Adaptation of Chitosan-Based Harvesting Methods for Flocculation of Microalgae
Mainavi Patel
P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
Search for more papers by this authorHirak Parikh
Department of Earth and Environmental Systems, Indiana State University, Terre Haute, Indiana, USA
Search for more papers by this authorGayatri Dave
P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
Search for more papers by this authorMainavi Patel
P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
Search for more papers by this authorHirak Parikh
Department of Earth and Environmental Systems, Indiana State University, Terre Haute, Indiana, USA
Search for more papers by this authorGayatri Dave
P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
Search for more papers by this authorVandana Vinayak
School of Applied Sciences, Dr. Hari Singh Gour Vishwavidhyalaya (A Central University), Sagar, Madhya Pradesh, India
Search for more papers by this authorRichard Gordon
Gulf Specimen Marine Lab & Aquarium, Florida, USA
Search for more papers by this authorSummary
This chapter addresses the potential of microalgae, focusing on diatoms because of their distinctive features and high nutritional value. Single-celled photosynthetic microalgae have been around for three billion years. They have also been used as a food source for humans over 2000 years, with Spirulina gaining global popularity as a dietary supplement. Diatoms’ high lipid content makes them an excellent source for biofuel production, offering a renewable and environmentally friendly alternative to conventional fossil fuels.
The cultivation of microalgae poses challenges due to their small size, low settling rate, and susceptibility to damage during harvesting. Various harvesting methods, such as physical (mechanical), chemical, and biological techniques, have been explored to address these challenges. Flocculation, a widely used method, involves the formation of aggregates (flocs) to separate microalgae from the growth medium or water. The natural polysaccharide chitosan has gained attention as an eco-friendly and effective flocculant for microalgae harvesting. Studies have shown the potential benefits of combining chitosan with other techniques, such as electroflotation, electrolysis, and magnetic nanoparticles, to enhance harvesting efficiency and reduce processing costs. The chapter emphasizes the significance of interdisciplinary research to enhance microalgae cultivation and harvesting methods, unlocking their full potential for sustainable applications in various industries.
References
- Vuppaladadiyam , A. K. , Prinsen , P. , Raheem , A. , Luque , R. , & Zhao , M. ( 2018 ). Microalgae cultivation and metabolites production: A comprehensive review . Biofuels, Bioproducts and Biorefining , 12 ( 2 ), 304 – 324 . https://doi.org/10.1002/bbb.1864
- Ananthi , V. , Balaji , P. , Sindhu , R. , Ki\m , S.-H. , Pugazhendhi , A. , & Arun , A. ( 2021 ). A critical review on different harvesting techniques for algal based biodiesel production . Science of The Total Environment , 780 , 146467 . https://doi.org/10.1016/j.scitotenv.2021.146467
- Sathasivam , R. , Radhakrishnan , R. , Hashem , A. , & Abd_Allah , E. F. ( 2019 ). Microalgae metabolites: A rich source of food and medicine . Saudi Journal of Biological Sciences , 26 ( 4 ), 709 – 722 . https://doi.org/10.1016/j.sjbs.2017.11.003
- Ansari , F. A. , Guldhe , A. , Gupta , S. K. , Rawat , I. , & Bux , F. ( 2021 ). Improving the feasibility of aquaculture feed by using microalgae . Environmental Science and Pollution Research , 28 ( 32 ), 43234 – 43257 . https://doi.org/10.1007/s11356-021-14989-x
-
Branyikova , I.
, &
Lucakova , S.
(
2021
).
Technical and physiological aspects of microalgae cultivation and productivity—
Spirulina
as a promising and feasible choice
.
Organic Agriculture
,
11
(
2
),
269
–
276
.
https://doi.org/10.1007/s13165-020-00323-1
10.1007/s13165-020-00323-1 Google Scholar
- Hu , Q. , Sommerfeld , M. , Jarvis , E. , Ghirardi , M. , Posewitz , M. , Seibert , M. , & Darzins , A. ( 2008 ). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances . The plant journal , 54 ( 4 ), 621 – 639 .
- Slade , R. , & Bauen , A. ( 2013 ). Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects . Biomass and Bioenergy , 53 , 29 – 38 . https://doi.org/10.1016/j.biombioe.2012.12.019
- Faried , M. , Samer , M. , Abdelsalam , E. , Yousef , R. S. , Attia , Y. A. , & Ali , A. S. ( 2017 ). Biodiesel production from microalgae: Processes, technologies and recent advancements . Renewable and Sustainable Energy Reviews , 79 , 893 – 913 . https://doi.org/10.1016/j.rser.2017.05.199
- Kale , A. , & Karthick , B. ( 2015 ). The diatoms . Resonance , 20 ( 10 ), 919 – 930 .
