Aryllithiums and Hetaryllithiums: Generation and Reactivity
D. W. Slocum
Western Kentucky University, Bowling Green, KY, USA
Search for more papers by this authorD. W. Slocum
Western Kentucky University, Bowling Green, KY, USA
Search for more papers by this authorAbstract
Aryllithiums and hetaryllithiums are of great utility to the chemical community. Not only do they serve as intermediates in the synthesis of various pharmaceuticals, but they also can be used in routes to polymers, inorganic complexes, natural products, and materials. Their versatility is well known.
In the late 1930s, simultaneous research discoveries of Georg Wittig and Henry Gilman began to appear. Eventually, these two pioneers delineated some of the parameters of both the ortho-lithiation and halogen/lithium exchange reactions. Amplification of aspects of the ortho-lithiation reaction over the next 25 years was provided by J. D. Roberts and C. R. Hauser with articulation of the “Complex-Induced Proximity Effect” by Roberts and the directing groups –CH2NMe2 and –CONHR by Hauser. Another 10 years passed before significant addition to the capabilities of the X/Li (X = halogen, halide) exchange took place. This is attributed to W. Parham and is known as the Parham cyclization. In many respects, this advancement in the overall usefulness of the halogen/lithium exchange has become a most important component of the incorporation of the exchange into synthetic procedures.
As details of the equilibria of alkyllithium reagents in various ether and hydrocarbon solvents began to emerge, advances in mechanistic understanding of both ortho-lithiation and the exchange were made. These advances have made the production of aryllithiums and hetaryllithiums of significant value to the synthetic chemist. Recent discoveries promise to provide safer, more efficient process conditions, thereby making both protocols more attractive for scaled processes.
With all these advances, understanding of both reactions remains incomplete. Future research promises even greater control and fine-tuning of the variables in each reaction such that they become of even greater utility. Although other main group metal and transition metal ortho-metalations are known, the specificity and overall economy of aryllithium and hetaryllithium generation should bring about even greater involvement of these intermediates in future research and scaled production.
References
- 1D. W. Slocum and D. I. Sugarman, in ‘Polyamine-Chelated Alkali Metal Compounds’, ed A. W. Langer, American Chemical Society, Washington, 1974, Vol. 130, Chap. Directed Metalation, p. 232.
- 2B. J. Wakefield, ‘The Chemistry of Organolithium Compounds’, Part I, Pergamon Press, New York, 1974.
- 3H. W. Gschwend and H. R. Rodriguez, Org. React., 1979, 26, 1.
- 4V. Snieckus, Chem. Rev., 1990, 90, 879.
- 5J. Clayden, ‘Organolithiums: Selectivity for Synthesis’, Pergamon Press, Oxford, New york, 2002.
- 6J. Clayden, in ‘The Chemistry of Organolithium Compounds’, eds Z. Rappoport and I. Marek, John Wiley & Sons, Ltd, West Sussex, 2004, Chap. Directed Metalation of Aromatic Compounds, p. 495.
10.1002/047002111X.ch10 Google Scholar
- 7B. J. Wakefield, ‘Organolithium Methods, Best Synthetic Methods’, Academic Press, New York, 1988.
- 8L. Brandsma and H. Verkruijsse, ‘Preparative Polar Organometallic Chemistry’, Springer-Verlag, Berlin, 1987, Vol. 1.
10.1007/978-3-642-87921-0 Google Scholar
- 9W. E. Parham and C. K. Bradsher, Acc. Chem. Res., 1982, 15, 300.
- 10W. F. Bailey and J. J. Patricia, J. Organomet. Chem., 1988, 342, 1.
10.1016/0022-328X(88)83017-1 Google Scholar
- 11B. J. Wakefield, in ‘Comprehensive Organic Chemistry’, ed. D. N. Jones, Pergamon, Oxford, 1979, Vol. 3, Chap. Organometallic Chemistry of the Alkali Metals, p. 943.
- 12J. L. Wardell, in ‘Comprehensive Organometallic Chemistry’, eds G. Wilkinson, F. G. A. Stone and E. Abel, Pergamon, Oxford, 1982, Vol. 1, Chap. 2,, Chap. Alkali Metals, p. 42.
- 13G. Dagousset, C. François, T. León, R. Blanc, E. Sansiaume-Dagousset, and P. Knochel, Synthesis, 2014, 46, 3133.
