Actinide Elements in Catalysis
Rami J. Batrice
Technion—Israel Institute of Technology, Haifa, Israel
Search for more papers by this authorIsabell S.R. Karmel
Technion—Israel Institute of Technology, Haifa, Israel
Search for more papers by this authorMoris S. Eisen
Technion—Israel Institute of Technology, Haifa, Israel
Search for more papers by this authorRami J. Batrice
Technion—Israel Institute of Technology, Haifa, Israel
Search for more papers by this authorIsabell S.R. Karmel
Technion—Israel Institute of Technology, Haifa, Israel
Search for more papers by this authorMoris S. Eisen
Technion—Israel Institute of Technology, Haifa, Israel
Search for more papers by this authorAbstract
The chemistry of the f-elements has been marked in recent years by the impressive use of actinides in catalysis. These advances have allowed the actinide community to tailor organoactinide complexes for specific reactivities accomplishing a high level of sophistication. It is important to note that when comparing the actinides to transition or lanthanide block complexes, the actinides will sometimes exhibit complementary reactivities; however, most often, distinctive chemistries are displayed for similar organic transformations. Based on their unique electronic and steric characteristics, it is now possible to design new catalytic transformations. This article highlights the catalytic processes including the activation of small molecules, hydroelementations, coupling reactions, and polymerization/oligomerization of cyclic esters and epoxides.
References
- 1A. Streitwieser and U. Mueller-Westerhoff, J. Am. Chem. Soc., 1968, 90, 7364.
- 2A. Zalkin and K. N. Raymond, J. Am. Chem. Soc., 1969, 91, 5667.
- 3B. Kosog, C. E. Kefalidis, F. W. Heinemann, L. Maron and K. Meyer, J. Am. Chem. Soc., 2012, 134, 12792.
- 4I. Castro-Rodriguez, H. Nakai, L. N. Zakharov, A. L. Rheingold and K. Meyer, Science, 2004, 305, 1757.
- 5F. T. Edelmann, Coord. Chem. Rev., 2017, 338, 27.
- 6I. Castro-Rodriguez, H. Nakai, P. Gantzel, L. N. Zakharov, A. L. Rheingold and K. Meyer, J. Am. Chem. Soc., 2003, 125, 15734.
- 7H. Nakai, X. Hu, L. N. Zakharov, A. L. Rheingold and K. Meyer, Inorg. Chem., 2004, 43, 855.
- 8P. L. Diaconescu, P. L. Arnold, T. A. Baker, D. J. Mindiola and C. C. Cummins, J. Am. Chem. Soc., 2000, 122, 6108.
- 9P. L. Arnold, G. M. Jones, S. O. Odoh, G. Schreckenbach, N. Magnani and J. B. Love, Nat. Chem., 2012, 4, 221.
- 10P. L. Arnold, A. J. Blake, C. Wilson and J. B. Love, Inorg. Chem., 2004, 43, 8206.
- 11P. L. Arnold, N. A. Potter, N. Magnani, C. Apostolidis, J.-C. Griveau, E. Colineau, A. Morgenstern, R. Caciuffo and J. B. Love, Inorg. Chem., 2010, 49, 5341.
- 12P. L. Arnold, A.-F. Pécharman and J. B. Love, Angew. Chem., 2011, 123, 9628.
- 13W. J. Evans, S. A. Kozimor and J. W. Ziller, Polyhedron, 2004, 23, 2689.
- 14W. J. Evans, K. A. Miller, A. G. DiPasquale, A. L. Rheingold, T. J. Stewart and R. Bau, Angew. Chem., 2008, 120, 5153.
- 15W. J. Evans, K. A. Miller and J. W. Ziller, Angew. Chem., Int. Ed., 2008, 47, 589.
- 16W. J. Evans, N. A. Siladke and J. W. Ziller, C.R. Chim., 2010, 13, 775.
- 17A. R. Fox, S. C. Bart, K. Meyer and C. C. Cummins, Nature, 2008, 455, 341.
- 18P. L. Arnold and Z. R. Turner, Nat. Rev. Chem., 2017, 1, 2, and references therein.
- 19B. Fang, W. Ren, G. Hou, G. Zi, D.-C. Fang, L. Maron and M. D. Walter, J. Am. Chem. Soc., 2014, 136, 17249.
- 20E. M. Matson, A. T. Breshears, J. J. Kiernicki, B. S. Newell, P. E. Fanwick, M. P. Shores, J. R. Walensky and S. C. Bart, Inorg. Chem., 2014, 53, 12977.
