Assembly of Heme a3-CuB and CuA in Cytochrome c Oxidase
Jonathan Hosler
University of Mississippi Medical Center, Jackson, MS, USA
Search for more papers by this authorJonathan Hosler
University of Mississippi Medical Center, Jackson, MS, USA
Search for more papers by this authorAbstract
The aa3-type cytochrome c oxidase (CcO) is a heme–copper terminal oxidase present in many bacteria, particularly the α-proteobacteria, and in all mitochondria, which arose from the α-proteobacteria. CcO is a multimeric enzyme, but all of its redox-active metal centers are located within subunits 1 and 2, termed COX1 and COX2. The structure of the redox-active metal centers is completely conserved from α-proteobacteria to humans. Assembly of the metal centers of CcO requires a group of proteins dedicated to the process, the numbers of which always exceed the number of CcO structural subunits. Five key assembly proteins from the α-proteobacteria are also present in mitochondria, but the assembly machinery in mitochondria is much more elaborate and thus requires many more assembly factors. In addition, copper homeostasis in mitochondria is highly regulated and coupled to metal incorporation into CcO. Although investigations over the last 50 years have disclosed the sophistication of the pathways involved in the assembly of the redox-active metal centers of CcO, numerous questions remain. Here, we review the current state of knowledge of the biogenesis and assembly of the catalytic core of CcO and examine the mechanisms of metal center assembly operating in prokaryotes and eukaryotes.
References
- 1J.A. Garcia-Horsman, B. Barquera, J. Rumbley, J. Ma, and R.B. Gennis. The superfamily of heme-copper respiratory oxidases, J. Bacteriol. (1994), 176: 5587–5600.
- 2M.M. Pereira, M. Santana, and M. Teixeira. A novel scenario for the evolution of haem-copper oxygen reductases, Biochim. Biophys. Acta (2001), 1505: 185–208.
- 3S. Ferguson-Miller and G.T. Babcock. Heme/Copper Terminal Oxidases, Chem. Rev. (1996), 96: 2889–2908.
- 4J. Hemp, D.E. Robinson, K.B. Ganesan, T.J. Martinez, N.L. Kelleher, and R.B. Gennis. Evolutionary migration of a post-translationally modified active-site residue in the proton-pumping heme-copper oxygen reductases, Biochemistry (2006), 45: 15405–15410.
- 5V.R. Kaila, M.I. Verkhovsky, and M. Wikstrom. Proton-coupled electron transfer in cytochrome oxidase, Chem. Rev. (2010), 110: 7062–7081.
- 6M. Wikstrom, V. Sharma, V.R. Kaila, J.P. Hosler, and G. Hummer. New perspectives on proton pumping in cellular respiration, Chem. Rev. (2015), 115: 2196–2221.
- 7J.P. Hosler, S. Ferguson-Miller, and D.A. Mills. Energy transduction: proton transfer through the respiratory complexes, Annu. Rev. Biochem. (2006), 75: 165–187.
- 8M. Svensson-Ek, J. Abramson, G. Larsson, S. Tornroth, P. Brzezinski, and S. Iwata. The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides, J. Mol. Biol. (2002), 321: 329–339.
- 9S. Yoshikawa, K. Muramoto, and K. Shinzawa-Itoh. Reaction mechanism of mammalian mitochondrial cytochrome c oxidase, Adv. Exp. Med. Biol. (2012), 748: 215–236.
- 10J. Liu, L. Qin, and S. Ferguson-Miller. Crystallographic and online spectral evidence for role of conformational change and conserved water in cytochrome oxidase proton pump, Proc. Natl. Acad. Sci. U. S. A. (2011), 108: 1284–1289.
- 11S. Iwata. Structure and function of bacterial cytochrome c oxidase, J. Biochem. (1998), 123: 369–375.
- 12J.P. Hosler. The influence of subunit III of cytochrome c oxidase on the D pathway, the proton exit pathway and mechanism-based inactivation in subunit I, Biochim. Biophys. Acta (2004), 1655: 332–339.
- 13T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, and S. Yoshikawa. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A, Science (1995), 269: 1069–1074.
- 14T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, and S. Yoshikawa. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A, Science (1996), 272: 1136–1144.
- 15S. Iwata, C. Ostermeier, B. Ludwig, and H. Michel. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature (1995), 376: 660–669.
- 16J. Abramson, M. Svensson-Ek, B. Byrne, and S. Iwata. Structure of cytochrome c oxidase: a comparison of the bacterial and mitochondrial enzymes, Biochim. Biophys. Acta (2001), 1544: 1–9.
- 17S. Yoshikawa, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, E. Yamashita, N. Inoue, M. Yao, M.J. Fei, C.P. Libeu, T. Mizushima, H. Yamaguchi, T. Tomizaki, and T. Tsukihara. Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase, Science (1998), 280: 1723–1729.
- 18J. Das, S.T. Miller, and D.L. Stern. Comparison of diverse protein sequences of the nuclear-encoded subunits of cytochrome c oxidase suggests conservation of structure underlies evolving functional sites, Mol. Biol. Evol. (2004), 21: 1572–1582.
- 19A. Barrientos, M.H. Barros, I. Valnot, A. Rotig, P. Rustin, and A. Tzagoloff. Cytochrome oxidase in health and disease, Gene (2002), 286: 53–63.
