Alkene-Cleaving Carotenoid Cleavage Dioxygenases
Philip D Kiser
Department of Physiology & Biophysics, University of California Irvine School of Medicine, 837 Health Sciences Road, Irvine, CA, 92617 USA
Research Service, Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH, 44106 USA
Search for more papers by this authorPhilip D Kiser
Department of Physiology & Biophysics, University of California Irvine School of Medicine, 837 Health Sciences Road, Irvine, CA, 92617 USA
Research Service, Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH, 44106 USA
Search for more papers by this authorAbstract
Carotenoid cleavage dioxygenases (CCDs) constitute a family of enzymes that catalyze reactions of carotenoids, stilbenoids, and closely related compounds with dioxygen to achieve regioselective oxidative splitting of their alkene bonds into carbonyl-containing products. This activity is enabled by a nonheme iron cofactor found in all such enzymes that facilitates activation of dioxygen for the reaction. These enzymes coordinate iron using four primary sphere His residues and an associated set of three outer sphere Glu residues. In their resting states, the iron centers of these enzymes are in a high-spin (S = 2) FeII electronic configuration and contain a bound solvent molecule making them five coordinate with a distorted square pyramidal geometry. The CCD iron center is reactive toward nitric oxide in the presence or absence of organic substrate and the resulting S = 3/2 {FeNO}7 complex, which mimics in some respects an iron-oxy adduct, has been used to study substrate binding to the CCD active site. Crystallographic studies using cobalt-substituted CCDs have enabled structures of these enzymes in complex with stilbenoid substrates to be determined revealing the positioning of the scissile alkene bond with respect to the metal center. CCDs adopt a seven-bladed β-propeller fold with iron coordinated on the top end of the propeller axis where it is covered by an α-helical dome that constitutes a bulk of the active site structure. While the modes of iron coordination and overall structure of carotenoid- and stilbenoid-cleaving CCDs are similar, these enzymes are divergent with respect to the structure of their substrate-binding clefts and membrane-binding characteristics. CCDs are broadly distributed in nature and play important roles in diverse and numerous biologic processes ranging from production of retinal chromophores for light detection to degradation of lignin-derived stilbenes in pulping-waste sludge.
3D Structure
References
- 1WL DeLano, CCP4 Newsl Protein Crystallogr, 40, 82–92 (2002).
- 2X Sui, PD Kiser, T Che, PR Carey, M Golczak, W Shi, J von Lintig and K Palczewski, J Biol Chem, 289, 12286–12299 (2014).
- 3YS Kim, NH Kim, SJ Yeom, SW Kim and DK Oh, J Biol Chem, 284, 15781–15793 (2009).
- 4RF Peck, C Echavarri-Erasun, EA Johnson, WV Ng, SP Kennedy, L Hood, S DasSarma and MP Krebs, J Biol Chem, 276, 5739–5744 (2001).
- 5H Zorn, S Langhoff, M Scheibner, M Nimtz and RG Berger, Biol Chem, 384, 1049–1056 (2003).
- 6F Ronquist and JP Huelsenbeck, Bioinformatics, 19, 1572–1574 (2003).
- 7F Sievers, A Wilm, D Dineen, TJ Gibson, K Karplus, W Li, R Lopez, H McWilliam, M Remmert, J Soding, JD Thompson and DG Higgins, Mol Syst Biol, 7, 539 (2011).
- 8P Gouet, X Robert and E Courcelle, Nucleic Acids Res, 31, 3320–3323 (2003).
- 9J von Lintig and K Vogt, J Biol Chem, 275, 11915–11920 (2000).
- 10S Ruch, P Beyer, H Ernst and S Al-Babili, Mol Microbiol, 55, 1015–1024 (2005).
- 11EK Marasco, K Vay and C Schmidt-Dannert, J Biol Chem, 281, 31583–31593 (2006).
- 12A Prado-Cabrero, D Scherzinger, J Avalos and S Al-Babili, Eukaryot Cell, 6, 650–657 (2007).
- 13O Ahrazem, L Gomez-Gomez, MJ Rodrigo, J Avalos and MC Limon, Int J Mol Sci, 17, pii: E1781 (2016).
- 14S Kamoda and Y Saburi, Biosci Biotechnol Biochem, 57, 926–930 (1993).
- 15EK Marasco and C Schmidt-Dannert, Chembiochem, 9, 1450–1461 (2008).