- 14D. Seyferth, Organometallics, 2006, 25, 2.
- 15H. Gilman and R. L. Bebb, J. Am. Chem. Soc., 1939, 61, 109.
- 16G. Wittig and G. Fuhrmann, Ber. Dtsch. Chem. Ges., 1940, 73, 1197.
- 17J. D. Roberts and D. Curtin, J. Am. Chem. Soc., 1946, 68, 1658.
- 18P. Beak and A. I. Meyers, Acc. Chem. Res., 1986, 19, 356.
- 19M. C. Shisler, S. MacNeil, V. Snieckus, and P. Beak, Angew. Chem. Int. Ed., 2004, 43, 2206.
- 20R. Lepley, W. A. Khan, A. B. Giumanini, and A. G. Giumanini, J. Org. Chem., 1966, 31, 2047.
- 21F. N. Jones, R. L. Vaulx, and C. R. Hauser, J. Org. Chem., 1963, 28, 3461.
- 22W. H. Puterbaugh and C. R. Hauser, J. Am. Chem. Soc., 1963, 85, 2467.
- 23W. M. Puterbaugh and C. R. Hauser, J. Org. Chem., 1964, 29, 853.
- 24J. Epsztajn, A. Jozwiak, and A. K. Szczesniak, Curr. Org. Chem., 2006, 10, 1817.
- 25R. A. Finnegan and J. W. Altschuld, J. Organomet. Chem., 1967, 9, 193.
- 26C. Eischenbroich and A. Salzer, ‘Organometallics’, VCH, New York, 1992.
- 27H. L. Lewis and T. L. Brown, J. Am. Chem. Soc., 1970, 92, 4664.
- 28G. Fraenkel, W. E. Bechenbaugh, and P. P. Wang, J. Am. Chem. Soc., 1976, 98, 6878.
- 29G. Fraenkel, M. Hendrichs, J. M. Hewitt, B. M. Su, and M. J. Geckle, J. Am. Chem. Soc., 1980, 102, 3345.
- 30C. D. Broadus, J. Org. Chem., 1970, 35, 10.
- 31D. W. Slocum, G. Book, and C. A. Jennings, Tetrahedron Lett., 1970, 3443.
- 32P. Beak and B. Siegel, J. Am. Chem. Soc., 1974, 96, 6803.
- 33G. W. Klumpp and M. J. Sinnige, Tetrahedron Lett., 1986, 27, 2247.
- 34D. W. Slocum and B. P. Koonsvitsky, J. Org. Chem., 1973, 38, 1675.
- 35A. M. Barnard, P. P. Piras, A. Plumitallo, S. Melis, and F. Solgiu, Gazz. Chim. Ital., 1982, 112, 443.
- 36D. W. Slocum, T. K. Reinscheld, C. B. White, M. D. Timmons, P. A. Shelton, M. G. Slocum, R. D. Sandlin, E. G. Holland, D. Kusmic, J. A. Jennings, K. C. Tekins, Q. Nguyen, S. J. Bush, J. M. Keller, and P. E. Whitley, Organometallics, 2013, 32, 1674.
- 37H. W. Gshwend and A. Hamdan, J. Org. Chem., 1982, 47, 3652.
- 38M. R. Winkle and R. C. Ronald, J. Org. Chem., 1982, 30, 2101.
- 39R. C. Ronald and M. R. Winkle, Tetrahedron, 1983, 39, 2031.
- 40M. A. Sutter and D. Seebach, Liebigs Ann. Chem., 1983, 939.
- 41M. Iwao, J. Org. Chem., 1990, 55, 3622.
- 42A. Wada, S. Kanatomo, and S. Nagai, Chem. Pharm. Bull. Jpn., 1985, 33, 1016.
- 43D. W. Slocum and W. Achermann, J. Chem. Soc., Chem. Commun., 1974, 968.
- 44M. Uemura, S. Tokuyana, and T. Sakan, Chem. Lett., 1975, 1195.
- 45N. Meyer and D. Seebach, Chem. Ber., 1980, 118, 1304.
- 46P. Stanetty, H. Koller, and M. Mihovilovic, J. Org. Chem., 1992, 57, 6833.
- 47L. Dashan and S. Trippett, Tetrahedron Lett., 1983, 24, 2039.
