Alkane-Oxidizing Enzyme AlkB
Rachel N Austin
Department of Chemistry, Barnard College, Columbia University, New York, NY, 10027 USA
Search for more papers by this authorClorice R Reinhardt
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorLiang Feng
Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorRachel N Austin
Department of Chemistry, Barnard College, Columbia University, New York, NY, 10027 USA
Search for more papers by this authorClorice R Reinhardt
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
Search for more papers by this authorLiang Feng
Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305 USA
Search for more papers by this authorAbstract
Alkanotrophs are microorganisms capable of utilizing alkanes as their sole source of carbon and energy. Alkane monooxygenase (AlkB) is a membrane-spanning diiron monooxygenase used by many alkanotrophs, in a variety of environments, to catalyze the conversion of straight-chain alkanes from C5 to C32 to the corresponding terminal alcohol. AlkB has a narrow substrate channel, capable of accommodating linear alkanes. Multiple lines of evidence support the assertion that subtle changes in the structure of the substrate channel shift the range of alkyl chain lengths favored by a particular AlkB isoform. The active site of AlkB contains two iron ions coordinated by nine histidines. No covalent bridge connects the two iron ions. The active site is similar to that of other class-III diiron enzymes including fatty acid desaturases and fatty acid hydroxylases, but different from that of other nonheme diiron enzymes, and raises questions about the mechanisms used to activate O2 and inert CH bonds.
3D Structure
References
- 1MA Lomize, ID Pogozheva, H Joo, HI Mosberg and AL Lomize, Nucleic Acids Res, 40, D370–6 (2012).
- 2EJ McKenna and MJ Coon, J Biol Chem, 225, 3882–90 (1970).
10.1016/S0021-9258(18)62932-1 Google Scholar
- 3JB van Beilen, J Kingma and B Witholt, Enzym Microb Technol, 16, 904–11 (1994).
- 4SW May, SL Gordon and MS Steltenkamp, J Am Chem Soc, 99, 2017–24 (1977).
- 5SW May and AG Katopodis, Enzym Microb Technol, 8, 17–21 (1986).
- 6SW May and RD Schwartz, J Am Chem Soc, 96, 4031–2 (1974).
- 7SW May, MS Steltenkamp, RD Schwartz and CJ McCoy, J Am Chem Soc, 98, 7856–8 (1976).
- 8A Katapodis, HAJ Smith and SW May, J Am Chem Soc, 110, 897–9 (1988).
- 9AG Katopodis, K Wimalasena, J Lee and SW May, J Am Chem Soc, 106, 7928–35 (1984).
- 10Y Nie, C-Q Chi, H Fang, J-L Liang, S-L Lu, G-L Lai, Y-Q Tang and X-L Wu, Sci Rep, 4, 4968 (2014).
- 11JB van Beilen, Z Li, WA Duetz, THM Smits and B Witholt, Oil Gas Sci Technol, 58, 427–40 (2003).
- 12S Schulz, J Giebler, A Chatzinotas, LY Wick, I Fetzer, G Welzl, H Harms and M Schloter, ISME J, 6, 1763–74 (2012).
- 13M Hassanshahian, N Amirinejad and MA Behzadi, J Environ Health Sci Eng, 18, 1415–35 (2020).
- 14M Hassanshahian, G Emtiazi and S Cappello, Mar Pollut Bull, 64, 7–12 (2012).
- 15H Li, X-L Wng, B-Z Mu, J-D Gu, Y-D Liu, K-F Lin, S-G Lu, Q Lu, B-Z Li, Y-Y Li and X-M Du, Int Biodeter Biodegr, 76, 49–57 (2013).
- 16D Jurelevicius, SR Cotta, R Peixoto, AS Rosado and L Seldin, Eur J Soil Biol, 51, 37–44 (2012).
- 17AP Luz, VH Pellizari, LG Whyte and CW Greer, Can J Microbiol, 50, 323–33 (2004).
- 18JK Looper, A Cotto, B-Y Kim, M-K Lee, MR Liles, SMN Chadhain and A Son, Environ Sci Process Impacts, 15, 2068 (2013).
- 19CB Smit, BB Tolar, JT Hollibaugh and GM King, Front Microbiol, 4, 370 (2013).
- 20Z Zhou, L Qiang, C Hao, L Fang-ming, W Yi-bin, D Ning and M Jin-lai, J Phys, 8, 3429–38 (2014).
