Additive Manufacturing Processing and Techniques
Focusing on Laser Powder Bed Fusion (L-PBF) and Its Various Post Processing Technologies
Abhishek Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorAshish Kumar Nath
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorAbhishek Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorAshish Kumar Nath
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Department of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Dept. of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Dept. of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorSummary
This chapter provides an extensive review of various additive manufacturing (AM) processes, with a primary focus on laser powder bed fusion (L-PBF). Through a comprehensive analysis of existing literature, we explore the significant advancements in AM technologies, specifically L-PBF, which has revolutionized the production of complex geometries with superior mechanical properties. This chapter also delves into critical process parameters such as laser power, scan speed, and powder characteristics, and their influence on surface roughness and overall part quality. Additionally, we discussed various post-processing techniques, particularly laser polishing, highlighting their role in enhancing surface integrity and reducing roughness. The interplay between surface texture, fatigue resistance, and corrosion behavior is also analyzed, with particular attention to the impact of heat treatments and surface metrology. The importance of optimizing process parameters and post-processing strategies to achieve higher performance and reliability in AM-produced parts across aerospace, automotive, and medical industries is presented. Our findings contribute to the growing body of knowledge on AM, providing insights for future research and industrial applications.
References
-
Gibson , I.
,
et al
.,
Additive manufacturing technologies
, vol.
17
,
Springer
,
Switzerland
,
2021
.
10.1007/978-3-030-56127-7 Google Scholar
-
Gibson , I.
,
Rosen , D.W.
,
Stucker , B.
,
Development of Additive Manufacturing Technology
, in:
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
, pp.
36
–
58
,
Springer US
,
Boston, MA
,
2010
, doi:
10.1007/978-1-4419-1120-9_2
.
10.1007/978-1-4419-1120-9_2 Google Scholar
- ISO/ASTM 52900 , Standard Terminology for Additive Manufacturing General Principles Part 1: Terminology , in: American Society for Testing of Materials , 2015 .
- Bourell , D.L. , Leu , M. , Rosen , D. , Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing , University of Texas at Austin Labratory for Freeform Fabrication Advanced Manufacturing Center , Austin, Texas, USA , 2009 , [Online]. Available: https://books.google.co.in/books?id=6IwzzwEACAAJ .
-
Kern , J.
,
Additive Manufacturing
, in:
The Digital Transformation of Logistics
, pp.
41
–
60
,
John Wiley & Sons, Ltd
,
Hoboken, New Jersey, USA
,
2021
, doi: https://doi.org/
10.1002/9781119646495.ch4
.
10.1002/9781119646495.ch4 Google Scholar
-
Wong , K.V.
and
Hernandez , A.
,
A Review of Additive Manufacturing
.
ISRN Mech. Eng.
,
2012
,
208760
,
2012
. doi:
10.5402/2012/208760
.
10.5402/2012/208760 Google Scholar
- Attaran , M. , The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing . Bus. Horiz. , 60 , 5 , 677 – 688 , 2017 . doi: https://doi.org/ 10.1016/j.bushor.2017.05.011 .
-
Guo , N.
and
Leu , M.C.
,
Additive manufacturing: technology, applications and research needs
.
Front. Mech. Eng.
,
8
,
3
,
215
–
243
,
2013
. doi:
10.1007/s11465-013-0248-8
.
10.1007/s11465-013-0248-8 Google Scholar
-
Kruth , J.P.
,
Material Incress Manufacturing by Rapid Prototyping Techniques
.
CIRP Ann.
,
40
,
2
,
603
–
614
,
1991
. doi: https://doi.org/
10.1016/S0007-8506(07)61136-6
.
10.1016/S0007-8506(07)61136-6 Google Scholar
-
F., O.J., G., J.D., P., J.R.B
.,
Petrovic , V.
,
Gonzalez , J.V.H.
,
Griñan , L.P.
,
Additive layered manufacturing: sectors of industrial application shown through case studies
.
