Functionalized Nanomaterials for Lithium-Ion Batteries
Naval V. Koralkar
Department of Chemical Engineering, School of Technology and Engineering, ITM (SLS) Baroda University, Vadodara, Gujarat, India
Search for more papers by this authorRaj Kumar
Department of Chemical Engineering, School of Technology and Engineering, ITM (SLS) Baroda University, Vadodara, Gujarat, India
Search for more papers by this authorGautam Patel
Chemistry Department, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorNaval V. Koralkar
Department of Chemical Engineering, School of Technology and Engineering, ITM (SLS) Baroda University, Vadodara, Gujarat, India
Search for more papers by this authorRaj Kumar
Department of Chemical Engineering, School of Technology and Engineering, ITM (SLS) Baroda University, Vadodara, Gujarat, India
Search for more papers by this authorGautam Patel
Chemistry Department, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorGopal Rawat
Chief Technology Officer
Bharatah Cryogenics Pvt. Ltd., Uttar Pradesh, India
Search for more papers by this authorGautam Patel
Dept. of Chemistry, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorKalim Deshmukh
New Technologies Research Centre, University of West Bohemia, Pilsen, Czech Republic
Search for more papers by this authorChaudhery Mustansar Hussain
Dept. of Chemistry & Environmental Sciences, New Jersey Institute of Technology, Newark, New Jersey, United States
Search for more papers by this authorSummary
Nanomaterials have evolved as an active area of research due to its wide range of application domains. The logical design of nanoparticles allows for exceptionally high surface areas. The majority of consumer gadgets and transportation systems rely on lithium-ion batteries (LIBs). Over the last 30 years, LIB energy density has risen significantly to meet the needs of new technologies including long-lasting tablets, drones, and electric vehicles. Graphite's theoretical capacity limits energy density in common LIBs using graphite anodes. The mechanical, absorption, optical, and electrical properties of functionalized nanomaterials differ from those of the original nanomaterials. In actuality, nanoparticles are primarily used in their functionalized forms, which are extremely distinct from the original substance. With the fast growth of electric technologies like robotics and electric cars, LIBs are now the major energy sources. Enhancing LIBs’ performance is possible by raising their energy density and cycle efficiency. The energy density of LIBs may be raised by enhancing the specific capacity and operating voltage of the electrodes, which requires improved lithiation and reduced polarization capabilities. The present chapter reviews the brief history of functionalized nanomaterials and their utilization in fabrication of LIB. The recent development in synthesis process for LIB application is covered in the present chapter. Various terms involved are explained in the current study. The chapter will provide in-depth information about the different nanomaterials used in LIBs along with the synthesis techniques. The chapter examines studies related to design of structural and functional nanomaterials for LIBs and proposes potential avenues for future research in this domain.
References
- Chu , S. , Cui , Y. , Liu , N. , The path towards sustainable energy . Nat. Mater. , 16 , 16 – 22 , 2016 , https://doi.org/10.1038/nmat4834 .
- Choi , J.W. and Aurbach , D. , Promise and reality of post-lithium-ion batteries with high energy densities . Nat. Rev. Mater. , 1 , 1 – 16 , 2016 , https://doi.org/10.1038/natrevmats.2016.13 .
- Gao , B. , Li , X. , Ding , K. , Huang , C. , Li , Q. , Chu , P.K. , Huo , K. , Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage . J. Mater. Chem. A , 7 , 14 – 37 , 2019 , https://doi.org/10.1039/c8ta05760e .
- Liu , J. , Wang , J. , Xu , C. , Jiang , H. , Li , C. , Zhang , L. , Lin , J. , Shen , Z.X. , Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design . Adv. Sci. , 5 , 1 – 19 , 2018 , https://doi.org/10.1002/advs.201700322 .
- Bruce , P.G. , Freunberger , S.A. , Hardwick , L.J. , Tarascon , J.M. , LigO2 and LigS batteries with high energy storage . Nat. Mater. , 11 , 19 – 29 , 2012 , https://doi.org/10.1038/nmat3191 .
- Kim , T. , Song , W. , Son , D.Y. , Ono , L.K. , Qi , Y. , Lithium-ion batteries: outlook on present, future, and hybridized technologies . J. Mater. Chem. A , 7 , 2942 – 2964 , 2019 , https://doi.org/10.1039/C8TA10513H .