- 21E. Zhou, W. Ren, G. Hou, G. Zi, D.-C. Fang and M. D. Walter, Organometallics, 2015, 34, 3637.
- 22W. Ren, E. Zhou, B. Fang, G. Hou, G. Zi, D.-C. Fang and M. D. Walter, Angew. Chem., Int. Ed., 2014, 53, 11310.
- 23S. T. Liddle, Angew. Chem., Int. Ed., 2015, 54, 8604.
- 24X.-F. Li and A.-L. Guo, Inorg. Chim. Acta, 1987, 134, 143.
- 25X.-F. Li, Y.-T. Xu, X.-Z. Feng and P.-N. Sun, Inorg. Chim. Acta, 1986, 116, 75.
- 26T. J. Marks, M. R. Gagne, S. P. Nolan, L. E. Schock, A. M. Seyam and D. Stern, Pure Appl. Chem., 1989, 61, 1665.
- 27J. P. Leal, N. Marques, A. Pires de Matos, M. J. Calhorda, A. M. Galvao and J. A. M. Simoes, Organometallics, 1992, 11, 1632.
- 28J. P. Leal and J. A. M. Simoes, J. Chem. Soc., Dalton Trans., 1994, 2687.
- 29W. A. King and T. J. Marks, Inorg. Chim. Acta, 1995, 229, 343.
- 30W. A. King, T. J. Marks, D. M. Anderson, D. J. Duncalf and F. G. N. Cloke, J. Am. Chem. Soc., 1992, 114, 9221.
- 31X. Jemine, J. Goffart, J.-C. Berthet and M. Ephritikhine, J. Chem. Soc., Dalton Trans., 1992, 2439.
- 32X. Jemine, J. Goffart, M. Ephritikhine and J. Fuger, J. Organomet. Chem., 1993, 448, 95.
- 33T. Straub, A. Haskel and M. S. Eisen, J. Am. Chem. Soc., 1995, 117, 6364.
- 34A. Haskel, T. Straub, A. K. Dash and M. S. Eisen, J. Am. Chem. Soc., 1999, 121, 3014.
- 35A. Haskel, J. Q. Wang, T. Straub, T. G. Neyroud and M. S. Eisen, J. Am. Chem. Soc., 1999, 121, 3025.
- 36R. J. Batrice, J. McKinven, P. L. Arnold and M. S. Eisen, Organometallics, 2015, 34, 4039.
- 37E. Barnea, T. Andrea, J.-C. Berthet, M. Ephritikhine and M. S. Eisen, Organometallics, 2008, 27, 3103.
- 38L. Huang, M. Arndt, K. Gooßen, H. Heydt and L. J. Gooßen, Chem. Rev., 2015, 115, 2596.
- 39M. Beller, J. Seayad, A. Tillack and H. Jiao, Angew. Chem., Int. Ed., 2004, 43, 3368.
- 40T. E. Müller, K. C. Hultzsch, M. Yus, F. Foubelo and M. Tada, Chem. Rev., 2008, 108, 3795.
- 41X. Zeng, Chem. Rev., 2013, 113, 6864.
- 42A. Dondoni and A. Marra, Eur. J. Org. Chem., 2014, 3955.
- 43F. Alonso, I. P. Beletskaya and M. Yus, Chem. Rev., 2004, 104, 3079.
- 44Y. Nakajima and S. Shimada, RSC Adv., 2015, 5, 20603.
- 45G. A. Molander and J. A. C. Romero, Chem. Rev., 2002, 102, 2161.
- 46D. Riegert, J. Collin, A. Meddour, E. Schulz and A. Trifonov, J. Org. Chem., 2006, 71, 2514.
- 47S. Seo, X. Yu and T. J. Marks, J. Am. Chem. Soc., 2009, 131, 263.
- 48A. Z. Voskoboynikov, A. K. Shestakova and I. P. Beletskaya, Organometallics, 2001, 20, 2794.
- 49A. Haskel, T. Straub and M. S. Eisen, Organometallics, 1996, 15, 3773.
- 50T. Straub, A. Haskel, T. G. Neyroud, M. Kapon, M. Botoshansky and M. S. Eisen, Organometallics, 2001, 20, 5017.
- 51J. Wang, A. K. Dash, M. Kapon, J.-C. Berthet, M. Ephritikhine and M. S. Eisen, Chem. Eur. J., 2002, 8, 5384.
10.1002/1521-3765(20021202)8:23<5384::AID-CHEM5384>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 52B. D. Stubbert and T. J. Marks, J. Am. Chem. Soc., 2007, 129, 6149.
