Aluminyl Anions
Martyn P. Coles
Victoria University of Wellington, Wellington, New Zealand
Search for more papers by this authorMartyn P. Coles
Victoria University of Wellington, Wellington, New Zealand
Search for more papers by this authorAbstract
In 2018, a new class of low-valent aluminum compound was introduced to the chemical literature. Aluminyl anions [Al(I)(L2)]− consist of an Al(I) center supported by a range of (predominantly chelating) dianionic ligand scaffolds, [L2]2−. The resulting negative charge is balanced by a group 1 metal cation with examples spanning all of the stable alkali metals Li, Na, K, Rb, and Cs. The nature and extent of cation···anion interactions can be controlled, affording three distinct structural types classified as a contacted dimeric pair (CDP), a monomeric ion pair (MIP), or a separated ion pair (SIP). The chemistry of these systems has proven to be very diverse, primarily driven by the oxidation of the aluminum to a more stable Al(III) center. Researchers have been able to harness this thermodynamically favored process to promote a number of different reactions. This article describes the oxidative addition reactions of X–Y sigma bonds to aluminyl anions, to form the corresponding aluminate products [Al(III)(L2)(X)(Y)]−, containing examples of new (AlH, AlB, AlC, AlN, AlO, AlF, AlSi, and AlP) bonds. The oxidation of aluminyl anions has been expanded to access compounds with new aluminum–element multiple bonds including examples of AlCR2-, AlO-, AlS-, AlSe-, AlTe-, and AlNR-containing compounds. These terminal bonds react via [2+2] cycloaddition with unsaturated substrates to form new products, demonstrating a preference to react through formally double AlX bonds. Finally, a brief description of the application of aluminyl anions for the reductive coupling of small molecules is included. Examples involving the homocoupling of P4; the homologation of CO; and the dimerization of ketones, isocyanides, and diazomethane are provided. Under favorable conditions, these couplings have been recently extended to include examples of heterocoupling of substrates, demonstrating a high degree of control of product formation.
References
- 1W. Klemm, E. Voss and K. Geiersberger, Z. Anorg. Chem., 1948, 256, 15.
- 2M. Tacke and H. Schnoeckel, Inorg. Chem., 1989, 28, 2895.
- 3M. Mocker, C. Robl and H. Schnöckel, Angew. Chem. Int. Ed. Eng., 1994, 33, 1754.
- 4C. Dohmeier, C. Robl, M. Tacke and H. Schnöckel, Angew. Chem. Int. Ed. Eng., 1991, 30, 564.
- 5S. Schulz, H. W. Roesky, H. J. Koch, G. M. Sheldrick, D. Stalke and A. Kuhn, Angew. Chem. Int. Ed. Eng., 1993, 32, 1729.
- 6J. Gauss, U. Schneider, R. Ahlrichs, C. Dohmeier and H. Schnoeckel, J. Am. Chem. Soc., 1993, 115, 2402.
- 7A. Haaland, K.-G. Martinsen, S. A. Shlykov, H. V. Volden, C. Dohmeier and H. Schnoeckel, Organometallics, 1995, 14, 3116.
- 8S. González-Gallardo, T. Bollermann, R. A. Fischer and R. Murugavel, Chem. Rev., 2012, 112, 3136.
- 9C. Gemel, T. Steinke, M. Cokoja, A. Kempter and R. A. Fischer, Eur. J. Inorg. Chem., 2004, 2004, 4161.
- 10G. Linti and H. Schnöckel, Coord. Chem. Rev., 2000, 206–207, 285.
- 11R. A. Fischer and J. Weiß, Angew. Chem. Int. Ed., 1999, 38, 2830.
10.1002/(SICI)1521-3773(19991004)38:19<2830::AID-ANIE2830>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 12C. Dohmeier, D. Loos and H. Schnöckel, Angew. Chem. Int. Ed. Eng., 1996, 35, 129.
- 13Y. Liu, J. Li, X. Ma, Z. Yang and H. W. Roesky, Coord. Chem. Rev., 2018, 374, 387.
- 14C. Dohmeier, E. Baum, A. Ecker, R. Köppe and H. Schnöckel, Organometallics, 1996, 15, 4702.
- 15H. Sitzmann, M. F. Lappert, C. Dohmeier, C. Üffing and H. Schnöckel, J. Organomet. Chem., 1998, 561, 203.
- 16A. Hofmann, C. Pranckevicius, T. Tröster and H. Braunschweig, Angew. Chem. Int. Ed., 2019, 58, 3625.
- 17A. Hofmann, T. Tröster, T. Kupfer and H. Braunschweig, Chem. Sci., 2019, 10, 3421.