- 16V Diaz-Sanchez, AF Estrada, MC Limon, S Al-Babili and J Avalos, Eukaryot Cell, 12, 1305–1314 (2013).
- 17T Brefort, D Scherzinger, MC Limon, AF Estrada, D Trautmann, C Mengel, J Avalos and S Al-Babili, Fungal Genet Biol, 48, 132–143 (2011).
- 18H Chen, X Zuo, H Shao, S Fan, J Ma, D Zhang, C Zhao, X Yan, X Liu and M Han, Plant Physiol Biochem, 123, 81–93 (2018).
- 19E Poliakov, J Soucy, S Gentleman, IB Rogozin and TM Redmond, Sci Rep, 7, 13192 (2017).
- 20J von Lintig and K Vogt, J Nutr, 134, 251S–256S (2004).
- 21J von Lintig, A Dreher, C Kiefer, MF Wernet and K Vogt, Proc Natl Acad Sci U S A, 98, 1130–1135 (2001).
- 22G Palczewski, J Amengual, CL Hoppel and J von Lintig, FASEB J, 28, 4457–4469 (2014).
- 23BC Tan, SH Schwartz, JA Zeevaart and DR McCarty, Proc Natl Acad Sci U S A, 94, 12235–12240 (1997).
- 24D Scherzinger, S Ruch, DP Kloer, A Wilde and S Al-Babili, Biochem J, 398, 361–369 (2006).
- 25M Golczak, PD Kiser, DT Lodowski, A Maeda and K Palczewski, J Biol Chem, 285, 9667–9682 (2010).
- 26JA Olson and O Hayaishi, Proc Natl Acad Sci U S A, 54, 1364–1370 (1965).
- 27IR Schwab, Evolution's Witness: How Eyes Evolved, Oxford University Press, New York, (2012).
- 28TM Redmond, S Yu, E Lee, D Bok, D Hamasaki, N Chen, P Goletz, JX Ma, RK Crouch and K Pfeifer, Nat Genet, 20, 344–351 (1998).
- 29PD Kiser, J Zhang, A Sharma, JM Angueyra, AV Kolesnikov, M Badiee, GP Tochtrop, J Kinoshita, NS Peachey, W Li, VJ Kefalov and K Palczewski, J Gen Physiol, 150, 571–590 (2018).
- 30PD Kiser, J Zhang, M Badiee, Q Li, W Shi, X Sui, M Golczak, GP Tochtrop and K Palczewski, Nat Chem Biol, 11, 409–415 (2015).
- 31D Babino, M Golczak, PD Kiser, A Wyss, K Palczewski and J von Lintig, ACS Chem Biol, 11, 1049–1057 (2016).
- 32V Oberhauser, O Voolstra, A Bangert, J von Lintig and K Vogt, Proc Natl Acad Sci U S A, 105, 19000–19005 (2008).
- 33M Rhinn and P Dolle, Development, 139, 843–858 (2012).
- 34SH Schwartz, BC Tan, DA Gage, JA Zeevaart and DR McCarty, Science, 276, 1872–1874 (1997).
- 35A Alder, M Jamil, M Marzorati, M Bruno, M Vermathen, P Bigler, S Ghisla, H Bouwmeester, P Beyer and S Al-Babili, Science, 335, 1348–1351 (2012).
- 36ME Auldridge, A Block, JT Vogel, C Dabney-Smith, I Mila, M Bouzayen, M Magallanes-Lundback, D DellaPenna, DR McCarty and HJ Klee, Plant J, 45, 982–993 (2006).
- 37ME Auldridge, DR McCarty and HJ Klee, Curr Opin Plant Biol, 9, 315–321 (2006).
- 38O Ahrazem, G Diretto, J Argandona, A Rubio-Moraga, JM Julve, D Orzaez, A Granell and L Gomez-Gomez, J Exp Bot, 68, 4663–4677 (2017).
- 39HR Medina, E Cerda-Olmedo and S Al-Babili, Mol Microbiol, 82, 199–208 (2011).
- 40ME Kelly, S Ramkumar, W Sun, C Colon Ortiz, PD Kiser, M Golczak and J von Lintig, ACS Chem Biol, 13, 2121–2129 (2018).
- 41D Babino, G Palczewski, MA Widjaja-Adhi, PD Kiser, M Golczak and J von Lintig, J Biol Chem, 290, 24844–24857 (2015).