- Geng , H. , Peng , Y. , Qu , L. , Zhang , H. , Wu , M. , Structure Design and Composition Engineering of Carbon-Based Nanomaterials for Lithium Energy Storage . Adv. Energy Mater. , 10 , 1 – 34 , 2020 , https://doi.org/10.1002/aenm.201903030 .
- Ding , J. , Hu , W. , Paek , E. , Mitlin , D. , Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium . Chem. Rev. , 118 , 6457 – 6498 , 2018 , https://doi.org/10.1021/acs.chemrev.8b00116 .
- Dunn , B. , Kamath , H. , Tarascon , J.M. , Electrical energy storage for the grid: A battery of choices . Science (80-. ) , 334 , 928 – 935 , 2011 , https://doi.org/10.1126/science.1212741 .
- Jana , M. , Xu , R. , Cheng , X.B. , Yeon , J.S. , Park , J.M. , Huang , J.Q. , Zhang , Q. , Park , H.S. , Rational design of two-dimensional nanomaterials for lithium-sulfur batteries . Energy Environ. Sci. , 13 , 1049 – 1075 , 2020 , https://doi.org/10.1039/c9ee02049g .
- Zhou , L. , Zhang , K. , Hu , Z. , Tao , Z. , Mai , L. , Kang , Y.M. , Chou , S.L. , Chen , J. , Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium-Ion Batteries . Adv. Energy Mater. , 8 , 1 – 23 , 2018 , https://doi.org/10.1002/aenm.201701415 .
- Geng , D. , Ding , N. , Hor , T.S.A. , Chien , S.W. , Liu , Z. , Wuu , D. , Xueliang , S. , From Lithium-Oxygen to Lithium-Air Batteries: Challenges and Opportunities . Adv. Energy Mater. , 6 , 1 – 14 , 2016 , https://doi.org/ https://doi.org/10.1002/aenm.201502164 .
- Rana , M. , Ahad , S.A. , Li , M. , Luo , B. , Wang , L. , Gentle , I. , Knibbe , R. , Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading . Energy Storage Mater. , 18 , 289 – 310 , 2019 , https://doi.org/10.1016/j.ensm.2018.12.024 .
- Nitta , N. , Wu , F. , Lee , J.T. , Yushin , G. , Li-ion battery materials: Present and future . Mater. Today , 18 , 252 – 264 , 2015 , https://doi.org/10.1016/j.mattod.2014.10.040 .
- Yoshino , A. , Development of the Lithium-Ion Battery and Recent Technological Trends , in: G. Pistoia (Ed.), Lithium-Ion Batter, Adv. Appl ., vol. 2014 , pp. 1 – 20 , Newnes , Rome, Italy , 2013 , https://doi.org/10.1016/B978-0-444-59513-3.00001-7 .
- Jeevan , T.S.M.A. , Tadele , G. , Yizengaw , L. , Johnson , M.F.G. , Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries . Am. J. Anal. Chem. , 13 , 431 – 448 , 2022 , https://doi.org/10.4236/ajac.2022.1311029 .
- Feng , K. , Li , M. , Liu , W. , Kashkooli , A. , Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications . Small , 14 , 1 – 33 , 2018 , https://doi.org/10.1002/smll.201702737 .
- Wu , H. and Cui , Y. , Designing nanostructured Si anodes for high energy . Nano Today , 7 , 414 – 429 , 2012 , https://doi.org/10.1016/j.nantod.2012.08.004 .
- Szczech , J.R. and Jin , S. , Nanostructured silicon for high capacity lithium battery anodes . Energy Environ. Sci. , 4 , 56 – 72 , 2011 , https://doi.org/10.1039/c0ee00281j .
- Roduner , E. , Size matters: Why nanomaterials are different . Chem. Soc. Rev. , 35 , 583 – 592 , 2006 , https://doi.org/10.1039/b502142c .
- Chen , J. , Recent progress in advanced materials for lithium ion batteries . Materials (Basel) , 6 , 156 – 183 , 2013 , https://doi.org/10.3390/ma6010156 .
- Lahiri , I. and Choi , W. , Carbon nanostructures in lithium ion batteries: Past, present, and future . Crit. Rev. Solid State Mater. Sci. , 38 , 128 – 166 , 2013 , https://doi.org/10.1080/10408436.2012.729765 .
- Guoping , W. , Qingtang , Z. , Zuolong , Y. , MeiZheng , Q. , The effect of different kinds of nanocarbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes . Solid State Ionics , 179 , 263 – 268 , 2008 , https://doi.org/10.1016/j.ssi.2008.01.015 .