- 48T. D. Krizan and J. C. Martin, J. Am. Chem. Soc., 1983, 105, 6155.
- 49A. I. Meyers and E. D. Mihelich, J. Org. Chem., 1975, 40, 3158.
- 50D. A. Shirley and B. J. Reeves, J. Organomet. Chem., 1969, 16, 1.
- 51M. P. Sibi and V. Snieckus, J. Org. Chem., 1983, 48, 1935.
- 52P. Beak and V. Snieckus, Acc. Chem. Res., 1982, 15, 306.
- 53H. Watanabe, R. A. Schwarz, C. R. Hauser, J. Lewis, and D. W. Slocum, Can. J. Chem., 1969, 47, 1543.
- 54R. R. Fraser, M. Bresse, and T. S. Mansour, J. Am. Chem. Soc., 1983, 105, 7790.
- 55R. R. Fraser, M. Bresse, and T. S. Mansour, J. Chem. Soc., Chem. Commun., 1983, 620.
- 56J. T. B. H. Jastrzebski, G. van Koten, M. Konijn, and C. H. Stam, J. Am. Chem. Soc., 1982, 104, 5490.
- 57S. Harder, J. Boersma, and L. Brandsma, J. Org. Chem., 1988, 339, 7.
- 58S. Harder, J. Boersma, L. Brandama, J. A. Kanters, A. J. M. Duisenberg, and J. H. Lenthe, Organometallics, 1990, 9, 511.
- 59A. E. H. Wheatley, Eur. J. Inorg. Chem., 2003, 3291.
- 60D. W. Slocum and C. A. Jennings, J. Org. Chem., 1976, 41, 3653.
- 61P. Beak and R. A. Brown, J. Org. Chem., 1979, 44, 4463.
- 62A. I. Meyers and K. Lutomski, J. Org. Chem., 1979, 44, 4464.
- 63M. Iwao, T. Iihama, K. K. Mahalanabis, H. Perrier, and V. Snieckus, J. Org. Chem., 1989, 54, 24.
- 64W. Bauer and P. v. R. Schleyer, J. Am. Chem. Soc., 1989, 111, 7191.
- 65N. Hommes and P. v. R. Schleyer, Angew. Chem. Int. Ed. Engl., 1992, 31, 755.
10.1002/anie.199207551 Google Scholar
- 66N. Hommes and P. v. R. Schleyer, Tetrahedron, 1994, 50, 5903.
- 67J. M. Saá, Helv. Chim. Acta, 2002, 85, 814.
- 68D. B. Collum, Acc. Chem. Res., 1992, 25, 448.
- 69S. T. Chadwick, R. A. Rennels, J. L. Rutherford, and D. B. Collum, J. Am. Chem. Soc., 2000, 122, 8640.
- 70M. Stratakis, J. Org. Chem., 1997, 62, 3024.
- 71S. T. Chadwick, A. Ramirez, L. Gupta, and D. B. Collum, J. Am. Chem. Soc., 2007, 129, 2259.
- 72H. J. Reich, W. S. Goldenberg, A. W. Sanders, and C. C. Tzschucke, Org. Lett., 2001, 3, 33.
- 73D. W. Slocum, S. Dumbris, S. Brown, G. Jackson, R. LaMastus, E. Mullins, J. Ray, P. Shelton, A. Walstrom, J. M. Wilcox, and R. W. Holman, Tetrahedron, 2003, 59, 8275.
- 74D. W. Slocum, R. Moon, J. Thompson, D. S. Coffey, J. D. Li, M. G. Slocum, A. Siegel, and R. Gayton-Garcia, Tetrahedron Lett., 1994, 35, 385.
- 75D. W. Slocum, A. Carroll, P. Dietzel, S. Eilermann, J. P. Culver, B. McClure, S. Brown, and R. W. Holman, Tetrahedron Lett., 2006, 47, 865.
- 76R. Maggi and M. Schlosser, J. Org. Chem., 1996, 61, 5430.
- 77D. A. Shirley and C. F. Cheng, J. Organomet. Chem., 1969, 20, 251.
- 78G. Katsoulos, S. Takagishi, and M. Schlosser, Synlett, 1991, 10, 731.
10.1055/s-1991-34754 Google Scholar
- 79D. C. Furlano, S. N. Calderon, G. Chen, and K. L. Kirk, J. Organomet. Chem., 1965, 3, 169.