- 20Y. Zhen, C.W. Hoganson, G.T. Babcock, and S. Ferguson-Miller. Definition of the interaction domain for cytochrome c on cytochrome c oxidase. I. Biochemical, spectral, and kinetic characterization of surface mutants in subunit ii of Rhodobacter sphaeroides cytochrome aa3, J. Biol. Chem., (1999), 274: 38032–38041.
- 21S. Ekici, X. Jiang, H.G. Koch, and F. Daldal. Missense mutations in cytochrome c maturation genes provide new insights into Rhodobacter capsulatus cbb3-type cytochrome c oxidase biogenesis, J. Bacteriol. (2013), 195: 261–269.
- 22P. Hellwig, T. Yano, T. Ohnishi, and R.B. Gennis. Identification of the residues involved in stabilization of the semiquinone radical in the high-affinity ubiquinone binding site in cytochrome bo3 from Escherichia coli by site-directed mutagenesis and EPR spectroscopy, Biochemistry (2002), 41: 10675–10679.
- 23K. Muramoto, K. Ohta, K. Shinzawa-Itoh, K. Kanda, M. Taniguchi, H. Nabekura, E. Yamashita, T. Tsukihara, and S. Yoshikawa. Bovine cytochrome c oxidase structures enable O2 reduction with minimization of reactive oxygens and provide a proton-pumping gate, Proc. Natl. Acad. Sci. U. S. A. (2010), 107: 7740–7745.
- 24O. Einarsdottir, W. McDonald, C. Funatogawa, I. Szundi, W.H. Woodruff, and R.B. Dyer. The pathway of O2 to the active site in heme-copper oxidases, Biochim. Biophys. Acta. (2015), 1847: 109–118.
- 25M. Wikstrom. Active site intermediates in the reduction of O2 by cytochrome oxidase, and their derivatives, Biochim. Biophys. Acta (2012), 1817: 468–475.
- 26P. Brzezinski and R.B. Gennis. Cytochrome c oxidase: exciting progress and remaining mysteries, J. Bioenerg. Biomembr. (2008), 40: 521–531.
- 27D. Pierron, D.E. Wildman, M. Huttemann, G.C. Markondapatnaikuni, S. Aras, and L.I. Grossman. Cytochrome c oxidase: evolution of control via nuclear subunit addition, Biochim. Biophys. Acta. (2012), 1817: 590–597.
- 28F. Fontanesi, I.C. Soto, and A. Barrientos. Cytochrome c oxidase biogenesis: new levels of regulation, IUBMB Life (2008), 60: 557–568.
- 29F. Fontanesi, I.C. Soto, D. Horn, and A. Barrientos. Assembly of mitochondrial cytochrome c oxidase, a complicated and highly regulated cellular process, Am. J. Physiol. Cell Physiol. (2006), 291: C1129-C1147.
- 30I.C. Soto, F. Fontanesi, J. Liu, and A. Barrientos. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core, Biochim. Biophys. Acta (2012), 1817: 883–897.
- 31A. Barrientos, K. Gouget, D. Horn, I.C. Soto, and F. Fontanesi. Suppression mechanisms of COX assembly defects in yeast and human: Insights into the COX assembly process, Biochim. Biophys. Acta (2009), 1793: 97–107.
- 32H.S. Carr and D.R. Winge. Assembly of cytochrome c oxidase within the mitochondrion, Acc. Chem. Res. (2003), 36: 309–316.
- 33F. Arnesano, L. Banci, I. Bertini, and M. Martinelli. Ortholog search of proteins involved in copper delivery to cytochrome c oxidase and functional analysis of paralogs and gene neighbors by genomic context, J. Proteome Res. (2005), 4: 63–70.
- 34I. Valnot, J.C. von Kleist-Retzow, A. Barrientos, M. Gorbatyuk, J.W. Taanman, B. Mehaye, P. Rustin, A. Tzagoloff, A. Munnich, and A. Rotig. A mutation in the human heme A:farnesyltransferase gene (COX10) causes cytochrome c oxidase deficiency, Hum. Mol. Genet. (2000), 9: 1245–1249.
- 35K. Saiki, T. Mogi, H. Hori, M. Tsubaki, and Y. Anraku. Identification of the functional domains in heme O synthase. Site-directed mutagenesis studies on the cyoE gene of the cytochrome bo operon in Escherichia coli, J. Biol. Chem. (1993), 268: 26927–26934.
- 36M.H. Barros, C.G. Carlson, D.M. Glerum, and A. Tzagoloff. Involvement of mitochondrial ferredoxin and Cox15p in hydroxylation of heme O, FEBS Lett. (2001), 492: 133–138.
- 37L. Hederstedt. Heme A biosynthesis, Biochim. Biophys. Acta. (2012), 1817: 920–927.
- 38B. Svensson, K.K. Andersson, and L. Hederstedt. Low-spin heme A in the heme A biosynthetic protein CtaA from Bacillus subtilis, Eur. J. Biochem. (1996), 238: 287–295.
- 39K.R. Brown, B.M. Allan, P. Do, and E.L. Hegg. Identification of novel hemes generated by heme A synthase: evidence for two successive monooxygenase reactions, Biochemistry (2002), 41: 10906–10913.
- 40B.M. Brown, Z. Wang, K.R. Brown, J.A. Cricco, and E.L. Hegg. Heme O synthase and heme A synthase from Bacillus subtilis and Rhodobacter sphaeroides interact in Escherichia coli, Biochemistry (2004), 43: 13541–13548.