- 21THM Smits, M Rothlisberger, B Witholt and JB van Beilen, Environ Microbiol, 1, 307–17 (1999).
- 22JB van Beilen, D Penninga and B Witholt, J Biol Chem, 267, 9194–201 (1992).
- 23DGN Muttucumaru, G Roberts, J Hinds, RA Stabler and T Parish, Tuberculosis, 84, 239–6 (2004).
- 24F Rojo and JL Martinez, in KN Timmis (ed.), Handbook of Hydrocarbons and Lipid Microbiology, Springer-Verlag, pp 3294–303 (2010).
- 25SC Williams and RN Austin, Front Microbiol, 13, 845551 (2022).
- 26A Perry, L-Y Lian and NS Scrutton, Biochem J, 354, 89–98 (2001).
- 27RN Austin, H-K Chang, G Zylstra and JT Groves, J Am Chem Soc, 122, 11747–8 (2000).
- 28J Shanklin, C Achim, H Schmidt, BG Fox and E Münck, Proc Natl Acad Sci USA, 94, 2981–6 (1997).
- 29X Guo, J Zhang, L Han, J Lee, SC Williams, A Forsberg, Y Xu, RN Austin and L Feng, Nat Commun, 14, 2180 (2023).
- 30CR Reinhardt, JA Lee, L Hendricks, T Green, L Kunczynski, AJ Roberts, N Miller, N Rafalin, HJ Kulik, CJ Pollock and RN Austin, J Am Chem Soc, 147, 2432–43 (2025).
- 31J Chai, G Guo, SM McSweeney, J Shanklin and Q Liu, Nat Struct Mol Biol, 30, 521–6 (2023).
- 32S-H Naing, S Parvez, M Pender-Cudlip, JT Groves and RN Austin, J Inorg Biochem, 121, 46–52 (2013).
- 33TH Smits, B Witholt and JB van Beilen, Antonie Van Leeuwenhoek, 84, 193–200 (2003).
- 34SC Williams, AP Forsberg, J Lee, CL Vizcarra, AJ Lopatkin and RN Austin, J Inorg Biochem, 219, 111409 (2021).
- 35SC Williams, D Luongo, M Orman, CL Vizcarra and RN Austin, J Inorg Biochem, 228, 111707 (2022).
- 36H Alonso and A Roujeinikova, Appl Environ Microbiol, 78, 7946–53 (2012).
- 37RN Austin, D Born, TJ Lawton and GE Hamilton, in TJ McGenity, KN Timmis and B Nogales (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer (2015).
10.1007/8623_2015_47 Google Scholar
- 38M Xie, H Alonso and A Roujeinikova, Appl Biochem Biotechnol, 165, 823–31 (2011).
- 39HJ Lee, LY Lian and NS Scrutton, Biochem J, 328, 131–6 (1997).
- 40JA Peterson and MJ Coon, J Biol Chem, 243, 329–34 (1968).
- 41T Ueda, ET Lode and MJ Coon, J Biol Chem, 247, 2109–16 (1972).
- 42AG Katopodis. Ph.D. thesis, Georgia Institute of Technology, (1982).
- 43H Wang, MG Klein, H Zou, W Lane, G Snell, I Levin, K Li and B-C Sang, Nat Struct Mol Biol, 22, 581–5 (2015).
- 44Y Bai, JG McCoy, EJ Levin, P Sobrado, KR Rajashankar, BG Fox and M Zhou, Nature, 524, 252–6 (2015).
- 45J Shen, G Wu, A-L Tsai and M Zhou, J Mol Biol, 432, 5152–61 (2020).
- 46G Zhu, M Koszelak-Rosenblum, SM Connelly, ME Dumont and MG Malkowski, J Biol Chem, 290, 29820–33 (2015).
- 47Y-F Tsai, W-I Luo, J-L Chang, C-W Chang, H-C Chuang, R Ramua, G-T Wei, J-M Zen and SS-F Yu, Sci Rep, 7, 8369 (2017).
- 48JB van Beilen, TH Smits, F Roos, T Brunner, SB Balada, M Rothlisberger and B Witholt, J Bacteriol, 187, 85–91 (2005).
- 49DJ Koch, MM Chen, JB van Beilen and F Arnold, Appl Environ Microbiol, 75, 337–44 (2009).
- 50SW May and BJ Abbott, Biochem Biophys Res Commun, 48, 1230–4 (1972).
