang , H. , Metal/Metal Oxide Nanoparticles-Composited Porous Carbon for High-Performance Supercapacitors . J. Energy Storage , 38 , 102479 , Jun. 2021 .
- Lai , Y.-H. , Gupta , S. , Hsiao , C.-H. , Lee , C.-Y. , Tai , N.-H. , Multilayered nickel oxide/carbon nanotube composite paper electrodes for asymmetric supercapacitors . Electrochim. Acta , 354 , 136744 , Sep. 2020 .
- Li , W. , Li , Y. , Yang , C. , Ma , Q. , Tao , K. , Han , L. , Fabrication of 2D/2D nanosheet heterostructures of ZIF-derived Co3S4 and g-C3N4 for asymmetric supercapacitors with superior cycling stability . Dalton Trans. , 49 , 40 , 14017 – 14029 , 2020 .
- Zheng , Y. , et al ., Multi-channeled hierarchical porous carbon incorporated Co3O4 nanopillar arrays as 3D binder-free electrode for high performance supercapacitors . Nano Energy , 20 , 94 – 107 , Feb. 2016 .
- Sun , X. , Li , C. , Bai , J. , Mixed-valent CoxO–Ag/carbon nanofibers as binder-free and conductive-free electrode materials for high supercapacitor . J. Mater. Sci. - Mater. Electron. , 29 , 22 , 19382 – 19392 , Nov. 2018 .
- Vangapally , N. , V ., K.K. , Kumar , A. , Martha , S.K. , Charge storage behavior of sugar derived carbon/MnO2 composite electrode material for high-performance supercapacitors . J. Alloys Compd. , 893 , 162232 , Feb. 2022 .
- Yang , Y. , et al ., MnO2 doped carbon nanosheets prepared from coal tar pitch for advanced asymmetric supercapacitor . Electrochim. Acta , 354 , 136667 , Sep. 2020 .
- Zhao , S. , Kang , X. , Fan , H. , Si , C. , Song , X. , Preparation of zinc-doped bagasse-based activated carbon multilayer composite and its electrochemical performance as a supercapacitor . Microporous Mesoporous Mater. , 329 , 111518 , Jan. 2022 .
- Lal , M.S. , Badam , R. , Matsumi , N. , Ramaprabhu , S. , Hydrothermal synthesis of single-walled carbon nanotubes/TiO2 for quasi-solid-state composite-type symmetric hybrid supercapacitors . J. Energy Storage , 40 , 102794 , Aug. 2021 .