Int. J. Prod. Res.
,
49
,
4
,
1061
–
1079
,
2011
. doi:
10.1080/00207540903479786
.
10.1080/00207540903479786 Google Scholar
- Zhai , Y. , Lados , D.A. , LaGoy , J.L. , Additive Manufacturing: Making Imagination the Major Limitation . JOM , 66 , 5 , 808 – 816 , 2014 . doi: 10.1007/s11837-014-0886-2 .
-
Azarian , M.
,
Yu , H.
,
Solvang , W.D.
,
Integrating Additive Manufacturing into a Virtual Industry 4.0 Factory BT
, in:
Advanced Manufacturing and Automation X
, pp.
587
–
594
,
2021
.
10.1007/978-981-33-6318-2_73 Google Scholar
-
Haleem , A.
and
Javaid , M.
,
Additive Manufacturing Applications in Industry 4.0: A Review
.
J. Ind. Integr. Manage.
,
04
,
04
,
1930001
, Aug.
2019
. doi:
10.1142/S2424862219300011
.
10.1142/S2424862219300011 Google Scholar
- Kubášová , K. , et al ., A Review on Additive Manufacturing Methods for NiTi Shape Memory Alloy Production . Materials , 17 , 6 , 1248 , 2024 . doi: 10.3390/ma17061248 .
-
Samal , B.B.
,
Varshney , S.K.
,
Kumar , C.S.
,
Four-dimensional (4D) printing through FDM: Effect of infill density and bed temperature on shape memory properties in different thermo-mechanical programming conditions
.
J. Mech. Sci. Technol.
,
38
,
8
,
4313
–
4319
,
2024
. doi:
10.1007/s12206-024-0727-3
.
10.1007/s12206-024-0727-3 Google Scholar
- Ribeiro , I. , et al ., Framework for Life Cycle Sustainability Assessment of Additive Manufacturing . Sustainability , 12 , 3 , 929 , 2020 . doi: 10.3390/su12030929 .
-
Hague , S.M.R.
and
Saleh , N.
,
Material and design considerations for rapid manufacturing
.
Int. J. Prod. Res.
,
42
,
22
,
4691
–
4708
,
2004
. doi:
10.1080/00207840410001733940
.
10.1080/00207840410001733940 Google Scholar
- Shanthar , R. , Chen , K. , Abeykoon , C. , Powder-Based Additive Manufacturing: A Critical Review of Materials, Methods, Opportunities, and Challenges . Adv. Eng. Mater. , 25 , 19 , 2300375 , 2023 . doi: https://doi.org/ 10.1002/adem.202300375 .
-
King , W.E.
,
et al
.,
Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing
.
J. Mater. Process. Technol.
,
214
,
12
,
2915
–
2925
,
2014
. doi: https://doi.org/
10.1016/j.jmatprotec.2014.06.005
.
10.1016/j.jmatprotec.2014.06.005 Google Scholar
- Gu , D.D. and Shen , Y.F. , Development and characterisation of direct laser sintering multicomponent Cu based metal powder . Powder Metall. , 49 , 3 , 258 – 264 , 2006 . doi: 10.1179/174329006X95662 .
-
de Moura Nobre , R.
,
et al
.,
Role of laser powder bed fusion process parameters in crystallographic texture of additive manufactured Nb–48Ti alloy
.
J. Mater. Res. Technol.
,
14
,
484
–
495
,
2021
. doi: https://doi.org/
10.1016/j.jmrt.2021.06.054
.
10.1016/j.jmrt.2021.06.054 Google Scholar
-
Bourell , D.
,
Frazier , W.
,
Kuhn , H.
,
Seifi , M.
,
ASM Handbook: Volume 24 Additive Manufacturing Processes
, vol.
24
,
ASM International
,
Materials Park, Ohio, USA
,
2020
.
10.31399/asm.hb.v24.9781627082907 Google Scholar
-
Lupi , F.
,
Pacini , A.