- 18C. Cui, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, H. Hao and F. Cimpoesu, Angew. Chem. Int. Ed., 2000, 39, 4274.
10.1002/1521-3773(20001201)39:23<4274::AID-ANIE4274>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 19K. Hobson, C. J. Carmalt and C. Bakewell, Chem. Sci., 2020, 11, 6942.
- 20M. Zhong, S. Sinhababu and H. W. Roesky, Dalton Trans., 2020, 49, 1351.
- 21Y.-C. Tsai, Coord. Chem. Rev., 2012, 256, 722.
- 22M. Asay, C. Jones and M. Driess, Chem. Rev., 2011, 111, 354.
- 23S. Nagendran and H. W. Roesky, Organometallics, 2008, 27, 457.
- 24H. W. Roesky and S. S. Kumar, Chem. Commun., 2005, 4027.
- 25X. Li, X. Cheng, H. Song and C. Cui, Organometallics, 2007, 26, 1039.
- 26S. Grams, J. Mai, J. Langer and S. Harder, Organometallics, 2022, 41, 2862.
- 27J. D. Queen, A. Lehmann, J. C. Fettinger, H. M. Tuononen and P. P. Power, J. Am. Chem. Soc., 2020, 142, 20554.
- 28X. Zhang and L. L. Liu, Angew. Chem. Int. Ed., 2021, 60, 27062.
- 29A. Hinz and M. P. Müller, Chem. Commun., 2021, 57, 12532.
- 30X. Zhang and L. L. Liu, Eur. J. Inorg. Chem., 2023, 26, e202300157.
- 31D. Dhara, A. Jayaraman, M. Härterich, M. Arrowsmith, M. Jürgensen, M. Michel and H. Braunschweig, Chem. Eur. J., 2023, 29, e202300483.
- 32X. Zhang, Y. Mei and L. L. Liu, Chem. Eur. J., 2022, 28, e202202102.
- 33X. Zhang and L. L. Liu, Angew. Chem. Int. Ed., 2022, 61, e202116658.
- 34X. Zhang, H. Wang, X. Lan, Y. Mei, A. Ruiz David and L. Liu Liu, CCS Chemistry, 2022, 5, 2059.
10.31635/ccschem.022.202202406 Google Scholar
- 35R. M. Hartshorn, A. T. Hutton in ‘ Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005’, IUPAC Red Book, eds. N. G. Connelly, T. Damhus, RSC Publishing, London, 2005.
- 36E. S. Schmidt, A. Jockisch and H. Schmidbaur, J. Am. Chem. Soc., 1999, 121, 9758.
- 37R. J. Baker, R. D. Farley, C. Jones, M. Kloth and D. M. Murphy, J. Chem. Soc. Dalton Trans., 2002, 3844.
- 38J. Hicks, P. Vasko, J. M. Goicoechea and S. Aldridge, Nature, 2018, 557, 92.
- 39M. Edwards, J. Hicks, C. McManus, J. M. Goicoechea and S. Aldridge, Polyhedron, 2023, 242, 116520.
- 40Y. Segawa, M. Yamashita and K. Nozaki, Science, 2006, 314, 113.
- 41Y. Segawa, Y. Suzuki, M. Yamashita and K. Nozaki, J. Am. Chem. Soc., 2008, 130, 16069.
- 42A. V. Protchenko, P. Vasko, M. Á. Fuentes, J. Hicks, D. Vidovic and S. Aldridge, Angew. Chem. Int. Ed., 2021, 60, 2064.
- 43R. J. Schwamm, M. D. Anker, M. Lein, M. P. Coles and C. M. Fitchett, Angew. Chem. Int. Ed., 2018, 57, 5885.
- 44M. D. Anker, M. Lein and M. P. Coles, Chem. Sci., 2019, 10, 1212.
- 45M. P. Coles and M. J. Evans, Chem. Commun., 2023, 59, 503.
- 46J. Hicks, P. Vasko, J. M. Goicoechea and S. Aldridge, Angew. Chem. Int. Ed., 2021, 60, 1702.
- 47N. Metzler-Nolte, New J. Chem., 1998, 22, 793.
- 48A. Sundermann, M. Reiher and W. W. Schoeller, Eur. J. Inorg. Chem., 1998, 1998, 305.
- 49R. J. Schwamm, M. D. Anker, M. Lein and M. P. Coles, Angew. Chem. Int. Ed., 2019, 58, 1489.
- 50R. J. Schwamm, M. P. Coles, M. S. Hill, M. F. Mahon, C. L. McMullin, N. A. Rajabi and A. S. S. Wilson, Angew. Chem. Int. Ed., 2020, 59, 3928.