- 80D. W. Slocum, D. S. Coffey, A. Siegel, and P. Grimes, Tetrahedron Lett., 1994, 35, 389.
- 81M. Schlosser, Angew. Chem. Int. Ed., 2005, 44, 376.
- 82T. Kauffmann, A. Mitschker, and A. Waltermann, Chem. Ber., 1983, 116, 992.
- 83F. Mongin, A.-S. Rebstock, F. Trecourt, G. Queguiner, and F. Marsais, J. Org. Chem., 2004, 69, 6766.
- 84A. Chartoire, C. Comoy, and Y. Fort, J. Organomet. Chem., 2010, 75, 2227.
- 85J. M. Saá, P. M. Deyá, G. A. Suñer, and A. Frontera, J. Am. Chem. Soc., 1992, 114, 9093.
- 86D. W. Slocum, J. Ray, and P. Shelton, Tetrahedron Lett., 2002, 43, 6071.
- 87K.-H. Boltze, H.-D. Dell, and H. Jansen, Eur. J. Org. Chem., 1967, 709, 63.
- 88B. Bennetau, F. Rajarison, and J. Dunogues, Tetrahedron, 1993, 49, 10843.
- 89L. Wang, Y. Wang, F. Guo, Y. Zheng, P. S. Bhadury, and Z. Sun, Tetrahedron Lett., 2013, 54, 6053.
- 90K. Shankaran, C. P. Sloan, and V. Snieckus, Tetrahedron Lett., 1985, 26, 6001.
- 91J. Epsztajn, A. Bieniek, M. W. Plotka, and K. Suwalk, Tetrahedron, 1989, 45, 7469.
- 92N. Robert, T. Martin, J. Grisel, J. Lazaar, C. Hoarau, and F. Marsais, Tetrahedron Lett., 2009, 50, 1768.
- 93G. v. Koten, Top. Organomet. Chem., 2013, 40, 1.
- 94L. Dostal, R. Jambor, A. Ruzicka, I. Cisarova, J. Holecek, M. Biesemans, R. Willem, F. D. Proft, and P. Geerlings, Organometallics, 2007, 26, 6312.
- 95J. Koller, S. Sarkar, K. A. Abboud, and A. S. Veige, Organometallics, 2007, 26, 5438.
- 96M. Demas, G. J. Javadi, L. M. Bradley, and D. A. Hunt, J. Organomet. Chem., 2000, 65, 7201.
- 97M. Khaldi, F. Chrétien, and Y. Chapleur, Bull. Soc. Chim. Fr., 1996, 133, 7.
- 98F. Xie, B.-L. Gao, D.-F. Wang, and Z.-P. Liu, Lett. Org. Chem., 2010, 7, 332.
- 99C. von dem Busche-Hünnefeld, D. Bühring, C. B. Knobler, and D. J. Cram, J. Chem. Soc., Chem. Commun., 1995, 1085.
- 100I. D. Kostas, G.-J. M. Gruter, O. S. Akkerman, and F. Bickelhaupt, Organometallics, 1996, 15, 4450.
- 101J. D. Neighbors, M. S. Salnikova, and D. F. Wiemer, Tetrahedron Lett., 2005, 46, 1321.
- 102R. Sanz, V. Guilarte, E. Hernando, and A. M. Sanjuan, J. Org. Chem., 2010, 75, 7443.
- 103R. Moriarity, N. Rani, L. A. Enach, M. S. Rao, H. Batra, L. Guo, R. A. Penmasta, J. P. Staszewski, S. M. Tuladhar, O. Prakash, D. Crich, A. Hirtopeanu, and R. Gilardi, J. Org. Chem., 2004, 69, 1890.
- 104G. P. Crowther, R. J. Sundberg, and A. M. Sarpeshkar, J. Org. Chem., 1984, 49, 4657.
- 105Q.-S. Hu, W.-S. Huang, D. Vitharana, X.-F. Zheng, and L. Pu, J. Am. Chem. Soc., 1997, 119, 12454.
- 106Z. Bao, W. K. Chan, and L. Yu, J. Am. Chem. Soc., 1995, 117, 12426.
- 107K. Smith and G. A. El-Hiti, Current Org. Chem., 2004, 1, 253.
