Standard Article
Metal–Organic Frameworks: Gas Storage
Abstract
Metal-organic frameworks (MOFs) have emerged as a significant class of porous materials renowned for their well-defined structures and various applications in the last few decades. As a novel category of solid adsorbents, MOFs have overshadowed many traditional porous materials owing to their chemically tunable structures, extraordinarily large porosity, and convenient functionalization procedures. Focused on the gas storage aspect of MOFs, this chapter elaborates the storage of some important gases (hydrogen, carbon dioxide, methane, and others) and features their applications in the areas of renewable energy conservation, environmental protection, and prospective biomedicines.
References
- 1M. E. Davis, Nature, 2002, 417, 813.
- 2H.-C. Zhou, J. R. Long, and O. M. Yaghi, Chem. Rev., 2012, 112, 673.
- 3D. Yuan, D. Zhao, D. Sun, and H.-C. Zhou, Angew. Chem. Int. Ed., 2010, 49, 5357.
- 4E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, and J. R. Long, Science, 2012, 335, 1606.
- 5T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong, and J. R. Long, J. Am. Chem. Soc., 2012, 134, 7056.
- 6C.-D. Wu, A. Hu, L. Zhang, and W. Lin, J. Am. Chem. Soc., 2005, 127, 8940.
- 7A. Lan, K. Li, H. Wu, D. H. Olson, T. J. Emge, W. Ki, M. Hong, and J. Li, Angew. Chem. Int. Ed., 2009, 48, 2334.
- 8P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, and R. Gref, Nat. Mater., 2010, 9, 172.
- 9K. C. Stylianou, R. Heck, S. Y. Chong, J. Bacsa, J. T. A. Jones, Y. Z. Khimyak, D. Bradshaw, and M. J. Rosseinsky, J. Am. Chem. Soc., 2010, 132, 4119.
- 10M. Wriedt, A. A. Yakovenko, G. J. Halder, A. V. Prosvirin, K. R. Dunbar, and H.-C. Zhou, J. Am. Chem. Soc., 2013, 135, 4040.
- 11R. E. Morris and P. S. Wheatley, Angew. Chem. Int. Ed., 2008, 47, 4966.
- 12R. J. Kuppler, D. J. Timmons, Q.-R. Fang, J.-R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H.-C. Zhou, Coord. Chem. Rev., 2009, 253, 3042.
- 13J. Lee, J. Kim, and T. Hyeon, Adv. Mater., 2006, 18, 2073.
- 14D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science, 1998, 279, 548.
- 15G. S. Attard, J. C. Glyde, and C. G. Goltner, Nature, 1995, 378, 366.
- 16C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, and A. Carlsson, J. Am. Chem. Soc., 2000, 122, 7116.
- 17N. Wang, Z. K. Tang, G. D. Li, and J. S. Chen, Nature, 2000, 408, 50.
- 18A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, and O. M. Yaghi, Science, 2005, 310, 1166.
- 19T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simmons, S. Qiu, and G. Zhu, Angew. Chem. Int. Ed., 2009, 48, 9457.
- 20D. Yuan, W. Lu, D. Zhao, and H.-C. Zhou, Adv. Mater., 2011, 23, 3723.
- 21D. Zhao, D. J. Timmons, D. Yuan, and H.-C. Zhou, Acc. Chem. Res., 2010, 44, 123.
- 22F. A. Almeida Paz, J. Klinowski, S. M. F. Vilela, J. P. C. Tome, J. A. S. Cavaleiro, and J. Rocha, Chem. Soc. Rev., 2012, 41, 1088.
- 23H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Nature, 1999, 402, 276.
- 24Q.-R. Fang, T. A. Makal, M. D. Young, and H.-C. Zhou, Comments Inorg. Chem., 2010, 31, 165.
- 25I. Langmuir, J. Am. Chem. Soc., 1916, 38, 2221.
- 26S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 1938, 60, 309.
- 27H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, and O. M. Yaghi, Science, 2010, 329, 424.
- 28O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. Ö. Yazaydn, and J. T. Hupp, J. Am. Chem. Soc., 2012, 134, 15016.
- 29S. M. Cohen, Chem. Rev., 2011, 112, 970.
- 30X.-S. Wang, S. Ma, P. M. Forster, D. Yuan, J. Eckert, J. J. López, B. J. Murphy, J. B. Parise, and H.-C. Zhou, Angew. Chem. Int. Ed., 2008, 47, 7263.
- 31S. Ma and H.-C. Zhou, J. Am. Chem. Soc., 2006, 128, 11734.
- 32H. Wu, W. Zhou, and T. Yildirim, J. Am. Chem. Soc., 2009, 131, 4995.
- 33D. Britt, H. Furukawa, B. Wang, T. G. Glover, and O. M. Yaghi, Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 20637.
- 34L.-C. Lin, J. Kim, X. Kong, E. Scott, T. M. McDonald, J. R. Long, J. A. Reimer, and B. Smit, Angew. Chem., 2013, 125, 4506.