- 51R. J. Schwamm, M. S. Hill, H.-Y. Liu, M. F. Mahon, C. L. McMullin and N. A. Rajabi, Chem. Eur. J., 2021, 27, 14971.
- 52S. Grams, J. Eyselein, J. Langer, C. Färber and S. Harder, Angew. Chem. Int. Ed., 2020, 59, 15982.
- 53G. Feng, K. L. Chan, Z. Lin and M. Yamashita, J. Am. Chem. Soc., 2022, 144, 22662.
- 54R. A. Jackson, A. J. R. Matthews, P. Vasko, M. F. Mahon, J. Hicks and D. J. Liptrot, Chem. Commun., 2023, 59, 5277.
- 55D. Bourissou, O. Guerret, F. P. Gabbaï and G. Bertrand, Chem. Rev., 2000, 100, 39.
- 56S. Kurumada, S. Takamori and M. Yamashita, Nat. Chem., 2020, 12, 36.
- 57K. Koshino and R. Kinjo, J. Am. Chem. Soc., 2020, 142, 9057.
- 58C. Yan and R. Kinjo, Angew. Chem. Int. Ed., 2022, 61, e202211800.
- 59T. X. Gentner and R. E. Mulvey, Angew. Chem. Int. Ed., 2021, 60, 9247.
- 60J. M. Gil-Negrete and E. Hevia, Chem. Sci., 2021, 12, 1982.
- 61S. D. Robertson, M. Uzelac and R. E. Mulvey, Chem. Rev., 2019, 119, 8332.
- 62M. J. Evans, M. D. Anker, C. L. McMullin, S. E. Neale and M. P. Coles, Angew. Chem. Int. Ed., 2021, 60, 22289.
- 63M. M. D. Roy, J. Hicks, P. Vasko, A. Heilmann, A.-M. Baston, J. M. Goicoechea and S. Aldridge, Angew. Chem. Int. Ed., 2021, 60, 22301.
- 64H.-Y. Liu, M. S. Hill, M. F. Mahon, C. L. McMullin and R. J. Schwamm, Organometallics, 2023, 42, 2881.
- 65S. Grams, J. Mai, J. Langer and S. Harder, Dalton Trans., 2022, 51, 12476.
- 66T. X. Gentner, M. J. Evans, A. R. Kennedy, S. E. Neale, C. L. McMullin, M. P. Coles and R. E. Mulvey, Chem. Commun., 2022, 58, 1390.
- 67M. J. Evans, M. D. Anker, M. G. Gardiner, C. L. McMullin and M. P. Coles, Inorg. Chem., 2021, 60, 18423.
- 68J. Hicks, P. Vasko, J. M. Goicoechea and S. Aldridge, J. Am. Chem. Soc., 2019, 141, 11000.
- 69M. M. D. Roy, A. A. Omaña, A. S. S. Wilson, M. S. Hill, S. Aldridge and E. Rivard, Chem. Rev., 2021, 121, 12784.
- 70A. Heilmann, J. Hicks, P. Vasko, J. M. Goicoechea and S. Aldridge, Angew. Chem. Int. Ed., 2020, 59, 4897.
- 71M. J. Evans, M. D. Anker and M. P. Coles, Inorg. Chem., 2021, 60, 4772.
- 72G. M. Ballmann, M. J. Evans, T. X. Gentner, A. R. Kennedy, J. R. Fulton, M. P. Coles and R. E. Mulvey, Inorg. Chem., 2022, 61, 19838.
- 73S. Kurumada and M. Yamashita, J. Am. Chem. Soc., 2022, 144, 4327.
- 74H.-Y. Liu, M. F. Mahon and M. S. Hill, Inorg. Chem., 2023, 62, 15310.
- 75N. Villegas-Escobar, A. Toro-Labbé and H. F. Schaefer Iii, Chem. Eur. J., 2021, 27, 17369.
- 76S. Banerjee, G. M. Ballmann, M. J. Evans, A. O'Reilly, A. R. Kennedy, J. R. Fulton, M. P. Coles and R. E. Mulvey, Chem. Eur. J., 2023, e202301849.
- 77T. Chu, I. Korobkov and G. I. Nikonov, J. Am. Chem. Soc., 2014, 136, 9195.
- 78J. Hicks, P. Vasko, A. Heilmann, J. M. Goicoechea and S. Aldridge, Angew. Chem. Int. Ed., 2020, 59, 20376.
- 79S. Kurumada, K. Sugita, R. Nakano and M. Yamashita, Angew. Chem. Int. Ed., 2020, 59, 20381.