- 108D. L. Comins and D. H. LaMunyon, Tetrahedron Lett., 1988, 29, 773.
- 109D. L. Comins and J. D. Brown, Tetrahedron Lett., 1981, 22, 4213.
- 110S. N. Kessler and H. A. Wegner, Org. Lett., 2012, 14, 3268.
- 111G. Wittig, U. Pockels, and H. Droge, Ber. Dtsch. Chem. Ges., 1938, 71, 1903.
- 112H. Gilman, W. Langham, and A. L. Jacoby, J. Am. Chem. Soc., 1939, 61, 106.
- 113W. B. Farnham and J. C. Calabrese, J. Am. Chem. Soc., 1986, 108, 2449.
- 114H. J. Reich, D. P. Green, and N. H. Phillips, J. Am. Chem. Soc., 1989, 111, 3444.
- 115P. Beak and D. J. Allen, J. Am. Chem. Soc., 1992, 114, 3420.
- 116B. Jedlicka and R. H. Crabtree, Organometallics, 1997, 16, 6021.
- 117P. K. Sazonov, G. A. Artamkina, and I. P. Beletskaya, Russ. Chem. Rev., 2012, 81, 317.
- 118S. Narasimhan, M. Sunder, R. Ammanamanchi, and D. Bonde, J. Am. Chem. Soc., 1990, 112, 4431.
- 119D. J. Gallagher and P. Beak, J. Am. Chem. Soc., 1991, 113, 7984.
- 120W. F. Bailey, M. R. Luderer, and K. P. Jordan, J. Org. Chem., 2006, 71, 2825.
- 121D. W. Slocum, D. Kusmic, J. C. Raber, T. K. Reinscheld, and P. E. Whitley, Tetrahedron Lett., 2010, 51, 4793.
- 122G. Kobrich and P. Buck, Chem. Ber., 1970, 103, 1412.
- 123W. J. Trepka and R. J. Sonnenfeld, J. Organomet. Chem., 1969, 16, 317.
- 124D. W. Slocum, T. K. Reinscheld, N. D. Austin, D. Kusmic, and P. E. Whitley, Synthesis, 2012, 44, 2531.
- 125H. Gilman and C. E. Arntzen, J. Am. Chem. Soc., 1947, 69, 1537.
- 126W. E. Parham and L. D. Jones, J. Org. Chem., 1976, 41, 1187.
- 127W. E. Parham and R. M. Piccirilli, J. Org. Chem., 1977, 42, 257.
- 128P. Buck and G. Kobrich, Chem. Ber., 1970, 103, 1420.
- 129H. Gilman and F. W. Moore, J. Am. Chem. Soc., 1940, 62, 1843.
- 130E. Campaigne, G. Sknowronski, and R. B. Rogers, Synth. Commun., 1973, 3, 325.
- 131H. Gilman and T. H. Cook, J. Am. Chem. Soc., 1940, 62, 2813.
- 132A. I. Nogaideli and N. I. Tabashidze, Zhur. Org. Khim., 1969, 5, 732.
- 133C. Eaborn, Z. Lasocki, and J. A. Sperry, J. Organomet. Chem., 1972, 35, 245.
- 134J. R. Baran Jr, C. Hendrickson, D. A. Laude Jr, and R. J. Lagow, J. Org. Chem., 1992, 57, 3759.
- 135N. Ishikawa and S. Hayashi, J. Chem. Soc. Jpn., 1969, 90, 300.
- 136C. Tamborski and E. J. Soloski, J. Organomet. Chem., 1969, 20, 245.
- 137M. D. Rausch, F. E. Tibbetts, and H. B. Gordon, J. Organomet. Chem., 1966, 5, 493.
- 138S. Giri, F. Lund, A. Núñez, and A. Toro-Labbé, J. Phys. Chem., 2013, 117, 5544.
- 139S. C. Cohen, M. L. N. Reddy, D. M. Roe, A. J. Tomlinson, and A. G. Massey, J. Organomet. Chem., 1968, 14, 241.
- 140G. J. Chen and C. Tamborski, J. Organomet. Chem., 1983, 251, 149.
- 141P. Kozikowski and X. M. Cheng, J. Org. Chem., 1984, 49, 3239.
- 142Y. Fukuyama, Y. Kawashima, T. Miwa, and T. Tokoroyama, Synthesis, 1974, 433.