- 53B. D. Stubbert, C. L. Stern and T. J. Marks, Organometallics, 2003, 22, 4836.
- 54R. Shannon, Acta Crystallogr., Sect. A: Found. Crystallogr., 1976, 32, 751.
- 55E. M. Broderick, N. P. Gutzwiller and P. L. Diaconescu, Organometallics, 2010, 29, 3242.
- 56C. E. Hayes, R. H. Platel, L. L. Schafer and D. B. Leznoff, Organometallics, 2012, 31, 6732.
- 57A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180.
- 58S. D. Wobser and T. J. Marks, Organometallics, 2013, 32, 2517.
- 59K. Griesbaum, Angew. Chem., Int. Ed. Engl., 1970, 9, 273.
- 60L. Benati, P. C. Montevecchi and P. Spagnolo, J. Chem. Soc., Perkin Trans. 1, 1991, 2103.
- 61Y. Yang and R. M. Rioux, Green Chem., 2014, 16, 3916.
- 62K. Kuciński, P. Pawluć and G. Hreczycho, Adv. Synth. Catal., 2015, 357, 3936.
- 63C. J. Weiss and T. J. Marks, Dalton Trans., 2010, 39, 6576.
- 64C. J. Weiss, S. D. Wobser and T. J. Marks, J. Am. Chem. Soc., 2009, 131, 2062.
- 65C. J. Weiss, S. D. Wobser and T. J. Marks, Organometallics, 2010, 29, 6308.
- 66C. M. Fendrick, E. A. Mintz, L. D. Schertz and T. J. Marks, Organometallics, 1984, 3, 819.
- 67M. Sharma and M. S. Eisen, Metallocene organoactinide complexes, in ‘Structure and Bonding, Organometallic and Coordination Chemistry of the Actinides’, Guest ed. T. E. Albrecht-Schmitt and ed. D. M. P. Mingos, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 1–85.
- 68S. Patai, Z. Rappoport and Y. Apeloig, ‘ The Chemistry of Organic Silicon Compounds’, New York, Wiley, 1989.
- 69J. A. Reichl and D. H. Berry, in ‘ Advances in Organometallic Chemistry’, eds. R. West and A. Hill, Academic Press, 1999, Vol. 43, p. 197.
10.1016/S0065-3055(08)60671-1 Google Scholar
- 70J. L. Speier, in ‘ Advances in Organometallic Chemistry’, eds. F. G. A. Stone and R. West, Academic Press, 1979, Vol. 17, p. 407.
- 71D. A. Rooke, Z. A. Menard and E. M. Ferreira, Tetrahedron, 2014, 70, 4232.
- 72M. Iglesias, F. J. Fernández-Alvarez and L. A. Oro, ChemCatChem., 2014, 6, 2486.
- 73B. Fengyu, K.-I. Kanno and T. Takahashi, Trends Org. Chem., 2008, 12, 1.
- 74M. D. Greenhalgh, A. S. Jones and S. P. Thomas, ChemCatChem., 2014, 7, 190.
10.1002/cctc.201402693 Google Scholar
- 75A. K. Dash, J. Q. Wang and M. S. Eisen, Organometallics, 1999, 18, 4724.
- 76A. K. Dash, Y. Gurevizt, J. Q. Wang, J. Wang, M. Kapon and M. S. Eisen, J. Alloys Compd., 2002, 344, 65.
- 77P. J. Fagan, J. M. Manriquez, E. A. Maatta, A. M. Seyam and T. J. Marks, J. Am. Chem. Soc., 1981, 103, 6650.
- 78A. K. Dash, I. Gourevich, J. Q. Wang, J. Wang, M. Kapon and M. S. Eisen, Organometallics, 2001, 20, 5084.
- 79A. K. Dash, J. X. Wang, J.-C. Berthet, M. Ephritikhine and M. S. Eisen, J. Organomet. Chem., 2000, 604, 83.
- 80J. Wang, Y. Gurevich, M. Botoshansky and M. S. Eisen, J. Am. Chem. Soc., 2006, 128, 9350.
- 81Z. Lin and T. J. Marks, J. Am. Chem. Soc., 1987, 109, 7979.
- 82T. Andrea, E. Barnea and M. S. Eisen, J. Am. Chem. Soc., 2008, 130, 2454.
- 83M. Sharma, T. Andrea, N. J. Brookes, B. F. Yates and M. S. Eisen, J. Am. Chem. Soc., 2011, 133, 1341.
- 84I. S. R. Karmel, N. Fridman, M. Tamm and M. S. Eisen, Organometallics, 2015, 34, 2933.