- 51SW May and BJ Abbott, J Biol Chem, 248, 1725–30 (1973).
- 52JT Groves, J Chem Ed, 62, 928–31 (1985).
- 53XG Huang and JT Groves, J Biol Inorg Chem, 22, 185–207 (2017).
- 54J Rittle and MT Green, Science, 330, 933–7 (2010).
- 55CE Schulz, RG Castillo, DA Pantazis, S DeBeer and F Neese, J Am Chem Soc, 143, 6560–77 (2021).
- 56GE Cutsail, R Banerjee, DB Rice, O McCubbin Stepanic, JD Lipscomb and S DeBeer, JBIC, 27, 573–82 (2022).
- 57RN Austin, K Buzzi, E Kim, G Zylstra and JT Groves, J Biol Inorg Chem, 8, 733–40 (2003).
- 58EM Bertrand, R Sakai, EA Rozhkova-Novosad, LA Moe, BG Fox, JT Groves and RN Austin, J Inorg Biochem, 99, 1998–2006 (2005).
- 59JT Groves, L Feng and RN Austin, Acc Chem Res, 56, 3665–75 (2023).
- 60Y Wang and Y Liu, Inorg Chem, 63, 17056–66 (2024).
- 61RN Austin, K Luddy, K Erickson, M Pender-Cudlip, EM Bertrand, D Deng, RS Buzdygon, JB van Beilen and JT Groves, Angew Chem Int Ed, Engl, 47, 5232–4 (2008).
- 62EA Rozhkova-Novosad, J-C Chae, GJ Zylstra, EM Bertrand, M Alexander-Ozinskas, D Deng, LA Moe, JB van Beilen, M Danahy, JT Groves and RN Austin, Chem Bio, 14, 165–72 (2007).
- 63RN Austin, D Deng, Y Jiang, K Luddy, JB van Beilen, PR Ortiz de Montellano and JT Groves, Angew Chem. Int Ed, Engl, 45, 8192–4 (2006).
- 64O Favre-Bulle, T Schouten, J Kingma and B Witholt, Bio/Technology, 9, 367–71 (1991).
- 65A Schmid, A Kollmer, RG Mathys and B Witholt, Extremophiles, 2, 249–56 (1998).
- 66THM Smits, MA Seeger, B Witholt and JB van Beilen, Plasmid, 46, 16–24 (2001).
- 67MG Wubbolts, O Favre-Bulle and B Witholt, Biotechnol Bioeng, 52, 301–8 (1996).
10.1002/(SICI)1097-0290(19961020)52:2<301::AID-BIT10>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 68C Grant, AC da Silva Damas Pinto, H-P Lui, JM Woodley and F Baganz, Biotechnol Bioeng, 109, 2179–89 (2012).
- 69C Grant, D Deszcz, Y-C Wei, RJ Martinez-Torres, P Morris, T Folliard, R Sreenivasan, J Ward, P Dalby, JM Woodley and F Baganz, Sci Rep, 4, 5844 (2014).
- 70C Grant, JM Woodley and F Baganz, Enzym Microb Technol, 48, 480–6 (2011).
- 71A Bosetti, JB van Beilen, H Preusting, RG Lageveen and B Witholt, Enzym Microb Technol, 14, 702–8 (1992).
- 72T Fujii, T Narikawa, K Takeda and J Kato, Biosci Biotechnol Biochem, 68, 2171–7 (2004).
- 73SA Rothen, M Sauer, B Sonnleitner and B Witholt, Biotechnol Bioeng, 58, 356–65 (1998).
10.1002/(SICI)1097-0290(19980520)58:4<356::AID-BIT2>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 74R Ramu, C-W Chang, H-H Chou, L-L Wua, C-H Chiang and SS-F Yu, Tetrahedron Lett, 52, 2950–3 (2011).
- 75Q Luo, Y He, D-Y Hou, J-G Zhang and X-R Shen, Braz J Microbiol, 46, 649–57 (2015).
- 76R Gross, K Buehler and A Schmid, Biotechnol Bioeng, 110, 424–36 (2013).
- 77NB Sutton, AAM Langenhoff, DH Lasso, B van der Zaan, P van Gaans, F Maphosa, H Smidt, T Grotenhuis and HHM Rijnaarts, Appl Microbiol Biotechnol, 98, 2751–64 (2014).
- 78W Wang, B Cai and Z Shao, Front Microbiol, 5, 711 (2014).