,
Lanzetta , M.
,
Laser powder bed additive manufacturing: A review on the four drivers for an online control
.
J. Manuf. Processes
,
103
,
413
–
429
,
2023
. doi: https://doi.org/
10.1016/j.jmapro.2023.08.022
.
10.1016/j.jmapro.2023.08.022 Google Scholar
-
Sghaier , T.A.M.
,
Sahlaoui , H.
,
Mabrouki , T.
,
Sallem , H.
,
Rech , J.
,
Selective Laser Melting of Stainless-Steel: A Review of Process, Microstructure, Mechanical Properties and Post-Processing treatments
.
Int. J. Mater. Form.
,
16
,
4
,
41
,
2023
. doi:
10.1007/s12289-023-01769-w
.
10.1007/s12289-023-01769-w Google Scholar
- Liu , S. and Shin , Y.C. , Additive manufacturing of Ti6Al4V alloy: A review . Mater. Des. , 164 , 107552 , 2019 . doi: https://doi.org/ 10.1016/j.matdes.2018.107552 .
- van Noort , R. , The future of dental devices is digital . Dent. Mater. , 28 , 1 , 3 – 12 , 2012 . doi: https://doi.org/ 10.1016/j.dental.2011.10.014 .
- Chia , H.N. and Wu , B.M. , Recent advances in 3D printing of biomaterials . J. Biol. Eng. , 9 , 1 , 4 , 2015 . doi: 10.1186/s13036-015-0001-4 .
-
Charles , A.
,
Hofer , A.
,
Elkaseer , A.
,
Scholz , S.G.
,
Additive Manufacturing in the Automotive Industry and the Potential for Driving the Green and Electric Transition
, in:
Sustainable Design and Manufacturing
, pp.
339
–
346
,
2022
.
10.1007/978-981-16-6128-0_32 Google Scholar
-
Al Rashid , A.
,
Khan , S.A.
,
Al-Ghamdi , S.G.
,
Koç , M.
,
Additive manufacturing: Technology, applications, markets, and opportunities for the built environment
.
Autom. Constr.
,
118
,
103268
,
2020
. doi: https://doi.org/
10.1016/j.autcon.2020.103268
.
10.1016/j.autcon.2020.103268 Google Scholar
- Salmi , M. , Additive Manufacturing Processes in Medical Applications . Materials , 14 , 1 , 191 , 2021 . doi: 10.3390/ma14010191 .
- Moeinfar , K. , Khodabakhshi , F. , Kashani-bozorg , S.F. , Mohammadi , M. , Gerlich , A.P. , A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys . J. Mater. Res. Technol. , 16 , 1029 – 1068 , 2022 . doi: https://doi.org/ 10.1016/j.jmrt.2021.12.039 .
-
Yasa , E.
,
Kruth , J.-P.
,
Deckers , J.
,
Manufacturing by combining Selective Laser Melting and Selective Laser Erosion/laser re-melting
.
CIRP Ann.
,
60
,
1
,
263
–
266
,
2011
. doi: https://doi.org/
10.1016/j.cirp.2011.03.063
.
10.1016/j.cirp.2011.03.063 Google Scholar
- Gong , G. , et al ., Research status of laser additive manufacturing for metal: a review . J. Mater. Res. Technol. , 15 , 855 – 884 , 2021 . doi: https://doi.org/ 10.1016/j.jmrt.2021.08.050 .
- Oliveira , J.P. , LaLonde , A.D. , Ma , J. , Processing parameters in laser powder bed fusion metal additive manufacturing . Mater. Des. , 193 , 108762 , 2020 . doi: https://doi.org/ 10.1016/j.matdes.2020.108762 .
- Khairallah , S.A. , Anderson , A.T. , Rubenchik , A. , King , W.E. , Laser powderbed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones . Acta Mater. , 108 , 36 – 45 , 2016 . doi: https://doi.org/ 10.1016/j.actamat.2016.02.014 .