- Groot , J. , State-of-health estimation of Li-ion batteries: cycle life test methods , Chalmers University of Technology , 2012 .
- Pan , X. , Tin Nanoparticles Encapsulated in Hollow TIO2 Spheres as High Performance Anode Materials for Li-Ion Batteries , University of Wisconsin-Milwaukee , 2015 .
- Chen , S. , Novel Nanomaterials for Lithium Ion Batteries and Lithium Sulfur Batteries , University of Technology , Sydney , 2014 .
- Gaines , L.L. and Dunn , J.B. , Lithium-Ion Battery Environmental Impacts , in: Gianfranco Pistoia (Ed.), Lithium-Ion Batter. Adv. Appl ., vol. 2013 , pp. 483 – 508 , Newnes , 2014 , https://doi.org/10.1016/B978-0-444-59513-3.00021-2 .
- Wang , H.F. and Xu , Q. , Materials Design for Rechargeable Metal-Air Batteries . Matter , 1 , 565 – 595 , 2019 , https://doi.org/10.1016/j.matt.2019.05.008 .
- Nayak , P.K. , Yang , L. , Brehm , W. , Adelhelm , P. , From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises . Angew. Chem. Int. Ed. , 57 , 102 – 120 , 2018 , https://doi.org/10.1002/anie.201703772 .
- Arinicheva , Y. , Wolff , M. , Lobe , S. , Dellen , C. , Fattakhova-Rohlfing , D. , Guillon , O. , Böhm , D. , Zoller , F. , Schmuch , R. , Li , J. , Winter , M. , Adamczyk , E. , Pralong , V. , Ceramics for electrochemical storage , in: O. Guillon (Ed.), Adv. Ceram. Energy Convers. Storage , pp. 549 – 709 , Elsevier , 2019 , https://doi.org/10.1016/B978-0-08-102726-4.00010-7 .
- Huang , S. , Truhlar , D.G. , Tang , A. , He , X. , Yin , H. , Li , Y. , Uio-66 metal-organic framework as an anode for a potassium-ion battery: Quantum mechanical analysis . J. Phys. Chem. C , 125 , 9679 – 9687 , 2021 , https://doi.org/10.1021/acs.jpcc.1c01657 .
- Gay , E.C. , Vissers , D.R. , Martino , F.J. , Anderson , K.E. , Performance Characteristics of Solid Lithium-Aluminum Alloy Electrodes . J. Electrochem. Soc. , 123 , 1591 – 1596 , 1976 , https://doi.org/10.1149/1.2132652 .
- Vissers , D.R. , Tomczuk , Z. , Steunenberg , R.K. , A Preliminary Investigation of High Temperature Lithium / Iron Sulfide Secondary Cells . J. Electrochem. Soc. , 121 , 665 – 667 , 1974 , https://doi.org/10.1149/1.2401882 .
- Lim , J.M. , Hwang , T. , Kim , D. , Park , M.S. , Cho , K. , Cho , M. , Intrinsic Origins of Crack Generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Material . Sci. Rep. , 7 , 2 – 11 , 2017 , https://doi.org/10.1038/srep39669 .
- Padhi , A.K. , Nanjundaswamy , K.S. , Goodenough , J.B. , Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries . J. Electrochem. Soc. , 144 , 1188 – 1194 , 1997 , https://doi.org/10.1149/1.1837571 .
- Nishi , Y. , Lithium ion secondary batteries; past 10 years and the future . J. Power Sources , 100 , 101 – 106 , 2001 , https://doi.org/10.1016/S0378-7753(01)00887-4 .
- Bin Wu , H. and Lou , X.W. , Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges . Sci. Adv. , 3 , 1 – 16 , 2017 , https://doi.org/10.1126/sciadv.aap9252 .
- Goodenough , J.B. and Park , K. , The Li-Ion Rechargeable Battery: A Perspective . J. Am. Chem. Soc. , 135 , 1167 , 2012 .
- Verma , P. , Maire , P. , Novák , P. , A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries . Electrochim. Acta , 55 , 6332 – 6341 , 2010 , https://doi.org/10.1016/j.electacta.2010.05.072 .
- Ji , X. , Lee , K.T. , Nazar , L.F. , A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries . Nat. Mater. , 8 , 500 – 506 , 2009 , https://doi.org/10.1038/nmat2460 .
- Ruska , M. and Kiviluoma , J. , Renewable electricity in Europe: Current state, drivers, and scenarios for 2020 , 2011 .