- 41L. Hiser and J.P. Hosler. Heme A is not essential for assembly of the subunits of cytochrome c oxidase of Rhodobacter sphaeroides, J. Biol. Chem. (2001), 276: 45403–45407.
- 42X. Perez-Martinez, S.A. Broadley, and T.D. Fox. Mss51p promotes mitochondrial Cox1p synthesis and interacts with newly synthesized Cox1p, EMBO J. (2003), 22: 5951–5961.
- 43A. Barrientos, A. Zambrano, and A. Tzagoloff. Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in Saccharomyces cerevisiae, EMBO J. (2004), 23: 3472–3482.
- 44F. Fontanesi, P. Clemente, and A. Barrientos. Cox25 teams up with Mss51, Ssc1, and Cox14 to regulate mitochondrial cytochrome c oxidase subunit 1 expression and assembly in Saccharomyces cerevisiae, J. Biol. Chem. (2011), 286: 555–566.
- 45F. Fontanesi, I.C. Soto, D. Horn, and A. Barrientos. Mss51 and Ssc1 facilitate translational regulation of cytochrome c oxidase biogenesis, Mol. Cell. Biol. (2010), 30: 245–259.
- 46O. Khalimonchuk, M. Bestwick, B. Meunier, T.C. Watts, and D.R. Winge. Formation of the redox cofactor centers during Cox1 maturation in yeast cytochrome oxidase, Mol. Cell Biol. (2010), 30: 1004–1017.
- 47I.C. Soto, F. Fontanesi, R.S. Myers, P. Hamel, and A. Barrientos. A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome c oxidase biogenesis, Cell Metab. (2012), 16: 801–813.
- 48F. Pierrel, M.L. Bestwick, P.A. Cobine, O. Khalimonchuk, J.A. Cricco, and D.R. Winge. Coa1 links the Mss51 post-translational function to Cox1 cofactor insertion in cytochrome c oxidase assembly, EMBO J. (2007), 26: 4335–4346.
- 49D.U. Mick, S. Dennerlein, H. Wiese, R. Reinhold, D. Pacheu-Grau, I. Lorenzi, F. Sasarman, W. Weraarpachai, E.A. Shoubridge, B. Warscheid, and P. Rehling. MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation, Cell (2012), 151: 1528–1541.
- 50P. Clemente, S. Peralta, A. Cruz-Bermudez, L. Echevarria, F. Fontanesi, A. Barrientos, M.A. Fernandez-Moreno, and R. Garesse. hCOA3 stabilizes cytochrome c oxidase 1 (COX1) and promotes cytochrome c oxidase assembly in human mitochondria, J. Biol .Chem. (2013), 288: 8321–8331.
- 51W. Weraarpachai, F. Sasarman, T. Nishimura, H. Antonicka, K. Aure, A. Rotig, A. Lombes, and E.A. Shoubridge. Mutations in C12orf62, a factor that couples COX I synthesis with cytochrome c oxidase assembly, cause fatal neonatal lactic acidosis, Am. J. Hum. Genet. (2012), 90: 142–151.
- 52M. Bourens and A. Barrientos. A CMC1-Knockout reveals translation-independent control of human mitochondrial Complex IV biogenesis, EMBO Reports (2017), 18: 477–494.
- 53G. Mashkevich, B. Repetto, D.M. Glerum, C. Jin, and A. Tzagoloff. SHY1, the yeast homolog of the mammalian SURF-1 gene, encodes a mitochondrial protein required for respiration, J. Biol. Chem. (1997), 272: 14356–14364.
- 54A. Barrientos, D. Korr, and A. Tzagoloff. Shy1p is necessary for full expression of mitochondrial COX1 in the yeast model of Leigh's syndrome, EMBO J. (2002), 21: 43–52.
- 55Z. Zhu, J. Yao, T. Johns, K. Fu, I. De Bie, C. Macmillan, A.P. Cuthbert, R.F. Newbold, J. Wang, M. Chevrette, G.K. Brown, R.M. Brown, and E.A. Shoubridge. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome, Nat. Genet. (1998), 20: 337–343.
- 56V. Tiranti, K. Hoertnagel, R. Carrozzo, C. Galimberti, M. Munaro, M. Granatiero, L. Zelante, P. Gasparini, R. Marzella, M. Rocchi, M.P. Bayona-Bafaluy, J.A. Enriquez, G. Uziel, E. Bertini, C. Dionisi-Vici, B. Franco, T. Meitinger, and M. Zeviani. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency, Am. J. Hum. Genet. (1998), 63: 1609–1621.
- 57D. Smith, J. Gray, L. Mitchell, W.E. Antholine, and J.P. Hosler. Assembly of cytochrome-c oxidase in the absence of assembly protein Surf1p leads to loss of the active site heme, J. Biol. Chem. (2005), 280: 17652–17656.
- 58L. Hiser, M. Di Valentin, A.G. Hamer, and J.P. Hosler. Cox11p is required for stable formation of the Cu(B) and magnesium centers of cytochrome c oxidase, J. Biol. Chem. (2000), 275: 619–623.
- 59F.A. Bundschuh, A. Hannappel, O. Anderka, and B. Ludwig. Surf1, associated with Leigh syndrome in humans, is a heme-binding protein in bacterial oxidase biogenesis, J. Biol. Chem. (2009), 284: 25735–25741.