- Leynaert , A. , Fardel , C. , Beker , B. , Soler , C. , Delebecq , G. , Lemercier , A. , … & Heggarty , K. ( 2018 ). Diatom frustules nanostructure in pelagic and benthic environments . Silicon , 10 ( 6 ), 2701 – 2709 .
- Khan , M. I. , Shin , J. H. , & Kim , J. D. ( 2018 ). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products . Microbial cell factories , 17 ( 1 ), 1 – 21 .
- Enamala , M. K. , Enamala , S. , Chavali , M. , Donepudi , J. , Yadavalli , R. , Kolapalli , B. , Aradhyula , T. V. , Velpuri , J. , & Kuppam , C. ( 2018 ). Production of biofuels from microalgae—A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae . Renewable and Sustainable Energy Reviews , 94 , 49 – 68 . https://doi.org/10.1016/j.rser.2018.05.012
- Suparmaniam , U. , Lam , M. K. , Uemura , Y. , Lim , J. W. , Lee , K. T. , & Shuit , S. H. ( 2019 ). Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review . Renewable and Sustainable Energy Reviews , 115 , 109361 . https://doi.org/10.1016/j.rser.2019.109361
- Veerabadhran , M. , Natesan , S. , MubarakAli , D. , Xu , S. , & Yang , F. ( 2021 ). Using different cultivation strategies and methods for the production of microalgal biomass as a raw material for the generation of bioproducts . Chemosphere , 285 , 131436 . https://doi.org/10.1016/j.chemosphere.2021.131436
- Parkinson , J. , & Gordon , R. ( 1999 ). Beyond micromachining: the potential of diatoms . Trends in biotechnology , 17 ( 5 ), 190 – 196 .
-
J. Seckbach
, &
R. Gordon
(Eds.). (
2019
).
Diatoms: fundamentals and applications
.
John Wiley & Sons
.
10.1002/9781119370741 Google Scholar
- Pahl , S. L. , Lewis , D. M. , Chen , F. , & King , K. D. ( 2010 ). Growth dynamics and the proximate biochemical composition and fatty acid profile of the heterotrophically grown diatom Cyclotella cryptica . Journal of applied phycology , 22 , 165 – 171 .
-
Barreto Filho , M. M.
,
Walker , M.
,
Ashworth , M. P.
, &
Morris , J. J.
(
2021
).
Structure and long-term stability of the microbiome in diverse diatom cultures
.
Microbiology Spectrum
,
9
(
1
),
e00269
–
21
.
10.1128/Spectrum.00269-21 Google Scholar
- Chauton , M. S. , Winge , P. , Brembu , T. , Vadstein , O. , & Bones , A. M. ( 2013 ). Gene regulation of carbon fixation, storage, and utilization in the diatom Phaeodactylum tricornutum acclimated to light/dark cycles . Plant physiology , 161 ( 2 ), 1034 – 1048 .
- Rakesh , S. , Tharunkumar , J. , Sri , B. , Jothibasu , K. , & Karthikeyan , S. ( 2020 ). Sustainable cost-effective microalgae harvesting strategies for the production of biofuel and oleochemicals . Highlights in bioscience , 3 ( July ), 1 – 8 .
- Ummalyma , S. B. , Gnansounou , E. , Sukumaran , R. K. , Sindhu , R. , Pandey , A. , & Sahoo , D. ( 2017 ). Bioflocculation: an alternative strategy for harvesting of microalgae–an overview . Bioresource technology , 242 , 227 – 235 .
- Labeeuw , L. , Commault , A. S. , Kuzhiumparambil , U. , Emmerton , B. , Nguyen , L. N. , Nghiem , L. D. , & Ralph , P. J. ( 2021 ). A comprehensive analysis of an effective flocculation method for high quality microalgal biomass harvesting . Science of The Total Environment , 752 , 141708 . https://doi.org/10.1016/j.scitotenv.2020.141708
- Singh , G. , & Patidar , S. K. ( 2018 ). Microalgae harvesting techniques: A review . Journal of Environmental Management , 217 , 499 – 508 . https://doi.org/10.1016/j.jenvman.2018.04.010
- Branyikova , I. , Prochazkova , G. , Potocar , T. , Jezkova , Z. , & Branyik , T. ( 2018 ). Harvesting of microalgae by flocculation . Fermentation , 4 ( 4 ), 93 .