- 80J. J. Cabrera-Trujillo and I. Fernández, Chem. Eur. J., 2020, 26, 11806.
- 81F. Dankert and C. Hering-Junghans, Chem. Commun., 2022, 58, 1242.
- 82C. Weetman, Chem. Eur. J., 2021, 27, 1941.
- 83P. Bag, C. Weetman and S. Inoue, Angew. Chem. Int. Ed., 2018, 57, 14394.
- 84D. Franz and S. Inoue, Dalton Trans., 2016, 45, 9385.
- 85D. Neculai, H. W. Roesky, A. M. Neculai, J. Magull, B. Walfort and D. Stalke, Angew. Chem. Int. Ed., 2002, 41, 4294.
10.1002/1521-3773(20021115)41:22<4294::AID-ANIE4294>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 86T. Chu, S. F. Vyboishchikov, B. Gabidullin and G. I. Nikonov, Angew. Chem. Int. Ed., 2016, 55, 13306.
- 87H. Xu, A. Kostenko, C. Weetman, S. Fujimori and S. Inoue, Angew. Chem. Int. Ed., 2023, 62, e202216021.
- 88D. Franz, T. Szilvási, E. Irran and S. Inoue, Nat. Commun., 2015, 6, 10037.
- 89N. J. Hardman, C. Cui, H. W. Roesky, W. H. Fink and P. P. Power, Angew. Chem. Int. Ed., 2001, 40, 2172.
10.1002/1521-3773(20010601)40:11<2172::AID-ANIE2172>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 90J. Li, X. Li, W. Huang, H. Hu, J. Zhang and C. Cui, Chem. Eur. J., 2012, 18, 15263.
- 91J. Hicks, A. Heilmann, P. Vasko, J. M. Goicoechea and S. Aldridge, Angew. Chem. Int. Ed., 2019, 58, 17265.
- 92M. D. Anker and M. P. Coles, Angew. Chem. Int. Ed., 2019, 58, 18261.
- 93M. D. Anker, C. L. McMullin, N. A. Rajabi and M. P. Coles, Angew. Chem. Int. Ed., 2020, 59, 12806.
- 94M. J. Evans, M. D. Anker, C. L. McMullin, S. E. Neale, N. A. Rajabi and M. P. Coles, Chem. Sci., 2022, 13, 4635.
- 95P. Pyykkö and M. Atsumi, Chem. Eur. J., 2009, 15, 12770.
- 96M. D. Anker and M. P. Coles, Angew. Chem. Int. Ed., 2019, 58, 13452.
- 97M. J. Evans, M. D. Anker, C. L. McMullin, N. A. Rajabi and M. P. Coles, Chem. Commun., 2021, 57, 2673.
- 98M. D. Anker, R. J. Schwamm and M. P. Coles, Chem. Commun., 2020, 56, 2288.
- 99A. Heilmann, P. Vasko, J. Hicks, J. M. Goicoechea and S. Aldridge, Chem. Eur. J., 2023, 29, e202300018.
- 100M. M. D. Roy, A. Heilmann, M. A. Ellwanger and S. Aldridge, Angew. Chem. Int. Ed., 2021, 60, 26550.
- 101M. S. Hill, M. F. Mahon, C. L. McMullin, S. E. Neale, K. G. Pearce and R. J. Schwamm, Z. Anorg. Allg. Chem., 2022, 648, e202200224.
- 102M. J. Evans, M. G. Gardiner, M. D. Anker and M. P. Coles, Chem. Commun., 2022, 58, 5833.
- 103A. Heilmann, M. M. D. Roy, A. E. Crumpton, L. P. Griffin, J. Hicks, J. M. Goicoechea and S. Aldridge, J. Am. Chem. Soc., 2022, 144, 12942.
- 104M. J. Evans, M. D. Anker, C. L. McMullin and M. P. Coles, Chem. Sci., 2023, 14, 6278.
- 105G. Ballmann, H. Elsen and S. Harder, Angew. Chem. Int. Ed., 2019, 58, 15736.
- 106C. Cui, S. Köpke, R. Herbst-Irmer, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt and B. Wrackmeyer, J. Am. Chem. Soc., 2001, 123, 9091.
- 107H.-Y. Liu, M. S. Hill and M. F. Mahon, Chem. Commun., 2022, 58, 6938.
- 108A. O'Reilly, M. J. Evans, C. L. McMullin, J. R. Fulton and M. P. Coles, Chem. Eur. J., 2023, 30, e202302999.
- 109M. J. Evans, M. D. Anker, C. L. McMullin and M. P. Coles, Chem. Eur. J., 2023, 29, e202302903.