- 60F.A. Bundschuh, K. Hoffmeier, and B. Ludwig. Two variants of the assembly factor Surf1 target specific terminal oxidases in Paracoccus denitrificans, Biochim. Biophys. Acta (2008), 1777: 1336–1343.
- 61M. Bestwick, M.Y. Jeong, O. Khalimonchuk, H. Kim, and D.R. Winge. Analysis of Leigh syndrome mutations in the yeast SURF1 homolog reveals a new member of the cytochrome oxidase assembly factor family, Mol. Cell Biol. (2010), 30: 4480–4491.
- 62A. Hannappel, F.A. Bundschuh, and B. Ludwig. Role of Surf1 in heme recruitment for bacterial COX biogenesis, Biochim. Biophys. Acta. (2012), 1817: 928–937.
- 63M.R. Bratton, L. Hiser, W.E. Antholine, C. Hoganson, and J.P. Hosler. Identification of the structural subunits required for formation of the metal centers in subunit I of cytochrome c oxidase of Rhodobacter sphaeroides, Biochemistry (2000), 39: 12989–12995.
- 64F. Fontanesi, C. Jin, A. Tzagoloff, and A. Barrientos. Transcriptional activators HAP/NF-Y rescue a cytochrome c oxidase defect in yeast and human cells, Hum. Mol. Genet. (2008), 17: 775–788.
- 65M.H. Barros and A. Tzagoloff. Regulation of the heme A biosynthetic pathway in Saccharomyces cerevisiae, FEBS Lett. (2002), 516: 119–123.
- 66A. Zambrano, F. Fontanesi, A. Solans, R.L. de Oliveira, T.D. Fox, A. Tzagoloff, and A. Barrientos. Aberrant translation of cytochrome c oxidase subunit 1 mRNA species in the absence of Mss51p in the yeast Saccharomyces cerevisiae, Mol. Biol. Cell (2007), 18: 523–535.
- 67D.U. Mick, K. Wagner, M. van der Laan, A.E. Frazier, I. Perschil, M. Pawlas, H.E. Meyer, B. Warscheid, and P. Rehling. Shy1 couples Cox1 translational regulation to cytochrome c oxidase assembly, EMBO J. (2007), 26: 4347–4358.
- 68I.C. Soto and A. Barrientos. Mitochondrial cytochrome c oxidase biogenesis is regulated by the redox state of a heme-binding translational activator, Antioxid. Redox Signal. (2016), 24: 281–298.
- 69F. Pierrel, O. Khalimonchuk, P.A. Cobine, M. Bestwick, and D.R. Winge. Coa2 is an assembly factor for yeast cytochrome c oxidase biogenesis that facilitates the maturation of Cox1, Mol. Cell Biol. (2008), 28: 4927–4939.
- 70M. Bestwick, O. Khalimonchuk, F. Pierrel, and D.R. Winge. The role of Coa2 in hemylation of yeast Cox1 revealed by its genetic interaction with Cox10, Mol. Cell Biol. (2010), 30: 172–185.
- 71O. Khalimonchuk, H. Kim, T. Watts, X. Perez-Martinez, and D.R. Winge. Oligomerization of heme o synthase in cytochrome oxidase biogenesis is mediated by cytochrome oxidase assembly factor Coa2, J. Biol. Chem. (2012), 287: 26715–26726.
- 72S. Swenson, A. Cannon, N.J. Harris, N.G. Taylor, J.L. Fox, and O. Khalimonchuk. Analysis of oligomerization properties of heme a synthase provides insights into Its function in eukaryotes, J. Biol. Chem. (2016), 291: 10411–10425.
- 73A. Tzagoloff, N. Capitanio, M.P. Nobrega, and D. Gatti. Cytochrome oxidase assembly in yeast requires the product of COX11, a homolog of the P. denitrificans protein encoded by ORF3, EMBO J. (1990), 9: 2759–2764.
- 74A. Tzagoloff, M. Nobrega, N. Gorman, and P. Sinclair. On the functions of the yeast COX10 and COX11 gene products, Biochem. Mol. Biol. Int. (1993), 31: 593–598.
- 75L. Banci, I. Bertini, F. Cantini, S. Ciofi-Baffoni, L. Gonnelli, and S. Mangani. Solution structure of Cox11, a novel type of beta-immunoglobulin-like fold involved in CuB site formation of cytochrome c oxidase, J. Biol. Chem. (2004), 279: 34833–34839.
- 76H.S. Carr, G.N. George, and D.R. Winge. Yeast Cox11, a protein essential for cytochrome c oxidase assembly, is a Cu(I)-binding protein, J. Biol. Chem. (2002), 277: 31237–31242.
- 77A.D. van Dijk, S. Ciofi-Baffoni, L. Banci, I. Bertini, R. Boelens, and A.M. Bonvin. Modeling protein-protein complexes involved in the cytochrome c oxidase copper-delivery pathway, J. Proteome. Res. (2007), 6: 1530–1539.
- 78A.K. Thompson, D. Smith, J. Gray, H.S. Carr, A. Liu, D.R. Winge, and J.P. Hosler. Mutagenic analysis of Cox11 of Rhodobacter sphaeroides: insights into the assembly of CuB of cytochrome c oxidase, Biochemistry (2010), 49: 5651–5661.
- 79M.J. Pushie, L. Zhang, I.J. Pickering, and G.N. George. The fictile coordination chemistry of cuprous-thiolate sites in copper chaperones, Biochim. Biophys. Acta. (2012), 1817: 938–947.