- 42C Kiefer, S Hessel, JM Lampert, K Vogt, MO Lederer, DE Breithaupt and J von Lintig, J Biol Chem, 276, 14110–14116 (2001).
- 43GP Lobo, A Isken, S Hoff, D Babino and J von Lintig, Development, 139, 2966–2977 (2012).
- 44RQ Yu, Z Kurt, F He and JC Spain, Appl Environ Microbiol, 85, pii: e02154-18 (2018).
- 45Z Kurt, M Minoia and JC Spain, Appl Environ Microbiol, 84, pii: e00104-18 (2018).
- 46E Masai, Y Katayama and M Fukuda, Biosci Biotechnol Biochem, 71, 1–15 (2007).
- 47S Kamoda, N Habu, M Samejima and T Yoshimoto, Agric Biol Chem, 53, 2757–2761 (1989).
- 48G Moiseyev, Y Takahashi, Y Chen, S Gentleman, TM Redmond, RK Crouch and JX Ma, J Biol Chem, 281, 2835–2840 (2006).
- 49PD Kiser, M Golczak, DT Lodowski, MR Chance and K Palczewski, Proc Natl Acad Sci U S A, 106, 17325–17330 (2009).
- 50SA Messing, SB Gabelli, I Echeverria, JT Vogel, JC Guan, BC Tan, HJ Klee, DR McCarty and LM Amzel, Plant Cell, 22, 2970–2980 (2010).
- 51PD Kiser, ER Farquhar, W Shi, X Sui, MR Chance and K Palczewski, Proc Natl Acad Sci U S A, 109, E2747–E2756 (2012).
- 52X Sui, AC Weitz, ER Farquhar, M Badiee, S Banerjee, J von Lintig, GP Tochtrop, K Palczewski, MP Hendrich and PD Kiser, Biochemistry, 56, 2836–2852 (2017).
- 53X Sui, ER Farquhar, HE Hill, J von Lintig, W Shi and PD Kiser, J Biol Inorg Chem, 23, 887–901 (2018).
- 54A Lindqvist and S Andersson, J Biol Chem, 277, 23942–23948 (2002).
- 55X Sui, M Golczak, J Zhang, KA Kleinberg, J von Lintig, K Palczewski and PD Kiser, J Biol Chem, 290, 30212–30223 (2015).
- 56MG Leuenberger, C Engeloch-Jarret and WD Woggon, Angew Chem Int Ed Engl, 40, 2613–2617 (2001).
- 57C dela Sena, KM Riedl, S Narayanasamy, RW Curley Jr SJ Schwartz and EH Harrison, J Biol Chem, 289, 13661–13666 (2014).
- 58H Schmidt, R Kurtzer, W Eisenreich and W Schwab, J Biol Chem, 281, 9845–9851 (2006).
- 59M Bruno, M Vermathen, A Alder, F Wust, P Schaub, R van der Steen, P Beyer, S Ghisla and S Al-Babili, FEBS Lett, 591, 792–800 (2017).
- 60RP McAndrew, N Sathitsuksanoh, MM Mbughuni, RA Heins, JH Pereira, A George, KL Sale, BG Fox, BA Simmons and PD Adams, Proc Natl Acad Sci U S A, 113, 14324–14329 (2016).
- 61DM Arciero, JD Lipscomb, BH Huynh, TA Kent and E Munck, J Biol Chem, 258, 14981–14991 (1983).
- 62B Boso, P Debrunner, MY Okamura and G Feher, Biochim Biophys Acta, 638, 173–177 (1981).
- 63V Petrouleas and BA Diner, FEBS Lett, 147, 111–114 (1982).
- 64MP Hendrich and PG Debrunner, Biophys J, 56, 489–506 (1989).
- 65X Sui, J Zhang, M Golczak, K Palczewski and PD Kiser, J Biol Chem, 291, 19401–19412 (2016).
- 66DP Kloer, S Ruch, S Al-Babili, P Beyer and GE Schulz, Science, 308, 267–269 (2005).
- 67PC Loewen, J Switala, JP Wells, F Huang, AT Zara, JS Allingham and MC Loewen, BMC Biochem, 19, 8 (2018).
- 68E Poliakov, S Gentleman, FX Cunningham Jr NJ Miller-Ihli and TM Redmond, J Biol Chem, 280, 29217–29223 (2005).