- He , J. and Manthiram , A. , A review on the status and challenges of electrocatalysts in lithium-sulfur batteries . Energy Storage Mater. , 20 , 55 – 70 , 2019 , https://doi.org/10.1016/j.ensm.2019.04.038 .
- Wang , Z.L. , Xu , D. , Xu , J.J. , Zhang , L.L. , Zhang , X.B. , Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O 2 batteries . Adv. Funct. Mater. , 22 , 3699 – 3705 , 2012 , https://doi.org/10.1002/adfm.201200403 .
- Zhu , L. , Yao , Z. , Liu , T. , Xu , C. , Cai , D. , Sa , B. , Chen , Q. , Zhan , H. , A lightweight and low-cost electrode for lithium-ion batteries derived from paper towel supported MOF arrays . Chem. Commun. , 56 , 5847 – 5850 , 2020 , https://doi.org/10.1039/d0cc01599g .
- Zhao , N. , Fu , L. , Yang , L. , Zhang , T. , Wang , G. , Wu , Y. , Van Ree , T. , Nanostructured anode materials for Li-ion batteries . Pure Appl. Chem. , 80 , 2283 – 2295 , 2008 , https://doi.org/10.1351/pac200880112283 .
- Pomerantseva , E. , Gerasopoulos , K. , Chen , X. , Rubloff , G. , Ghodssi , R. , Electrochemical performance of the nanostructured biotemplated V2O5 cathode for lithium-ion batteries . J. Power Sources , 206 , 282 – 287 , 2012 , https://doi.org/10.1016/j.jpowsour.2012.01.127 .
- Mauger , A. and Julien , C.M. , Nanoscience supporting the research on the negative electrodes of Li-ion batteries . Nanomaterials , 5 , 2279 – 2301 , 2015 , https://doi.org/10.3390/nano5042279 .
- Sehrawat , P. , Julien , C. , Islam , S.S. , Carbon nanotubes in Li-ion batteries: A review . Mater. Sci. Eng., B , 213 , 12 – 40 , 2016 , https://doi.org/10.1016/j.mseb.2016.06.013 .
- Ali , E. , Hadis , D. , Hamzeh , K. , Mohammad , K. , Nosratollah , Z. , Abolfazl , A. , Mozhgan , A. , Younes , H. , Woo , J.S. , Carbon nanotubes: properties, synthesis, purification, and medical applications . Nanoscale Res. Lett. , 9 , 393 , 2014 .
- Li , L. , Yang , H. , Zhou , D. , Zhou , Y. , Progress in Application of CNTs in Lithium-Ion Batteries . J. Nanomater. , 2014 , 1 – 9 , 2014 .
- Xiong , Z. , Soo Yun , Y. , Joon Jin , H. , Applications of Carbon Nanotubes for Lithium Ion Battery Anodes . Materials (Basel) , 6 , 1138 – 1158 , 2013 . https://doi.org/10.3390/ma6031138 .
- Zhu , J. , Duan , R. , Zhang , S. , Jiang , N. , Zhang , Y. , Zhu , J. , The application of graphene in lithium ion battery electrode materials . SpringerPlus , 3 , 1 – 8 , 2014 .
- Sui , Z.Y. , Wang , C. , Yang , Q.S. , Shu , K. , Liu , Y.W. , Han , B.H. , Wallace , G.G. , A highly nitrogen-doped porous graphene - An anode material for lithium ion batteries . J. Mater. Chem. A , 3 , 18229 – 18237 , 2015 , https://doi.org/10.1039/c5ta05759k .
- Raccichini , R. , Varzi , A. , Passerini , S. , Scrosati , B. , The role of graphene for electrochemical energy storage . Nat. Mater. , 14 , 271 – 279 , 2015 , https://doi.org/10.1038/nmat4170 .
- Wang , J. , Xu , T. , Huang , X. , Li , H. , Ma , T. , Recent progress of silicon composites as anode materials for secondary batteries . RSC Adv. , 6 , 87778 – 87790 , 2016 , https://doi.org/10.1039/c6ra08971b .
- Yaxia , Y.I.N. , Lijun , W.A.N. , Yuguo , G.U.O. , Silicon-based nanomaterials for lithium-ion batteries . Chinese Sci. Bull. , 57 , 4104 – 4110 , 2012 , https://doi.org/10.1007/s11434-012-5017-2 .
- Ma , D. , Cao , Z. , Hu , A. , Si-Based Anode Materials for Li-Ion Batteries: A Mini Review . Nano Micro Lett. , 6 , 347 – 358 , 2014 , https://doi.org/10.1007/s40820-014-0008-2 .