- 80P. Greiner, A. Hannappel, C. Werner, and B. Ludwig. Biogenesis of cytochrome c oxidase–in vitro approaches to study cofactor insertion into a bacterial subunit I, Biochim. Biophys. Acta. (2008), 1777: 904–911.
- 81G.S. Banting and D.M. Glerum. Mutational analysis of the Saccharomyces cerevisiae cytochrome c oxidase assembly protein Cox11p, Eukaryot. Cell. (2006), 5: 568–578.
- 82M. Bode, M.W. Woellhaf, M. Bohnert, M. van der Laan, F. Sommer, M. Jung, R. Zimmermann, M. Schroda, and J.M. Herrmann. Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in the intermembrane space of mitochondria facilitates biogenesis of cytochrome c oxidase, Mol. Biol. Cell. (2015), 26: 2385–2401.
- 83M.P. Nobrega, S.C. Bandeira, J. Beers, and A. Tzagoloff. Characterization of COX19, a widely distributed gene required for expression of mitochondrial cytochrome oxidase, J. Biol. Chem. (2002), 277: 40206–40211.
- 84O. Khalimonchuk, K. Ostermann, and G. Rodel. Evidence for the association of yeast mitochondrial ribosomes with Cox11p, a protein required for the CuB site formation of cytochrome c oxidase, Curr. Genet. (2005), 47: 223–233.
- 85D.L. Swem, L.R. Swem, A. Setterdahl, and C.E. Bauer. Involvement of SenC in assembly of cytochrome c oxidase in Rhodobacter capsulatus, J. Bacteriol. (2005), 187: 8081–8087.
- 86S. Ekici, H. Yang, H.G. Koch, and F. Daldal. Novel transporter required for biogenesis of cbb3-type cytochrome c oxidase in Rhodobacter capsulatus, MBio. (2012), 3: e00293-11.
- 87A.K. Thompson, J. Gray, A. Liu, and J.P. Hosler. The roles of Rhodobacter sphaeroides copper chaperones PCuAC and Sco (PrrC) in the assembly of the copper centers of the aa3-type and the cbb3-type cytochrome c oxidases, Biochim. Biophys. Acta. (2012), 1817: 955–964.
- 88L. Banci, I. Bertini, S. Ciofi-Baffoni, E. Katsari, N. Katsaros, K. Kubicek, and S. Mangani. A copper(I) protein possibly involved in the assembly of CuA center of bacterial cytochrome c oxidase, Proc. Natl. Acad. Sci. U. S. A. (2005), 102: 3994–3999.
- 89G.P. McStay, C.H. Su, and A. Tzagoloff. Modular assembly of yeast cytochrome oxidase, Mol. Biol. Cell (2013), 24: 440–452.
- 90M. Bourens, A. Boulet, S.C. Leary, and A. Barrientos. Human COX20 cooperates with SCO1 and SCO2 to mature COX2 and promote the assembly of cytochrome c oxidase, Hum. Mol. Genet. (2014), 23: 2901–2913.
- 91X. Perez-Martinez, C.A. Butler, M. Shingu-Vazquez, and T.D. Fox. Dual functions of Mss51 couple synthesis of Cox1 to assembly of cytochrome c oxidase in Saccharomyces cerevisiae mitochondria, Mol. Biol. Cell (2009), 20: 4371–4380.
- 92J.P. Hosler, J.P. Shapleigh, D.M. Mitchell, Y. Kim, M.A. Pressler, C. Georgiou, G.T. Babcock, J.O. Alben, S. Ferguson-Miller, and R.B. Gennis. Polar residues in helix VIII of subunit I of cytochrome c oxidase influence the activity and the structure of the active site, Biochemistry (1996), 35: 10776–10783.
- 93J.A. Farrar, G. Formicka, M. Zeppezauer, and A.J. Thomson. Magnetic and optical properties of copper-substituted alcohol dehydrogenase: a bisthiolate copper (II) complex, Biochem. J. (1996), 317: 447–456.
- 94D.A. Mills, S. Xu, L. Geren, C. Hiser, L. Qin, M.A. Sharpe, J. McCracken, B. Durham, F. Millett, and S. Ferguson-Miller. Proton-dependent electron transfer from CuA to heme a and altered EPR spectra in mutants close to heme a of cytochrome oxidase, Biochemistry (2008), 47: 11499–11509.
- 95L.A. Abriata, L. Banci, I. Bertini, S. Ciofi-Baffoni, P. Gkazonis, G.A. Spyroulias, A.J. Vila, and S. Wang. Mechanism of CuA assembly, Nat. Chem. Biol. (2008), 4: 599–601.
- 96M.N. Morgada, L.A. Abriata, C. Cefaro, K. Gajda, L. Banci, and A.J. Vila. Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase, Proc. Natl. Acad. Sci. U. S. A. (2015), 112: 11771–11776.
- 97P. Lappalainen, R. Aasa, B.G. Malmstrom, and M. Saraste. Soluble CuA-binding domain from the Paracoccus cytochrome c oxidase, J. Biol. Chem. (1993), 268: 26416–26421.
- 98C.E. Slutter, D. Sanders, P. Wittung, B.G. Malmstrom, R. Aasa, J.H. Richards, H.B. Gray, and J.A. Fee. Water-soluble, recombinant CuA-domain of the cytochrome ba3 subunit II from Thermus thermophilus, Biochemistry (1996), 35: 3387–3395.