- 85I. S. R. Karmel, N. Fridman, M. Tamm and M. S. Eisen, J. Am. Chem. Soc., 2014, 136, 17180.
- 86J. Tu, W. Li, M. Xue, Y. Zhang and Q. Shen, Dalton Trans., 2013, 42, 5890.
- 87A. C. Behrle and J. A. R. Schmidt, Organometallics, 2013, 32, 1141.
- 88Y. Cao, Z. Du, W. Li, J. Li, Y. Zhang, F. Xu and Q. Shen, Inorg. Chem., 2011, 50, 3729.
- 89X. Zhang, C. Wang, C. Qian, F. Han, F. Xu and Q. Shen, Tetrahedron, 2011, 67, 8790.
- 90Z. Du, H. Zhou, H. Yao, Y. Zhang, Y. Yao and Q. Shen, Chem. Commun., 2011, 47, 3595.
- 91W. Yi, J. Zhang, L. Hong, Z. Chen and X. Zhou, Organometallics, 2011, 30, 5809.
- 92Z. Li, M. Xue, H. Yao, H. Sun, Y. Zhang and Q. Shen, J. Organomet. Chem., 2012, 713, 27.
- 93W. J. Evans, J. R. Walensky, J. W. Ziller and A. L. Rheingold, Organometallics, 2009, 28, 3350.
- 94W. J. Evans, M. K. Takase, J. W. Ziller and A. L. Rheingold, Organometallics, 2009, 28, 5802.
- 95R. J. Batrice and M. S. Eisen, Chem. Sci., 2016, 7, 939.
- 96C. E. Boardwine, B. Ceccaroli, H. M. Rong, A. Schei and G. Schüssler, in ‘ Progress in Organosilicon Chemistry’, eds. B. Marciniec and J. Chojnowski, Gordon and Breach, Basel, 1995, p. 555.
- 97F. L. Riley, J. Am. Ceram. Soc., 2000, 83, 245.
- 98D. W. Freitag and D. W. Richerson, ‘ Opportunities for Advanced Ceramics to Meet the Needs of the Industries of the Future’, U.S. Advanced Ceramics Association and Oak Ridge National Laboratory, Oak Ridge, TN, 1998 USDOE, Ed.
- 99J. Olofsson, T. M. Grehk, T. Berlind, C. Persson, S. Jacobson and H. Engqvist, Biomatter, 2012, 2, 94.
- 100M. Mazzocchi and A. Bellosi, J. Mater. Sci. Mater. Med., 2008, 19, 2881.
- 101T. J. Webster, A. A. Patel, M. N. Rahaman and B. Sonny Bal, Acta Biomater., 2012, 8, 4447.
- 102M. C. Anderson and R. Olsen, J. Biomed. Mater. Res. A, 2010, 92A, 1598.
- 103A. Arafat, K. Schroën, L. C. P. M. de Smet, E. J. R. Sudhölter and H. Zuilhof, J. Am. Chem. Soc., 2004, 126, 8600.
- 104H. O. Pierson, ‘ Handbook of Chemical Vapor Deposition (CVD): Principles, Technology, and Applications’, Noyes Publications, Park Ridge, NJ, 1992.
- 105L. B. Schein, ‘ Electrophotography and Development Physics’, Springer, Berlin; New York, 1988.
10.1007/978-3-642-97085-6 Google Scholar
- 106M. Ohring, ‘ Materials Science of Thin Films Deposition and Structure’, San Diego, Academic Press, 2002.
- 107J. X. Wang, A. K. Dash, J.-C. Berthet, M. Ephritikhine and M. S. Eisen, J. Organomet. Chem., 2000, 610, 49.
- 108D. S. J. Arney and C. J. Burns, J. Am. Chem. Soc., 1995, 117, 9448.
- 109R. G. Peters, B. P. Warner and C. J. Burns, J. Am. Chem. Soc., 1999, 121, 5585.
- 110G. Lugli, A. Mazzei and S. Poggio, Die Makromol. Chem., 1974, 175, 2021.
- 111A. De Chirico, P. C. Lanzani, E. Raggi and M. Bruzzone, Die Makromol. Chem., 1974, 175, 2029.
- 112G. P. Guiliani, E. Sorta and M. Bruzzone, Angew. Makromol. Chem., 1976, 50, 87.
- 113L. Gargani, G. P. Giuliani, F. Mistrali and M. Bruzzone, Angew. Makromol. Chem., 1976, 50, 101.
- 114L. Jia, X. Yang, C. L. Stern and T. J. Marks, Organometallics, 1994, 13, 3755.