- 69JY Ryu, J Seo, S Park, JH Ahn, Y Chong, MJ Sadowsky and HG Hur, Biosci Biotechnol Biochem, 77, 289–294 (2013).
- 70JP Emerson, MP Mehn and L Que Jr Iron proteins with mononuclear active sites. Encyclopedia of Inorganic and Bioinorganic Chemistry, West Sussex, John Wiley & Sons, Ltd, (2011).
- 71EL Hegg and L Que Jr Eur J Biochem, 250, 625–629 (1997).
- 72X Sui, PD Kiser, J Lintig and K Palczewski, Arch Biochem Biophys, 539, 203–213 (2013).
- 73DP Kloer and GE Schulz, Cell Mol Life Sci, 63, 2291–2303 (2006).
- 74Y Zhang, MA Pavlosky, CA Brown, TE Westre, B Hedman, KO Hodgson and EI Solomon, J Am Chem Soc, 114, 9189–9191 (1992).
- 75S Kamoda, T Terada and Y Saburi, Biosci Biotechnol Biochem, 67, 1394–1396 (2003).
- 76SD Fried and SG Boxer, Annu Rev Biochem, 86, 387–415 (2017).
- 77SH Schwartz, BC Tan, DR McCarty, W Welch and JA Zeevaart, Biochim Biophys Acta, 1619, 9–14 (2003).
- 78N Khadka, ER Farquhar, HE Hill, W Shi, J Lintig and PD Kiser, J Biol Chem (2019). DOI: 10.1074/jbc.RA119.007535. [Epub ahead of print] .
- 79G Britton, FASEB J, 9, 1551–1558 (1995).
- 80PD Kiser and K Palczewski, Prog Retin Eye Res, 29, 428–442 (2010).
- 81C Duszka, P Grolier, EM Azim, MC Alexandre-Gouabau, P Borel and V Azais-Braesco, J Nutr, 126, 2550–2556 (1996).
- 82T Kowatz, D Babino, P Kiser, K Palczewski and J von Lintig, Arch Biochem Biophys, 539, 214–222 (2013).
- 83S Kamoda, T Terada and Y Saburi, Biosci Biotechnol Biochem, 69, 635–637 (2005).
- 84S Kamoda and Y Saburi, Biosci Biotechnol Biochem, 57, 931–934 (1993).
- 85SY Han, H Inoue, T Terada, S Kamoda, Y Saburi, K Sekimata, T Saito, M Kobayashi, K Shinozaki, S Yoshida and T Asami, J Enzyme Inhib Med Chem, 18, 279–283 (2003).
- 86S Han, H Inoue, T Terada, S Kamoda, Y Saburi, K Sekimata, T Saito, M Kobayashi, K Shinozaki, S Yoshida and T Asami, Bioorg Med Chem Lett, 12, 1139–1142 (2002).
- 87PJ Harrison and TD Bugg, Arch Biochem Biophys, 544, 105–111 (2014).
- 88PJ Harrison, SA Newgas, F Descombes, SA Shepherd, AJ Thompson and TD Bugg, FEBS J, 282, 3986–4000 (2015).
- 89N Kitahata, SY Han, N Noji, T Saito, M Kobayashi, T Nakano, K Kuchitsu, K Shinozaki, S Yoshida, S Matsumoto, M Tsujimoto and T Asami, Bioorg Med Chem, 14, 5555–5561 (2006).
- 90EG Kovaleva and JD Lipscomb, Nat Chem Biol, 4, 186–193 (2008).
- 91PD Kiser, Proc Natl Acad Sci U S A, 114, E6027 (2017).
- 92SA Wolgel, JE Dege, PE Perkins-Olson, CH Jaurez-Garcia, RL Crawford, E Munck and JD Lipscomb, J Bacteriol, 175, 4414–4426 (1993).
- 93MD Wolfe, JV Parales, DT Gibson and JD Lipscomb, J Biol Chem, 276, 1945–1953 (2001).
- 94M Costas, MP Mehn, MP Jensen and L Que Jr Chem Rev, 104, 939–986 (2004).
- 95ML Neidig and EI Solomon, Chem Commun, (47), 5843–5863 (2005).
- 96T Borowski, MR Blomberg and PE Siegbahn, Chemistry, 14, 2264–2276 (2008).