- 99J.J. Mulero and T.D. Fox. PET111 acts in the 5'-leader of the Saccharomyces cerevisiae mitochondrial COX2 mRNA to promote its translation, Genetics (1993), 133: 509–516.
- 100C.G. Poutre and T.D. Fox. PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II, Genetics (1987), 115: 637–647.
- 101S. He and T.D. Fox. Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p, Mol. Biol Cell (1997), 8: 1449–1460.
- 102K. Hell, J.M. Herrmann, E. Pratje, W. Neupert, and R.A. Stuart. Oxa1p, an essential component of the N-tail protein export machinery in mitochondria, Proc. Natl. Acad. Sci. U. S. A. (1998), 95: 2250–2255.
- 103K. Hell, A. Tzagoloff, W. Neupert, and R.A. Stuart. Identification of Cox20p, a novel protein involved in the maturation and assembly of cytochrome oxidase subunit 2, J. Biol. Chem. (2000), 275: 4571–4578.
- 104P.S. Jan, K. Esser, E. Pratje, and G. Michaelis. Som1, a third component of the yeast mitochondrial inner membrane peptidase complex that contains Imp1 and Imp2, Mol. Gen. Genet. (2000), 263: 483–491.
- 105M. Graef, G. Seewald, and T. Langer. Substrate recognition by AAA+ ATPases: distinct substrate binding modes in ATP-dependent protease Yme1 of the mitochondrial intermembrane space, Mol. Cell Biol. (2007), 27: 2476–2485.
- 106L.E. Elliott, S.A. Saracco, and T.D. Fox. Multiple roles of the Cox20 chaperone in assembly of Saccharomyces cerevisiae cytochrome c oxidase, Genetics (2012), 190: 559–567.
- 107R.L. Souza, N.S. Green-Willms, T.D. Fox, A. Tzagoloff, and F.G. Nobrega. Cloning and characterization of COX18, a Saccharomyces cerevisiae PET gene required for the assembly of cytochrome oxidase, J. Biol. Chem. (2000), 275: 14898–14902.
- 108S.A. Saracco and T.D. Fox. Cox18p is required for export of the mitochondrially encoded Saccharomyces cerevisiae Cox2p C-tail and interacts with Pnt1p and Mss2p in the inner membrane, Mol. Biol. Cell (2002), 13: 1122–1131.
- 109S.A. Broadley, C.M. Demlow, and T.D. Fox. Peripheral mitochondrial inner membrane protein, Mss2p, required for export of the mitochondrially coded Cox2p C tail in Saccharomyces cerevisiae, Mol. Cell Biol. (2001), 21: 7663–7672.
- 110H.L. Fiumera, S.A. Broadley, and T.D. Fox. Translocation of mitochondrially synthesized Cox2 domains from the matrix to the intermembrane space, Mol. Cell Biol. (2007), 27: 4664–4673.
- 111L. Banci, I. Bertini, G. Cavallaro, and A. Rosato. The functions of Sco proteins from genome-based analysis, J. Proteome Res. (2007), 6: 1568–1579.
- 112J. Beers, D.M. Glerum, and A. Tzagoloff. Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle, J. Biol. Chem. (1997), 272: 33191–33196.
- 113H.S. Carr, A.B. Maxfield, Y.C. Horng, and D.R. Winge. Functional analysis of the domains in Cox11, J. Biol. Chem. (2005), 280: 22664–22669.
- 114L. Banci, I. Bertini, S. Ciofi-Baffoni, I.P. Gerothanassis, I. Leontari, M. Martinelli, and S. Wang. A structural characterization of human SCO2, Structure (2007), 15: 1132–1140.
- 115Y.V. Chinenov. Cytochrome c oxidase assembly factors with a thioredoxin fold are conserved among prokaryotes and eukaryotes, J. Mol. Med (Berl) (2000), 78: 239–242.
- 116B.C. Hill and D. Andrews. Differential affinity of BsSCO for Cu(II) and Cu(I) suggests a redox role in copper transfer to the Cu(A) center of cytochrome c oxidase, Biochim. Biophys. Acta. (2012), 1817: 948–954.
- 117A.C. Badrick, A.J. Hamilton, P.V. Bernhardt, C.E. Jones, U. Kappler, M.P. Jennings, and A.G. McEwan. PrrC, a Sco homologue from Rhodobacter sphaeroides, possesses thiol-disulfide oxidoreductase activity, FEBS Lett. (2007), 581: 4663–4667.
- 118Y.C. Horng, S.C. Leary, P.A. Cobine, F.B. Young, G.N. George, E.A. Shoubridge, and D.R. Winge. Human Sco1 and Sco2 function as copper-binding proteins, J. Biol. Chem. (2005), 280: 34113–34122.
- 119L. Banci, I. Bertini, S. Ciofi-Baffoni, I. Leontari, M. Martinelli, P. Palumaa, R. Sillard, and S. Wang. Human Sco1 functional studies and pathological implications of the P174L mutant, Proc. Natl. Acad. Sci. U. S. A. (2007), 104: 15–20.
- 120A.G. McEwan, A. Lewin, S.L. Davy, R. Boetzel, A. Leech, D. Walker, T. Wood, and G.R. Moore. PrrC from Rhodobacter sphaeroides, a homologue of eukaryotic Sco proteins, is a copper-binding protein and may have a thiol-disulfide oxidoreductase activity, FEBS Lett. (2002), 518: 10–16.