- 115X. Yang, C. L. Stern and T. J. Marks, Organometallics, 1991, 10, 840.
- 116L. Jia, X. Yang, C. L. Stern and T. J. Marks, Organometallics, 1997, 16, 842.
- 117C. E. Hayes and D. B. Leznoff, Organometallics, 2010, 29, 767.
- 118E. Domeshek, R. J. Batrice, S. Aharonovich, B. Tumanskii, M. Botoshansky and M. S. Eisen, Dalton Trans., 2013, 42, 9069.
10.1039/c3dt00032j Google Scholar
- 119M. Bhavsar and M. Amiji, AAPS PharmSciTech., 2008, 9, 288.
- 120Y. Ikada and H. Tsuji, Macromol. Rapid Commun., 2000, 21, 117.
10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X CAS Web of Science® Google Scholar
- 121J. L. Hedrick, T. Magbitang, E. F. Connor, T. Glauser, W. Volksen, C. J. Hawker, V. Y. Lee and R. D. Miller, Chem. Eur. J., 2002, 8, 3308.
10.1002/1521-3765(20020802)8:15<3308::AID-CHEM3308>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 122P. Joshi and G. Madras, Polym. Degrad. Stab., 2008, 93, 1901.
- 123C. Villiers, P. Thuéry and M. Ephritikhine, Eur. J. Inorg. Chem., 2004, 4624.
- 124E. Barnea, D. Moradove, J.-C. Berthet, M. Ephritikhine and M. S. Eisen, Organometallics, 2006, 25, 320.
- 125I. S. R. Karmel, T. Elkin, N. Fridman and M. S. Eisen, Dalton Trans., 2014, 43, 11376.
- 126I. S. R. Karmel, N. Fridman and M. S. Eisen, Organometallics, 2015, 34, 636.
- 127A. Walshe, J. Fang, L. Maron and R. J. Baker, Inorg. Chem., 2013, 52, 9077.
- 128W. Ren, N. Zhao, L. Chen, H. Song and G. Zi, Inorg. Chem. Commun., 2011, 14, 1838.
- 129W. Ren, N. Zhao, L. Chen and G. Zi, Inorg. Chem. Commun., 2013, 30, 26.
10.1016/j.inoche.2013.01.014 Google Scholar
- 130C. E. Hayes, Y. Sarazin, M. J. Katz, J.-F. Carpentier and D. B. Leznoff, Organometallics, 2013, 32, 1183.
- 131R. J. Baker and A. Walshe, Chem. Commun., 2012, 48, 985.
- 132J. Fang, A. Walshe, L. Maron and R. J. Baker, Inorg. Chem., 2012, 51, 9132.
- 133W. W. Lukens, S. M. Beshouri, L. L. Blosch and R. A. Andersen, J. Am. Chem. Soc., 1996, 118, 901.
- 134F. G. N. Cloke and P. B. Hitchcock, J. Am. Chem. Soc., 2002, 124, 9352.
- 135W. J. Evans, S. A. Kozimor, G. W. Nyce and J. W. Ziller, J. Am. Chem. Soc., 2003, 125, 13831.
- 136O. T. Summerscales, F. G. N. Cloke, P. B. Hitchcock, J. C. Green and N. Hazari, Science, 2006, 311, 829.
- 137O. T. Summerscales, F. G. N. Cloke, P. B. Hitchcock, J. C. Green and N. Hazari, J. Am. Chem. Soc., 2006, 128, 9602.
- 138N. A. Siladke, K. R. Meihaus, J. W. Ziller, M. Fang, F. Furche, J. R. Long and W. J. Evans, J. Am. Chem. Soc., 2012, 134, 1243.
- 139W. J. Evans, S. A. Kozimor and J. W. Ziller, Science, 2005, 309, 1835.
- 140W. J. Evans, S. A. Kozimor and J. W. Ziller, J. Am. Chem. Soc., 2003, 125, 14264.
- 141A. S. P. Frey, F. G. N. Cloke, M. P. Coles and P. B. Hitchcock, Chem. Eur. J., 2010, 16, 9446.
- 142I. Korobkov and S. Gambarotta, Prog. Inorg. Chem., 2005, 54, 321.
- 143D. P. Halter, F. W. Heinemann, J. Bachmann and K. Meyer, Nature, 2016, 530, 317.
- 144B. M. Gardner, J. C. Stewart, A. L. Davis, J. McMaster, W. Lewis, A. J. Blake and S. T. Liddle, Proc. Natl. Acad. Sci. U.S.A., 2012, 109, 9265.