Application of In Situ Electrochemical-Cell Transmission Electron Microscopy for the Study of Rechargeable Batteries
Wentao Yao
Michigan Technological University, Houghton, MI, USA
Search for more papers by this authorReza Shahbazian-Yassar
University of Illinois at Chicago, Chicago, IL, USA
Search for more papers by this authorWentao Yao
Michigan Technological University, Houghton, MI, USA
Search for more papers by this authorReza Shahbazian-Yassar
University of Illinois at Chicago, Chicago, IL, USA
Search for more papers by this authorAbstract
With the capability of direct visualizing the solid–liquid reactions at high resolutions, in situ liquid-cell transmission electron microscopy (TEM) plays an important role in the fundamental studies of rechargeable batteries, including the lithiation behavior of various electrode materials, the striping/plating behavior of lithium metal anode, the formation of solid–electrolyte interfaces, electrolyte degradation behaviors, as well as the formation/dissolution behavior of Li2O2/NaO2 in the metal–air battery cathode. This article summarized the recent progress of in situ electrochemical-cell TEM technique in the battery field by comparing its advantages/disadvantages with traditional open-cell TEM technique as well as other in situ techniques. With the improvement of the chemical analysis capabilities and new holder designs, in situ liquid-cell TEM will see further applications in battery systems beyond lithium-ion.
References
- 1 C. Kisielowski, B. Freitag, M. Bischoff, H. van Lin, S. Lazar, G. Knippels, P. Tiemeijer, M. van der Stam, S. von Harrach, M. Stekelenburg, M. Haider, S. Uhlemann, H. Müller, P. Hartel, B. Kabius, D. Miller, I. Petrov, E. A. Olson, T. Donchev, E. A. Kenik, A. R. Lupini, J. Bentley, S. J. Pennycook, I. M. Anderson, A. M. Minor, A. K. Schmid, T. Duden, V. Radmilovic, Q. M. Ramasse, M. Watanabe, R. Erni, E. A. Stach, P. Denes and U. Dahmen, Microsc. Microanal., 2008, 14, 469.
- 2 H. H. Rose, Sci. Technol. Adv. Mater., 2008, 9, 014107.
- 3 Y. Wu and N. Liu, Chem. Rev., 2018, 4, 438.
- 4 Z. Wang, P. Poncharal and W. De Heer, J. Phys. Chem. Solids, 2000, 61, 1025.
- 5 D. Qian, E. C. Dickey, R. Andrews and T. Rantell, Appl. Phys. Lett., 2000, 76, 2868.
- 6 F. Mompiou, D. Caillard and M. Legros, Acta Mater., 2009, 57, 2198.
- 7 M. Legros, D. S. Gianola and K. J. Hemker, Acta Mater., 2008, 56, 3380.
- 8 Y. Zhong, F. Xiao, J. Zhang, Y. Shan, W. Wang and K. Yang, Acta Mater., 2006, 54, 435.
- 9 X. H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li and J. Y. Huang, Adv. Energy Mater., 2012, 2, 722.
- 10 X. H. Liu and J. Y. Huang, Energy Environ. Sci., 2011, 4, 3844.
- 11 J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu and A. Subramanian, Science, 2010, 330, 1515.
- 12 K. He, X. Bi, Y. Yuan, T. Foroozan, B. Song, K. Amine, J. Lu and R. Shahbazian-Yassar, Nano Energy, 2018, 49, 338.
- 13 M. Williamson, R. Tromp, P. Vereecken, R. Hull and F. Ross, Nat. Mater., 2003, 2, 532.
- 14 K. Nishijima, J. Yamasaki, H. Orihara and N. Tanaka, Nanotechnology, 2004, 15, S329.
- 15 N. Mohanty, M. Fahrenholtz, A. Nagaraja, D. Boyle and V. Berry, Nano Lett., 2011, 11, 1270.
- 16 J. M. Yuk, H. K. Seo, J. W. Choi and J. Y. Lee, ACS Nano, 2014, 8, 7478.
- 17 E. A. Sutter and P. W. Sutter, J. Am. Chem. Soc., 2014, 136, 16865.
- 18 N. áde Jonge, Chem. Commun., 2015, 51, 16393.
- 19 J. Yang, C. M. Andrei, G. A. Botton and L. Soleymani, J. Phys. Chem. C, 2017, 121, 7435.
- 20 B. Song, K. He, Y. Yuan, S. Sharifi-Asl, M. Cheng, J. Lu, W. A. Saidi and R. Shahbazian Yassar, Nanoscale, 2018, 10(33), 15809.
- 21 D. B. Peckys and N. de Jonge, Nano Lett., 2011, 11, 1733.
- 22 D. B. Peckys, P. Mazur, K. L. Gould and N. de Jonge, Biophys. J., 2011, 100, 2522.
- 23 M. Sun, H.-G. Liao, K. Niu and H. Zheng, Sci. Rep., 2013, 3, 3227.
- 24 A. J. Leenheer, J. P. Sullivan, M. J. Shaw and C. T. Harris, J. Microelectromech. Syst., 2015, 24, 1061.
- 25
N. D. Browning, B. L. Mehdi, A. Stevens, W. Xu, W. A. Henderson, J.-G. Zhang, K. T. Mueller, H. Mehta, L. Kovarik and A. Liyu, Microsc. Microanal., 2017, 23, 1970.
10.1017/S1431927617010510 Google Scholar
- 26 M. Gu, L. R. Parent, B. L. Mehdi, R. R. Unocic, M. T. McDowell, R. L. Sacci, W. Xu, J. G. Connell, P. Xu and P. Abellan, Nano Lett., 2013, 13, 6106.
- 27 X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu and J. Y. Huang, ACS Nano, 2012, 6, 1522.