- 121E. Mohorko, H.K. Abicht, D. Buhler, R. Glockshuber, H. Hennecke, and H.M. Fischer. Thioredoxin-like protein TlpA from Bradyrhizobium japonicum is a reductant for the copper metallochaperone ScoI, FEBS Lett. (2012), 586: 4094–4099.
- 122H.K. Abicht, M.A. Scharer, N. Quade, R. Ledermann, E. Mohorko, G. Capitani, H. Hennecke, and R. Glockshuber. How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation, J. Biol. Chem. (2014), 289: 32431–32444.
- 123D. Buhler, R. Rossmann, S. Landolt, S. Balsiger, H.M. Fischer, and H. Hennecke. Disparate pathways for the biogenesis of cytochrome oxidases in Bradyrhizobium japonicum, J. Biol. Chem. (2010), 285: 15704–15713.
- 124M. Schulze and G. Rodel. SCO1, a yeast nuclear gene essential for accumulation of mitochondrial cytochrome c oxidase subunit II, Mol. Gen. Genet. (1988), 211: 492–498.
- 125A. Lode, C. Paret, and G. Rodel. Molecular characterization of Saccharomyces cerevisiae Sco2p reveals a high degree of redundancy with Sco1p, Yeast (2002), 19: 909–922.
- 126S.C. Leary, B.A. Kaufman, G. Pellecchia, G.H. Guercin, A. Mattman, M. Jaksch, and E.A. Shoubridge. Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase, Hum. Mol. Genet. (2004), 13: 1839–1848.
- 127E.K. Dickinson, D.L. Adams, E.A. Schon, and D.M. Glerum. A human SCO2 mutation helps define the role of Sco1p in the cytochrome oxidase assembly pathway, J. Biol. Chem. (2000), 275: 26780–26785.
- 128I. Valnot, S. Osmond, N. Gigarel, B. Mehaye, J. Amiel, V. Cormier-Daire, A. Munnich, J.P. Bonnefont, P. Rustin, and A. Rotig. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy, Am. J. Hum. Genet. (2000), 67: 1104–1109.
- 129LC Papadopoulou, CM Sue, MM Davidson, K Tanji, I Nishino, JE Sadlock, S Krishna, W Walker, J Selby, D Moira Glerum, R Van Coster, G Lyon, E Scalais, R Lebel, P Kaplan, S Shanske, DC De Vivo, E Bonilla, M Hirano, S DiMauro, EA Schon. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene, Nat. Genet. (1999), 23: 333–337.
- 130M. Jaksch, I. Ogilvie, J. Yao, G. Kortenhaus, H.G. Bresser, K.D. Gerbitz, and E.A. Shoubridge. Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome c oxidase deficiency, Hum. Mol. Genet. (2000), 9: 795–801.
- 131C.M. Sue, C. Karadimas, N. Checcarelli, K. Tanji, L.C. Papadopoulou, F. Pallotti, F.L. Guo, S. Shanske, M. Hirano, D.C. De Vivo, R. Van Coster, P. Kaplan, E. Bonilla, and S. DiMauro. Differential features of patients with mutations in two COX assembly genes, SURF-1 and SCO2, Ann. Neurol. (2000), 47: 589–595.
- 132L. Banci, I. Bertini, S. Ciofi-Baffoni, T. Hadjiloi, M. Martinelli, and P. Palumaa. Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer, Proc. Natl. Acad. Sci. U. S. A. (2008), 105: 6803–6808.
- 133S.C. Leary, F. Sasarman, T. Nishimura, and E.A. Shoubridge. Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1, Hum. Mol. Genet. (2009), 18: 2230–2240.
- 134D.A. Stroud, M.J. Maher, C. Lindau, F.N. Vogtle, A.E. Frazier, E. Surgenor, H. Mountford, A.P. Singh, M. Bonas, S. Oeljeklaus, B. Warscheid, C. Meisinger, D.R. Thorburn, and M.T. Ryan. COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2, Hum. Mol. Genet. (2015), 24: 5404–5415.
- 135D. Pacheu-Grau, B. Bareth, J. Dudek, L. Juris, F.N. Vogtle, M. Wissel, S.C. Leary, S. Dennerlein, P. Rehling, and M. Deckers. Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies, Cell Metab. (2015), 21: 823–833.
- 136A. Ghosh, P.P. Trivedi, S.A. Timbalia, A.T. Griffin, J.J. Rahn, S.S. Chan, and V.M. Gohil. Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency, Hum. Mol. Genet. (2014), 23: 3596–3606.
- 137F. Baertling, AM van den Brand M, J.L. Hertecant, A. Al-Shamsi, P van den Heuvel L, F. Distelmaier, E. Mayatepek, J.A. Smeitink, L.G. Nijtmans, and R.J. Rodenburg. Mutations in COA6 cause cytochrome c oxidase deficiency and neonatal hypertrophic cardiomyopathy, Hum. Mutat. (2015), 36: 34–38.
- 138Y.C. Horng, P.A. Cobine, A.B. Maxfield, H.S. Carr, and D.R. Winge. Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome c oxidase, J. Biol. Chem. (2004), 279: 35334–35340.
- 139P.A. Cobine, F. Pierrel, and D.R. Winge. Copper trafficking to the mitochondrion and assembly of copper metalloenzymes, Biochim. Biophys. Acta (2006), 1763: 759–772.