- 143P. Moses and S. Gronowitz, Arkiv. Kemi, 1962, 18, 119.
- 144H. Malmberg and M. Nilsson, Tetrahedron, 1986, 42, 3981.
- 145A. Murray, W. W. Foreman, and W. Langham, J. Am. Chem. Soc., 1948, 70, 1037.
- 146G. Saulnier and G. W. Gribble, J. Org. Chem., 1982, 47, 757.
- 147R. P. Dickinson and B. Iddon, J. Chem. Soc. C, 1971, 3447.
- 148G. W. Gribble, in ‘Name Reactions for Homologation, Part II’, ed. J. J. Li, John Wiley & Sons, Inc., New Jersey, 2008, Parham Cyclization, p. 749.
- 149M. R. Bell, Tetrahedron Lett., 1985, 26, 2151.
- 150M. P. Groziak and L. Wei, J. Org. Chem., 1992, 57, 3776.
- 151V. Snieckus, Pure Appl. Chem., 1990, 62, 2047.
- 152J. B. Campbell, R. F. Dedinas, and S. Trumbower-Walsh, Synlett, 2010, 20, 3008.
- 153T. Kojima and S. Hiraoka, Org. Lett., 2014, 16, 1024.
- 154Y. Zhang, L. Qiang, C. Wang, and Y. Jia, Org. Lett., 2013, 15, 3662.
- 155A. Nagaki, H. Kim, H. Usutami, C. Matsuo, and J. Yoshida, Org. Biomol. Chem., 2010, 8, 1212.
- 156A. Nagaki, Y. Moriwaki, and J. Yoshida, Chem. Commun., 2012, 48, 11211.
- 157A. Nagaki, Y. Uesugi, H. Kim, and J. Yoshida, Chem. Asian. J., 2013, 8, 705.
- 158D. W. Slocum, P. Shelton, and K. Moran, Synthesis, 2005, 20, 3477.
- 159R. L. Gay, T. F. Crimmins, and C. R. Hauser, Chem. Ind. (London), 1966, 1635.
- 160N. S. Mani, J. A. Jablonowski, and T. K. Jones, J. Org. Chem., 2004, 69, 8115.
- 161J. T. Henssler and A. J. Matzger, Org. Lett., 2009, 11, 3144.
- 162P. Pollet, A. Turck, N. Plé, and G. Queguiner, J. Org. Chem., 1999, 64, 4512.
- 163M. C. Carreño, J. L. Ruano, M. A. Toledo, and A. Urbano, Tetrahedron: Asymmetry, 1997, 8, 913.
- 164T. Emura, H. Yoshino, K. Tachibana, T. Shiraishi, A. Honma, A. Mizutani, and T. Muraoka, Synlett, 2011, 8, 1117.
- 165A. G. Deeming, C. J. Russell, A. J. Hennessy, and M. C. Willis, Org. Lett., 2014, 16, 150.
- 166E. J. Emmett, B. R. Hayter, and M. C. Willis, Angew. Chem., 2013, 125, 12911.
10.1002/ange.201305369 Google Scholar
- 167A. S. Deeming, E. J. Emmett, C. S. Richards-Taylor, and M. C. Willis, Synthesis, 2014, 46, 2701.
- 168Y. Nakashima, T. Shimizu, K. Hirabayashi, F. Iwasaki, M. Yamasaki, and N. Kamigata, J. Org. Chem., 2005, 70, 5020.
- 169G. Mugesh and H. B. Singh, Acc. Chem. Res., 2002, 35, 226.
- 170A. L. Braga, D. S. Lüdtke, and F. Vargas, Curr. Org. Chem., 2006, 10, 1921.
- 171B. M. Trost and W. H. Pearson, J. Am. Chem. Soc., 1981, 103, 2483.
- 172P. Beak and B. J. Kokko, J. Org. Chem., 1982, 47, 2822.
- 173P. Beak and G. W. Selling, J. Org. Chem., 1989, 54, 5574.
- 174P. Spagnolo, P. Zanirato, and S. Gronowitz, J. Org. Chem., 1982, 47, 3177.
- 175K. Nishiyama and N. Tanaka, J. Chem. Soc., Chem. Commun., 1983, 1322.