- 28 L. Zhong, X. H. Liu, G. F. Wang, S. X. Mao and J. Y. Huang, Phys. Rev. Lett., 2011, 106, 248302.
- 29 C.-M. Wang, W. Xu, J. Liu, J.-G. Zhang, L. V. Saraf, B. W. Arey, D. Choi, Z.-G. Yang, J. Xiao, S. Thevuthasan and D. R. Baer, Nano Lett., 2011, 11, 1874.
- 30 F. M. Ross, Science, 2015, 350.
- 31 N. De Jonge and F. M. Ross, Nat. Nanotechnol., 2011, 6, 695.
- 32 L. Wang, Z. Xu, W. Wang and X. Bai, J. Am. Chem. Soc., 2014, 136, 6693.
- 33 Z. Zeng, X. Zhang, K. Bustillo, K. Niu, C. Gammer, J. Xu and H. Zheng, Nano Lett., 2015, 15, 5214.
- 34 K. W. Noh and S. J. Dillon, Scr. Mater., 2013, 69, 658.
- 35 Z. Zeng, W.-I. Liang, Y.-H. Chu and H. Zheng, Faraday Discuss., 2015, 176, 95.
- 36 A. J. Leenheer, K. L. Jungjohann, K. R. Zavadil and C. T. Harris, ACS Nano, 2016, 10, 5670.
- 37 D. Lin, Y. Liu and Y. Cui, Nat. Nanotechnol., 2017, 12, 194.
- 38 Z. Zeng, W.-I. Liang, H.-G. Liao, H. L. Xin, Y.-H. Chu and H. Zheng, Nano Lett., 2014, 14, 1745.
- 39 R. L. Sacci, N. J. Dudney, K. L. More, L. R. Parent, I. Arslan, N. D. Browning and R. R. Unocic, Chem. Commun., 2014, 50, 2104.
- 40 A. J. Leenheer, K. L. Jungjohann, K. R. Zavadil, J. P. Sullivan and C. T. Harris, ACS Nano, 2015, 9, 4379.
- 41 B. L. Mehdi, J. Qian, E. Nasybulin, C. Park, D. A. Welch, R. Faller, H. Mehta, W. A. Henderson, W. Xu, C. M. Wang, J. E. Evans, J. Liu, J. G. Zhang, K. T. Mueller and N. D. Browning, Nano Lett., 2015, 15, 2168.
- 42 R. L. Sacci, J. M. Black, N. Balke, N. J. Dudney, K. L. More and R. R. Unocic, Nano Lett., 2015, 15, 2011.
- 43 J.-H. Cheng, A. A. Assegie, C.-J. Huang, M.-H. Lin, A. M. Tripathi, C.-C. Wang, M.-T. Tang, Y.-F. Song, W.-N. Su and B. J. Hwang, J. Phys. Chem. C, 2017, 121, 7761.
- 44 G. Rong, X. Zhang, W. Zhao, Y. Qiu, M. Liu, F. Ye, Y. Xu, J. Chen, Y. Hou and W. Li, Adv. Mater., 2017, 29, 1606187.
- 45 R. R. Unocic, X.-G. Sun, R. L. Sacci, L. A. Adamczyk, D. H. Alsem, S. Dai, N. J. Dudney and K. L. More, Microsc. Microanal., 2014, 20, 1029.
- 46
R. L. Sacci, J. M. Black, N. Balke, N. J. Dudney, K. L. More and R. R. Unocic, Microsc. Microanal., 2015, 21, 2437.
10.1017/S1431927615012969 Google Scholar
- 47 Z. Zhu, Y. Zhou, P. Yan, R. S. Vemuri, W. Xu, R. Zhao, X. Wang, S. Thevuthasan, D. R. Baer and C.-M. Wang, Nano Lett., 2015, 15, 6170.
- 48 M. E. Holtz, Y. Yu, D. Gunceler, J. Gao, R. Sundararaman, K. A. Schwarz, T. A. Arias, H. D. Abruña and D. A. Muller, Nano Lett., 2014, 14, 1453.
- 49 J. Y. Cheong, J. H. Chang, H. K. Seo, J. M. Yuk, J. W. Shin, J. Y. Lee and I.-D. Kim, Nano Energy, 2016, 25, 154.
- 50 P. Abellan, B. L. Mehdi, L. R. Parent, M. Gu, C. Park, W. Xu, Y. Zhang, I. Arslan, J.-G. Zhang, C.-M. Wang, J. E. Evans and N. D. Browning, Nano Lett., 2014, 14, 1293.
- 51 C. Hou, J. Han, P. Liu, C. Yang, G. Huang, T. Fujita, A. Hirata and M. Chen, Nano Energy, 2018, 47, 427.
- 52 P. Liu, J. Han, X. Guo, Y. Ito, C. Yang, S. Ning, T. Fujita, A. Hirata and M. Chen, Sci. Rep., 2018, 8, 3134.
- 53 L. Lutz, W. Dachraoui, A. Demortière, L. R. Johnson, P. G. Bruce, A. Grimaud and J.-M. Tarascon, Nano Lett., 2018, 18, 1280.
- 54 D. Qian, C. Ma, K. L. More, Y. S. Meng and M. Chi, NPG Asia Mater., 2015, 7, e193.
- 55 R. R. Unocic, L. Baggetto, G. M. Veith, J. A. Aguiar, K. A. Unocic, R. L. Sacci, N. J. Dudney and K. L. More, Chem. Commun., 2015, 51, 16377.
- 56
B. R. Van Devener, A. H. Vollmer and N. N. Youssef, Microsc. Microanal., 2018, 24, 1204.
10.1017/S1431927618006505 Google Scholar
- 57 M. Ge, M. Lu, Y. Chu and H. Xin, Sci. Rep., 2017, 7, 16420.