- Sheshadri , R. , et al ., Experimental investigation of selective laser melting parameters for higher surface quality and microhardness properties: taguchi and super ranking concept approaches . J. Mater. Res. Technol. , 14 , 2586 – 2600 , 2021 . doi: https://doi.org/ 10.1016/j.jmrt.2021.07.144 .
-
Spierings , A.B.
,
Herres , N.
,
Levy , G.
,
Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts
.
Rapid Prototyping J.
,
17
,
3
,
195
–
202
, Jan.
2011
. doi:
10.1108/13552541111124770
.
10.1108/13552541111124770 Google Scholar
-
Kumar , A.
,
Samal , B.B.
,
Nath , A.K.
,
Kumar , C.S.
,
Laser surface modification of metal additive manufactured parts : A case study of
ex-situ
and
in-situ
methodology
, in:
Surface Engineering
, pp.
121
–
144
,
CRC Press
,
Boca Raton, Florida, USA
,
2022
, doi:
10.1201/9781003319375-5
.
10.1201/9781003319375-5 Google Scholar
-
Kumar , A.
,
Ramadas , H.
,
Samal , B.B.
,
Kumar , C.S.
,
Nath , A.K.
,
Laser polishing of cobalt chrome alloy fabricated by laser powder bed fusion process: design of experiment-based approach for reducing surface roughness
, in:
The International Journal of Advanced Manufacturing Technology
,
1245
–
1264
,
2024
, doi:
10.1007/s00170-024-14101-w
.
10.1007/s00170-024-14101-w Google Scholar
-
Yasa , E.
,
Deckers , J.
,
Kruth , J.
,
The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts
.
Rapid Prototyping J.
,
17
,
5
,
312
–
327
, Jan.
2011
. doi:
10.1108/13552541111156450
.
10.1108/13552541111156450 Google Scholar
-
Calignano , F.
,
Manfredi , D.
,
Ambrosio , E.P.
,
Iuliano , L.
,
Fino , P.
,
Influence of process parameters on surface roughness of aluminum parts produced by DMLS
.
Int. J. Adv. Manuf. Technol.
,
67
,
9
,
2743
–
2751
,
2013
. doi:
10.1007/s00170-012-4688-9
.
10.1007/s00170-012-4688-9 Google Scholar
- Boschetto , A. , Bottini , L. , Macera , L. , Veniali , F. , Post-Processing of Complex SLM Parts by Barrel Finishing . Appl. Sci. , 10 , 4 , 1382 , 2020 . doi: 10.3390/app10041382 .
- Lanzutti , A. and Marin , E. , The Challenges and Advances in Recycling/Re-Using Powder for Metal 3D Printing: A Comprehensive Review . Metals , 14 , 8 , 886 , 2024 . doi: 10.3390/met14080886 .
- Maleki , E. , Bagherifard , S. , Bandini , M. , Guagliano , M. , Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities . Addit. Manuf. , 37 , 101619 , 2021 . doi: https://doi.org/ 10.1016/j.addma.2020.101619 .
-
Hassanin , H.
,
Elshaer , A.
,
Benhadj-Djilali , R.
,
Modica , F.
,
Fassi , I.
,
Surface Finish Improvement of Additive Manufactured Metal Parts
, in:
Micro and Precision Manufacturing
,
K. Gupta
(Ed.), pp.
145
–
164
,
Springer International Publishing
,
Cham
,
2018
, doi:
10.1007/978-3-319-68801-5_7
.
10.1007/978-3-319-68801-5_7 Google Scholar
- Shiyas , K.A. and Ramanujam , R. , A review on post processing techniques of additively manufactured metal parts for improving the material properties . Mater. Today Proc. , 46 , 1429 – 1436 , 2021 . doi: https://doi.org/ 10.1016/j.matpr.2021.03.016 .
- Chaghazardi , Z. and Wüthrich , R. , Review—Electropolishing of Additive Manufactured Metal Parts . J. Electrochem. Soc. , 169 , 4 , 43510 , Apr. 2022 . doi: 10.1149/1945-7111/ac6450 .