- Christenson , L. , & Sims , R. ( 2011 ). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts . Biotechnology advances , 29 ( 6 ), 686 – 702 .
-
Morrissey , K. L.
,
Keirn , M. I.
,
Inaba , Y.
,
Denham , A. J.
,
Henry , G. J.
,
Vogler , B. W.
,
Posewitz , M. C.
, &
Stoykovich , M. P.
(
2015
).
Recyclable polyampholyte flocculants for the cost-effective stering of microalgae and cyanobacteria
.
Algal Research
,
11
,
304
–
312
.
https://doi.org/10.1016/j.algal.2015.07.009
10.1016/j.algal.2015.07.009 Google Scholar
- Milledge , J. J. , & Heaven , S. ( 2013 ). A review of the harvesting of micro-algae for biofuel production . Reviews in Environmental Science and Bio/Technology , 12 ( 2 ), 165 – 178 . https://doi.org/10.1007/s11157-012-9301-z
- Blockx , J. , Verfaillie , A. , Thielemans , W. , & Muylaert , K. ( 2018 ). Unravelling the Mechanism of Chitosan-Driven Flocculation of Microalgae in Seawater as a Function of pH . ACS Sustainable Chemistry & Engineering , 6 ( 9 ), 11273 – 11279 . https://doi.org/10.1021/acssuschemeng.7b04802
- Matter , Bui , Jung , Seo , Kim , Lee , & Oh . ( 2019 ). Flocculation Harvesting Techniques for Microalgae: A Review . Applied Sciences , 9 ( 15 ), 3069 . https://doi.org/10.3390/app9153069
-
Wang , Q.
,
Oshita , K.
, &
Takaoka , M.
(
2021
).
Flocculation properties of eight microalgae induced by aluminum chloride, Chitosan, amphoteric polyacrylamide, and alkaline: Life-cycle assessment for screening species and harvesting methods
.
Algal Research
,
54
,
102226
.
https://doi.org/10.1016/j.algal.2021.102226
10.1016/j.algal.2021.102226 Google Scholar
- Uduman , N. , Qi , Y. , Danquah , M. K. , Forde , G. M. , & Hoadley , A. ( 2010 ). Dewatering of microalgal cultures: A major bottleneck to algae-based fuels . Journal of Renewable and Sustainable Energy , 2 ( 1 ), 012701 . https://doi.org/10.1063/1.3294480
- Zhu , L. , Li , Z. , & Hiltunen , E. ( 2018 ). Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: Effects on biomass sedimentation, spent medium recycling and lipid extraction . Biotechnology for Biofuels , 11 ( 1 ), 183 . https://doi.org/10.1186/s13068-018-1183-z
- Shaikh , S. M. R. , Hassan , M. K. , Nasser , Mustafa . S. , Sayadi , S. , Ayesh , A. I. , & Vasagar , V. ( 2021 ). A comprehensive review on harvesting of microalgae using Polyacrylamide-Based Flocculants: Potentials and challenges . Separation and Purification Technology , 277 , 119508 . https://doi.org/10.1016/j.seppur.2021.119508
- Kumaran , J. , Singh , I. S. B. , & Joseph , V. ( 2021 ). Effective biomass harvesting of marine diatom Chaetoceros muelleri by chitosan-induced flocculation, preservation of biomass, and recycling of culture medium for aquaculture feed application . Journal of Applied Phycology , 33 ( 3 ), 1605 – 1619 . https://doi.org/10.1007/s10811-021-02369-4
- Renault , F. , Sancey , B. , Badot , P.-M. , & Crini , G. ( 2009 ). Chitosan for coagulation/flocculation processes – An eco-friendly approach . European Polymer Journal , 45 ( 5 ), 1337 – 1348 . https://doi.org/10.1016/j.eurpolymj.2008.12.027
-
Chen , G.
,
Zhao , L.
,
Qi , Y.
, &
Cui , Y.-L.
(
2014
).
Chitosan and Its Derivatives Applied in Harvesting Microalgae for Biodiesel Production: An Outlook
.