- 176J. N. Reed and V. Snieckus, Tetrahedron Lett., 1984, 25, 5505.
- 177J. Gavenonis and T. D. Tilley, Organometallics, 2002, 21, 5549.
- 178T. Fukuda, H. Akashima, and M. Iwao, Tetrahedron, 2005, 61, 6886.
- 179M. Inman, A. Carbone, and C. J. Moody, J. Org. Chem., 2012, 77, 1217.
- 180D. Hellwinkel and W. Krapp, Chem. Ber., 1978, 111, 13.
- 181D. Aguilar, I. Fernandez, L. Cuesta, V. Yañez-Rodriguez, T. Soler, R. Navarro, E. Urriolabeitia, and F. Lopez-Ortiz, J. Org. Chem., 2010, 75, 6452.
- 182J. Clayden, S. P. Fletcher, J. Senior, and C. P. Worrall, Tetrahedron: Asymmetry, 2010, 21, 1355.
- 183A. G. Coyne, H. Müller-Bunz, and P. J. Guiry, Tetrahedron: Asymmetry, 2007, 18, 199.
- 184L. Heuer and R. Schmutzler, J. Fluorine Chem., 1988, 39, 197.
- 185R. L. Wife, A. B. Van Oort, J. A. Van Doorn, and P. W. N. M. Van Leeuwen, Synthesis, 1983, 71.
- 186B. Jiang, Tetrahedron: Asymmetry, 2006, 17, 942.
- 187Y. Kang, D. Song, H. Schmider, and S. Wang, Organometallics, 2002, 21, 2413.
- 188Y.-M. Li, F.-Y. Kwong, W.-Y. Yu, and A. S. C. Chan, Coord. Chem. Rev., 2007, 251, 2119.
- 189I. Sárosi, M. B. Sárosi, P. Lönnecke, L. Silaghi-Dumitrescu, and E. Hey-Hawkins, Aust. J. Chem., 2013, 66, 1246.
- 190F. Stiemke, M. Gjikaj, and D. Kaufmann, J. Organomet. Chem., 2009, 694, 5.
- 191R. Kaul, S. Deechongkit, and J. W. Kelly, J. Am. Chem. Soc., 2002, 124, 11900.
- 192W.-L. Jia, Q.-D. Liu, D. Song, and S. Wang, Organometallics, 2003, 22, 321.
- 193Y. Liu, D. Ballweg, T. Müller, I. A. Guzei, R. W. Clark, and R. West, J. Am. Chem. Soc., 2002, 124, 12174.
- 194M. Wander, P. J. C. Hausoul, L. A. J. M. Sliedregt, B. J. van Steen, G. van Koten, and R. J. M. K. Gebbink, Organometallics, 2009, 28, 4406.
- 195R. E. Murray and G. Zweifel, Synthesis, 1980, 150.
- 196N. Sato, Tetrahedron Lett., 2002, 43, 6403.
- 197N. Sato and Q. Yue, Tetrahedron, 2003, 59, 5831.
- 198B. Iddon, J. E. Tønder, M. Hosseini, and M. Begtrup, Tetrahedron, 2007, 63, 56.
- 199G. D. Hartman and W. Halczenko, Tetrahedron Lett., 1987, 28, 3241.
- 200G. Deguest, A. Devineau, L. Bischoff, C. Fruit, and F. Marsais, Org. Lett., 2006, 8, 5889.
- 201F. Morandi, E. Caselli, S. Morandi, P. J. Focia, J. Blázquez, B. K. Shoichet, and F. Prati, J. Am. Chem. Soc., 2003, 125, 685.
- 202Y.-Y. Ku, T. Grieme, P. Raje, P. Sharma, H. E. Morton, M. Rozema, and S. A. King, J. Org. Chem., 2003, 68, 3238.
- 203E. Ertürk, M. A. Tezeren, T. Atalar, and T. Tilki, Tetrahedron, 2012, 68, 6463.
- 204M. K. Gannon II and M. R. Detty, J. Org. Chem., 2007, 72, 2647.
- 205R. A. Gossage, J. T. B. H. Jastrzebski, and G. van Koten, Angew. Chem. Int. Ed., 2005, 44, 1448.
- 206H. J. Reich, J. Org. Chem., 2012, 77, 5471.
- 207H. J. Reich, Chem. Rev., 2013, 113, 7130.