-
Rosa , B.
,
Mognol , P.
,
Hascoët , J.
,
Laser polishing of additive laser manufacturing surfaces
.
J. Laser Appl.
,
27
,
S2
,
S29102
,
2015
. doi:
10.2351/1.4906385
.
10.2351/1.4906385 Google Scholar
- Jolly , A. , Vitry , V. , Azar , G.T. , Guaraldo , T.T. , Cobley , A.J. , Surface Defect Mitigation of Additively Manufactured Parts Using Surfactant-Mediated Electroless Nickel Coatings . Materials , 17 , 2 , 406 , 2024 . doi: 10.3390/ma17020406 .
- Wu , Y. , Lu , Y. , Zhao , M. , Bosiakov , S. , Li , L. , A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering . Polymers , 14 , 10 , 2117 , 2022 . doi: 10.3390/polym14102117 .
- Peng , X. , Kong , L. , Fuh , J.Y.H. , Wang , H. , A Review of Post-Processing Technologies in Additive Manufacturing . J. Manuf. Mater. Process. , 5 , 2 , 38 , 2021 . doi: 10.3390/jmmp5020038 .
-
Junker , D.
,
Hentschel , O.
,
Schmidt , M.
,
Merklein , M.
,
Investigation of Heat Treatment Strategies for Additively-Manufactured Tools of X37CrMoV5-1
.
Metals
,
8
,
10
,
2018
. doi:
10.3390/met8100854
.
10.3390/met8100854 Google Scholar
-
Kumbhar , N.N.
and
Mulay , A.V.
,
Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review
.
J. Inst. Eng. India Ser. C
,
99
,
4
,
481
–
487
,
2018
. doi:
10.1007/s40032-016-0340-z
.
10.1007/s40032-016-0340-z Google Scholar
-
Boban , J.
,
Ahmed , A.
,
Jithinraj , E.K.
,
Rahman , M.A.
,
Rahman , M.
,
Polishing of additive manufactured metallic components: retrospect on existing methods and future prospects
.
Int. J. Adv. Manuf. Technol.
,
121
,
1
,
83
–
125
,
2022
. doi:
10.1007/s00170-022-09382-y
.
10.1007/s00170-022-09382-y Google Scholar
-
Lei , J.
,
Ge , Y.
,
Liu , T.
,
Wei , Z.
,
Effects of Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melting 316L Stainless Steel
.
Shock Vib.
,
2021
,
1
,
6547213
,
2021
. doi: https://doi.org/
10.1155/2021/6547213
.
10.1155/2021/6547213 Google Scholar
-
Kuisat , F.
,
Lasagni , F.
,
Lasagni , A.F.
,
Smoothing additive manufactured parts using ns-pulsed laser radiation
.
Prog. Addit. Manuf.
,
6
,
2
,
297
–
306
,
2021
. doi:
10.1007/s40964-021-00168-4
.
10.1007/s40964-021-00168-4 Google Scholar
- Dutta Majumdar , J. and Manna , I. , Laser processing of materials . Sadhana , 28 , 3 , 495 – 562 , 2003 . doi: 10.1007/BF02706446 .
- Hassan , A.F. , El-Nicklawy , M.M. , El-Adawi , M.K. , Nasr , E.M. , Hemida , A.A. , El-Ghaffar , O.A.A. , Heating effects induced by a pulsed laser in a semi-infinite target in view of the theory of linear systems . Opt. Laser Technol. , 28 , 5 , 337 – 343 , 1996 . doi: https://doi.org/ 10.1016/0030-3992(95)00083-6 .
-
Ma , C.
,
Zhao , J.
,
Cao , C.
,
Lin , T.-C.
,
Li , X.
,
Fundamental Study on Laser Interactions With Nanoparticles-Reinforced Metals—Part II: Effect of Nanoparticles on Surface Tension, Viscosity, and Laser Melting
.