- Mccormac , K. , Byrd , I. , Brannen , R. , Seymour , B. , Li , J. , Wu , J. , Preparation of porous Si and TiO2 nanofibres using a sulphur-templating method for lithium storage . Phys. Status Solidi Appl. Mater. Sci. , 212 , 877 – 881 , 2015 , https://doi.org/10.1002/pssa.201431834 .
- Chen , C. , Agrawal , R. , Wang , C. , High performance Li4Ti5O12/Si composite anodes for Li-ion batteries . Nanomaterials , 5 , 1469 – 1480 , 2015 , https://doi.org/10.3390/nano5031469 .
- Ding , J. , Xu , R. , Yan , C. , Xiao , Y. , Xu , L. , Peng , H. , Park , H.S. , Liang , J. , Huang , J. , Review on nanomaterials for next-generation batteries with lithium metal anodes . Nano Sel. , 1 , 94 – 110 , 2020 , https://doi.org/10.1002/nano.202000003 .
- Li , X.Z. , Wang , X.H. , Li , S.W. , Qiu , X.P. , A novel silicon/carbon nanocomposite anode for high performance lithium-ion micro-battery . J. Phys. Conf. Ser. , 557 , 6 – 11 , 2014 , https://doi.org/10.1088/1742-6596/557/1/012059 .
- Wang , G.X. , Ahn , J.H. , Yao , J. , Bewlay , S. , Liu , H.K. , Nanostructured Si-C composite anodes for lithium-ion batteries . Electrochem. Commun. , 6 , 689 – 692 , 2004 , https://doi.org/10.1016/j.elecom.2004.05.010 .
- Su , X. , Wu , Q. , Li , J. , Xiao , X. , Lott , A. , Lu , W. , Sheldon , B.W. , Wu , J. , Silicon-Based nanomaterials for lithium-ion batteries: A review . Adv. Energy Mater. , 4 , 1 – 23 , 2014 , https://doi.org/10.1002/aenm.201300882 .
- Chen , Y. , Zhang , X. , Tian , Y. , Zhao , X. , Synthesis and characterization of silicon nanoparticles inserted into graphene sheets as high performance anode material for lithium ion batteries . J. Nanomater. , 2014 , 1 – 6 , 2014 , https://doi.org/10.1155/2014/734751 .
- Nitta , N. and Yushin , G. , High-capacity anode materials for lithium-ion batteries: Choice of elements and structures for active particles . Part. Part. Syst. Charact. , 31 , 317 – 336 , 2014 , https://doi.org/10.1002/ppsc.201300231 .
- Kamali , A.R. and Fray , D.J. , Tin-based materials as advanced anode materials for lithium ion batteries: A review . Rev. Adv. Mater. Sci. , 27 , 14 – 24 , 2011 .
- Dhanabalan , A. , Li , X. , Agrawal , R. , Chen , C. , Wang , C. , Fabrication and characterization of SnO2/graphene composites as high capacity anodes for li-ion batteries . Nanomaterials , 3 , 606 – 614 , 2013 , https://doi.org/10.3390/nano3040606 .
- Hassoun , J. , Panero , S. , Simon , P. , Taberna , P.L. , Scrosati , B. , High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries . Adv. Mater. , 19 , 1632 – 1635 , 2007 , https://doi.org/10.1002/adma.200602035 .
- Bin Wu , H. , Chen , J.S. , Hng , H.H. , Lou , X.W. , Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries . Nanoscale , 4 , 2526 – 2542 , 2012 , https://doi.org/10.1039/c2nr11966h .
- Goriparti , S. , Miele , E. , De Angelis , F. , Di Fabrizio , E. , Proietti Zaccaria , R. , Capiglia , C. , Review on recent progress of nanostructured anode materials for Li-ion batteries . J. Power Sources , 257 , 421 – 443 , 2014 , https://doi.org/10.1016/j.jpowsour.2013.11.103 .
- Han , X. , Ouyang , M. , Lu , L. , Li , J. , Cycle life of commercial lithium-ion batteries with lithium titanium oxide anodes in electric vehicles . Energies , 7 , 4895 – 4909 , 2014 , https://doi.org/10.3390/en7084895 .
- Paquin , F. , Rivnay , J. , Salleo , A. , Stingelin , N. , Silva , C. , Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors . J. Mater. Chem. C , 3 , 10715 – 10722 , 2015 , https://doi.org/10.1039/b000000x .