- 140N.R. Mattatall, J. Jazairi, and B.C. Hill. Characterization of YpmQ, an accessory protein required for the expression of cytochrome c oxidase in Bacillus subtilis, J. Biol. Chem. (2000), 275: 28802–28809.
- 141D. Heaton, T. Nittis, C. Srinivasan, and D.R. Winge. Mutational analysis of the mitochondrial copper metallochaperone Cox17, J. Biol. Chem. (2000), 275: 37582–37587.
- 142D.M. Glerum, A. Shtanko, and A. Tzagoloff. Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase, J. Biol. Chem. (1996), 271: 14504–14509.
- 143A.B. Maxfield, D.N. Heaton, and D.R. Winge. Cox17 is functional when tethered to the mitochondrial inner membrane, J. Biol. Chem. (2004), 279: 5072–5080.
- 144M. Chojnacka, A. Gornicka, S. Oeljeklaus, B. Warscheid, and A. Chacinska. Cox17 protein is an auxiliary factor involved in the control of the mitochondrial contact site and cristae organizing system, J. Biol. Chem. (2015), 290: 15304–15312.
- 145S. Longen, M. Bien, K. Bihlmaier, C. Kloeppel, F. Kauff, M. Hammermeister, B. Westermann, J.M. Herrmann, and J. Riemer. Systematic analysis of the twin cx9c protein family, J. Mol. Biol. (2009), 393: 356–368.
- 146K. Rigby, L. Zhang, P.A. Cobine, G.N. George, and D.R. Winge. Characterization of the cytochrome c oxidase assembly factor Cox19 of Saccharomyces cerevisiae, J. Biol. Chem. (2007), 282: 10233–10242.
- 147M.H. Barros, A. Johnson, and A. Tzagoloff. COX23, a homologue of COX17, is required for cytochrome oxidase assembly, J. Biol. Chem. (2004), 279: 31943–31947.
- 148J.E. McEwen, K.H. Hong, S. Park, and G.T. Preciado. Sequence and chromosomal localization of two PET genes required for cytochrome c oxidase assembly in Saccharomyces cerevisiae, Curr. Genet. (1993), 23: 9–14.
- 149D. Horn, H. Al-Ali, and A. Barrientos. Cmc1p is a conserved mitochondrial twin Cx9C protein involved in cytochrome c oxidase biogenesis, Mol. Cell. Biol. (2008), 28: 4354–4364.
- 150D. Horn, W. Zhou, E. Trevisson, H. Al-Ali, T.K. Harris, L. Salviati, and A. Barrientos. The conserved mitochondrial twin CX9C protein Cmc2 is a Cmc1 homologue essential for cytochrome c oxidase biogenesis, J. Biol. Chem. (2010), 285: 15088–15099.
- 151S.C. Leary, P.A. Cobine, T. Nishimura, R.M. Verdijk, R. de Krijger, R. de Coo, M.A. Tarnopolsky, D.R. Winge, and E.A. Shoubridge. COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux, Mol. Biol. Cell (2013), 24: 683–691.
- 152R. Dela Cruz, M.-Y. Jeong, and D.R. Winge. Cox1 mutation abrogates need for Cox23 in cytochrome c oxidase biogenesis, Mic. Cell (2016), 3: 275–284.
- 153P.A. Cobine, L.D. Ojeda, K.M. Rigby, and D.R. Winge. Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix, J. Biol. Chem. (2004), 279: 14447–14455.
- 154P.A. Cobine, F. Pierrel, M.L. Bestwick, and D.R. Winge. Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase, J. Biol. Chem. (2006), 281: 36552–36559.
- 155R. Takabatake, A.B. Siddique, H. Kouchi, K. Izui, and S. Hata. Characterization of a Saccharomyces cerevisiae gene that encodes a mitochondrial phosphate transporter-like protein, J. Biol. Chem. (2001), 129: 827–833.
- 156L. Zotova, M. Aleschko, G. Sponder, R. Baumgartner, S. Reipert, M. Prinz, R.J. Schweyen, and K. Nowikovsky. Novel components of an active mitochondrial K+/H+ exchange, J. Biol. Chem. (2010), 285: 14399–14414.
- 157K.E. Vest, S.C. Leary, D.R. Winge, and P.A. Cobine. Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein, J. Biol. Chem. (2013), 288: 23884–23892.
- 158K.E. Vest, J. Wang, M.G. Gammon, M.K. Maynard, O.L. White, J.A. Cobine, W.K. Mahone, and P.A. Cobine. Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae, Open Biol. (2016), 6: 150223.
- 159E.L. Seifert, E. Ligeti, J.A. Mayr, N. Sondheimer, and G. Hajnoczky. The mitochondrial phosphate carrier: Role in oxidative metabolism, calcium handling and mitochondrial disease, Biochem Biophys Res Commun. (2015), 464: 369–375.
- 160W. Chen, P.N. Paradkar, L. Li, E.L. Pierce, N.B. Langer, N. Takahashi-Makise, B.B. Hyde, O.S. Shirihai, D.M. Ward, J. Kaplan, and B.H. Paw. Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria, Proc. Natl. Acad. Sci. U. S. A. (2009), 106: 16263–16268.
- 161H.I. Hung, J.M. Schwartz, E.N. Maldonado, J.J. Lemasters, and A.L. Nieminen. Mitoferrin-2-dependent mitochondrial iron uptake sensitizes human head and neck squamous carcinoma cells to photodynamic therapy, J. Biol. Chem. (2013), 288: 677–686.