J. Manuf. Sci. Eng.
,
138
,
12
,
121002
,
2016
. doi:
10.1115/1.4033446
.
10.1115/1.4033446 Google Scholar
-
Hibiya , T.
and
Ozawa , S.
,
Marangoni Flow and Surface Tension of High Temperature Melts
, in:
High-Temperature Measurements of Materials
,
H. Fukuyama
and
X.X.X.Y. Waseda
(Eds.), pp.
39
–
59
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2009
, doi:
10.1007/978-3-540-85918-5_3
.
10.1007/978-3-540-85918-5_3 Google Scholar
- Kumar , A. , Saha , S. , Kumar , C.S. , Nath , A.K. , Laser surface re-melting of additive manufactured samples with a line focused beam . Mater. Today Proc. , 26 , 1221 – 1225 , 2020 . doi: https://doi.org/ 10.1016/j.matpr.2020.02.245 .
- Ali , M. , Almotari , A. , Algamal , A. , Qattawi , A. , Recent Advancements in Post Processing of Additively Manufactured Metals Using Laser Polishing . J. Manuf. Mater. Process. , 7 , 3 , 115 , 2023 . doi: 10.3390/jmmp7030115 .
-
Krishnan , A.
and
Fang , F.
,
Review on mechanism and process of surface polishing using lasers
.
Front. Mech. Eng.
,
14
,
3
,
299
–
319
,
2019
. doi:
10.1007/s11465-019-0535-0
.
10.1007/s11465-019-0535-0 Google Scholar
-
Hong , J.
,
Zhang , L.
,
Zhang , Z.
,
Huang , H.
,
Yan , J.
,
A comparative study on mechanical polishing and laser polishing of laser-nitrided Zr-based metallic glass surface
.
Int. J. Adv. Manuf. Technol.
,
124
,
3
,
959
–
971
,
2023
. doi:
10.1007/s00170-022-10529-0
.
10.1007/s00170-022-10529-0 Google Scholar
-
Gisario , A.
,
Barletta , M.
,
Veniali , F.
,
Laser polishing: a review of a constantly growing technology in the surface finishing of components made by additive manufacturing
.
Int. J. Adv. Manuf. Technol.
,
120
,
3
,
1433
–
1472
,
2022
. doi:
10.1007/s00170-022-08840-x
.
10.1007/s00170-022-08840-x Google Scholar
-
Quinten , M.
,
Optical Surface Metrology – Physical Basics
, in:
A Practical Guide to Surface Metrology
, pp.
67
–
93
,
Springer International Publishing
,
Cham
,
2019
, doi:
10.1007/978-3-030-29454-0_4
.
10.1007/978-3-030-29454-0_4 Google Scholar
-
Quinten , M.
,
Optical Surface Metrology: Methods
, in:
A Practical Guide to Surface Metrology
, pp.
95
–
198
,
Springer International Publishing
,
Cham
,
2019
, doi:
10.1007/978-3-030-29454-0_5
.
10.1007/978-3-030-29454-0_5 Google Scholar
-
Quinten , M.
,
Introduction to Surfaces and Surface Metrology
, in:
A Practical Guide to Surface Metrology
, pp.
1
–
41
,
Springer International Publishing
,
Cham
,
2019
, doi:
10.1007/978-3-030-29454-0_1
.
10.1007/978-3-030-29454-0_1 Google Scholar
-
Archenti , A.
,
Gao , W.
,
Donmez , A.
,
Savio , E.
,
Irino , N.
,
Integrated metrology for advanced manufacturing
.
CIRP Ann.
,
73
,
2
,
639
–
665
,
2024
. doi: https://doi.org/
10.1016/j.cirp.2024.05.003
.
10.1016/j.cirp.2024.05.003 Google Scholar
-
Thakur , A.
and
Gangopadhyay , S.
,
State-of-the-art in surface integrity in machining of nickel-based super alloys
.