Journal of Nanomaterials
,
2014
,
1
–
9
.
https://doi.org/10.1155/2014/217537
10.1155/2014/217537 Google Scholar
- Ahmad , A. L. , Mat Yasin , N. H. , Derek , C. J. C. , & Lim , J. K. ( 2011 ). Optimization of microalgae coagulation process using Chitosan . Chemical Engineering Journal , 173 ( 3 ), 879 – 882 . https://doi.org/10.1016/j.cej.2011.07.070
- Yin , Z. , Chu , R. , Zhu , L. , Li , S. , Mo , F. , Hu , D. , & Liu , C. ( 2021 ). Application of chitosan-based flocculants to harvest microalgal biomass for biofuel production: A review . Renewable and Sustainable Energy Reviews , 145 , 111159 . https://doi.org/10.1016/j.rser.2021.111159
- Demir , I. , Blockx , J. , Dague , E. , Guiraud , P. , Thielemans , W. , Muylaert , K. , & Formosa-Dague , C. ( 2020 ). Nanoscale Evidence Unravels Microalgae Flocculation Mechanism Induced by Chitosan . ACS Applied Bio Materials , 3 ( 12 ), 8446 – 8459 . https://doi.org/10.1021/acsabm.0c00772
- Patel , M. , Parikh , H. , & Dave , G. ( 2023 ). Chitosan flakes-mediated diatom harvesting from natural water sources . Water Science and Technology , 87 ( 7 ), 1732 – 1746 .
-
Yang , Z.
,
Hou , J.
, &
Miao , L.
(
2021
).
Harvesting freshwater microalgae with natural polymer flocculants
.
Algal Research
,
57
,
102358
.
https://doi.org/10.1016/j.algal.2021.102358
10.1016/j.algal.2021.102358 Google Scholar
- Hadiyanto , H. , Widayat , W. , Christwardana , M. , & Pratiwi , M. E. ( 2022 ). The flocculation process of Chlorella sp. using Chitosan as a bio-flocculant: optimization of operating conditions by response surface methodology . Current Research in Green and Sustainable Chemistry , 5 , 100291 .
- Islam , M. B. , Khalekuzzaman , M. , Kabir , S. B. , & Hossain , M. R. ( 2022 ). Shrimp waste-derived Chitosan harvested microalgae for the production of high-quality biocrude through hydrothermal liquefaction . Fuel , 320 , 123906 .
- Vu , H. P. , Nguyen , L. N. , Lesage , G. , & Nghiem , L. D. ( 2020 ). Synergistic effect of dual flocculation between inorganic salts and Chitosan on harvesting microalgae Chlorella vulgaris . Environmental Technology & Innovation , 17 , 100622 . https://doi.org/10.1016/j.eti.2020.100622
- Zhou , W. , Gao , L. , Cheng , W. , Chen , L. , Wang , J. , Wang , H. , Zhang , W. , & Liu , T. ( 2016 ). Electroflotation of Chlorella sp. Assisted with flocculation by Chitosan . Algal Research , 18 , 7 – 14 . https://doi.org/10.1016/j.algal.2016.05.029
-
Zhu , L.
,
Pan , G.
,
Xu , H.
,
Kong , L.
,
Guo , W.
,
Yu , J.
,
Mortimer , R. J. G.
, &
Shi , W.
(
2021
).
Enhanced chitosan flocculation for microalgae harvesting using electrolysis
.
Algal Research
,
55
,
102268
.
https://doi.org/10.1016/j.algal.2021.102268
10.1016/j.algal.2021.102268 Google Scholar
-
Fayad , N.
,
Yehya , T.
,
Audonnet , F.
, &
Vial , C.
(
2017
).
Harvesting of microalgae
Chlorella vulgaris
using electro-coagulation-flocculation in the batch mode
.
Algal research
,
25
,
1
–
11
.
10.1016/j.algal.2017.03.015 Google Scholar
- Inostroza , C. , El Bahraoui , N. , Rivera-Tinoco , R. , & Acién , F. G. ( 2022 ). Uses of electro-coagulation-flocculation (ECF) for the pre-concentration of microalgae biomass . Process Biochemistry , 122 , 1 – 7 .
- Hou , Y. , Liu , C. , Liu , Z. , Han , T. , Hao , N. , Guo , Z. , … & Chen , F. ( 2022 ). A Novel Salt-Bridge Electroflocculation Technology for Harvesting Microalgae . Frontiers in Bioengineering and Biotechnology , 10 , 902524 .
-
Augustine , A.
,
Tanwar , A.
,
Tremblay , R.
, &
Kumar , S.
(
2019
).
Flocculation processes optimization for reuse of culture medium without pH neutralization
.
Algal Research
,
39
,
101437
.
https://doi.org/10.1016/j.algal.2019.101437
10.1016/j.algal.2019.101437 Google Scholar