Int. J. Mach. Tools Manuf.
,
100
,
25
–
54
,
2016
. doi: https://doi.org/
10.1016/j.ijmachtools.2015.10.001
.
10.1016/j.ijmachtools.2015.10.001 Google Scholar
-
Greenwood , J.A.
,
Three-dimensional surface topography: Stout & Blunt, Penton Press ISBN No. 1-8571-8026-7
.
Tribol. Int.
,
37
,
3
,
289
–
290
,
2004
. doi: https://doi.org/
10.1016/j.triboint.2003.10.001
.
10.1016/j.triboint.2003.10.001 Google Scholar
-
Franco , L.A.
and
Sinatora , A.
,
3D surface parameters (ISO 25178-2): Actual meaning of Spk and its relationship to Vmp
.
Precis. Eng.
,
40
,
106
–
111
,
2015
. doi:
10.1016/j.precisioneng.2014.10.011
.
10.1016/j.precisioneng.2014.10.011 Google Scholar
- Tian , Y. , Weckenmann , A. , Hausotte , T. , Schuler , A. , He , B. , Measurement strategies in optical 3-D surface measurement with focus variation , IMEKO-International Measurement Federation Secretariat , Krakow - Kielce, Poland , 2013 .
-
Raja , J.
,
Muralikrishnan , B.
,
Fu , S.
,
Recent advances in separation of roughness, waviness and form
.
Precis. Eng.
,
26
,
2
,
222
–
235
,
2002
. doi: https://doi.org/
10.1016/S0141-6359(02)00103-4
.
10.1016/S0141-6359(02)00103-4 Google Scholar
-
Dobrzański , P.
and
Pawlus , P.
,
A study of filtering techniques for areal surface topography assessment
.
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
225
,
11
,
2096
–
2107
,
2011
. doi:
10.1177/0954405410397235
.
10.1177/0954405410397235 Google Scholar
-
Shao , Y.
,
Xu , F.
,
Chen , J.
,
Lu , J.
,
Du , S.
,
Engineering surface topography analysis using an extended discrete modal decomposition
.
J. Manuf. Processes
,
90
,
367
–
390
,
2023
. doi: https://doi.org/
10.1016/j.jmapro.2023.02.005
.
10.1016/j.jmapro.2023.02.005 Google Scholar
- I. O. for Standardization , ISO 4287-1997 Geometrical product specifications (GPS)-Surface texture: Profile method-Terms, definitions and surface texture parameters . Int. Stand. ISO , 1998 , 25 , 2007 .
-
Ciochon , A.
,
Kennedy , J.
,
Leiba , R.
,
Flanagan , L.
,
Culleton , M.
,
The impact of surface roughness on an additively manufactured acoustic material: An experimental and numerical investigation
.
J. Sound Vib.
,
546
,
117434
,
2023
. doi: https://doi.org/
10.1016/j.jsv.2022.117434
.
10.1016/j.jsv.2022.117434 Google Scholar
-
Lebea , L.
,
Ngwangwa , H.M.
,
Desai , D.
,
Nemavhola , F.
,
Experimental investigation into the effect of surface roughness and mechanical properties of 3D-printed titanium Ti-64 ELI after heat treatment
.
Int. J. Mech. Mater. Eng.
,
16
,
1
,
16
,
2021
. doi:
10.1186/s40712-021-00138-2
.
10.1186/s40712-021-00138-2 Google Scholar
- Heimbrook , A. and Gall , K. , Effect of surface topography on the fatigue behavior of additively manufactured Ti6Al4V and CoCr alloys . Mater. Sci. Eng. A , 909 , 146821 , 2024 . doi: https://doi.org/ 10.1016/j.msea.2024.146821 .
- Jackson , M. and Dring , K. , A review of advances in processing and metallurgy of titanium alloys . Mater. Sci. Technol. , 22 , 8 , 881 – 887 , 2006 . doi: 10.1179/174328406X111147 .