- 35D. Britt, D. Tranchemontagne, and O. M. Yaghi, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 11623.
- 36E. D. Bloch, L. J. Murray, W. L. Queen, S. Chavan, S. N. Maximoff, J. P. Bigi, R. Krishna, V. K. Peterson, F. Grandjean, G. J. Long, B. Smit, S. Bordiga, C. M. Brown, and J. R. Long, J. Am. Chem. Soc., 2011, 133, 14814.
- 37S. Xiang, W. Zhou, J. M. Gallegos, Y. Liu, and B. Chen, J. Am. Chem. Soc., 2009, 131, 12415.
- 38S. J. Geier, J. A. Mason, E. D. Bloch, W. L. Queen, M. R. Hudson, C. M. Brown, and J. R. Long, Chem. Sci., 2013, 4, 2054.
- 39Y.-S. Bae, C. Y. Lee, K. C. Kim, O. K. Farha, P. Nickias, J. T. Hupp, S. T. Nguyen, and R. Q. Snurr, Angew. Chem. Int. Ed., 2012, 51, 1857.
- 40D. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei, and H.-C. Zhou, Angew. Chem. Int. Ed., 2012, 51, 10307.
- 41M. Dinc, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann, and J. R. Long, J. Am. Chem. Soc., 2006, 128, 16876.
- 42P. D. C. Dietzel, R. Blom, and H. Fjellvåg, Eur. J. Inorg. Chem., 2008, 2008, 3624.
- 43D. Zhao, D. Yuan, and H.-C. Zhou, Energy Environ. Sci., 2008, 1, 222.
- 44L. Schlapbach and A. Zuttel, Nature, 2001, 414, 353.
- 45M. P. Stracke, G. Ebeling, R. Cataluña, and J. Dupont, Energy Fuels, 2007, 21, 1695.
- 46N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, and O. M. Yaghi, Science, 2003, 300, 1127.
- 47J. Kubas Gregory, Acc. Chem. Res., 1988, 21, 120.
- 48H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe, and O. M. Yaghi, Nature, 2004, 427, 523.
- 49M. Latroche, S. Surblé, C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, J.-H. Lee, J.-S. Chang, S. H. Jhung, and G. Férey, Angew. Chem. Int. Ed., 2006, 45, 8227.
- 50O. K. Farha, A. Özgür Yazaydn, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen, R. Q. Snurr, and J. T. Hupp, Nat. Chem., 2010, 2, 944.
- 51P. N. Pearson and M. R. Palmer, Nature, 2000, 406, 695.
- 52M. Wriedt, J. P. Sculley, A. A. Yakovenko, Y. Ma, G. J. Halder, P. B. Balbuena, and H.-C. Zhou, Angew. Chem. Int. Ed., 2012, 51, 9804.
- 53K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, and J. R. Long, Chem. Rev., 2011, 112, 724.
- 54W. Lu, J. P. Sculley, D. Yuan, R. Krishna, Z. Wei, and H.-C. Zhou, Angew. Chem. Int. Ed., 2012, 51, 7480.
- 55A. R. Millward and O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998.
- 56P. D. C. Dietzel, V. Besikiotis, and R. Blom, J. Mater. Chem., 2009, 19, 7362.
- 57A. O. Z. R. Yazaydn, R. Q. Snurr, T.-H. Park, K. Koh, J. Liu, M. D. LeVan, A. I. Benin, P. Jakubczak, M. Lanuza, D. B. Galloway, J. J. Low, and R. R. Willis, J. Am. Chem. Soc., 2009, 131, 18198.
- 58J. An, S. J. Geib, and N. L. Rosi, J. Am. Chem. Soc., 2009, 131, 8376.
- 59J.-R. Li, J. Yu, W. Lu, L.-B. Sun, J. Sculley, P. B. Balbuena, and H.-C. Zhou, Nat. Commun., 2013, 4, 1538.
- 60P. D. C. Dietzel, R. E. Johnsen, H. Fjellvag, S. Bordiga, E. Groppo, S. Chavan, and R. Blom, Chem. Commun., 2008, 5125.
- 61J.-R. Li and H.-C. Zhou, Nat. Chem., 2010, 2, 893.
- 62J.-S. Choi, W.-J. Son, J. Kim, and W.-S. Ahn, Microporous Mesoporous Mater., 2008, 116, 727.
- 63T. A. Makal, J.-R. Li, W. Lu, and H.-C. Zhou, Chem. Soc. Rev., 2012, 41, 7761.
- 64S. Ma, D. Sun, J. M. Simmons, C. D. Collier, D. Yuan, and H.-C. Zhou, J. Am. Chem. Soc., 2007, 130, 1012.
- 65X.-S. Wang, S. Ma, K. Rauch, J. M. Simmons, D. Yuan, X. Wang, T. Yildirim, W. C. Cole, J. J. López, A. D. Meijere, and H.-C. Zhou, Chem. Mater., 2008, 20, 3145.
- 66I. Senkovska and S. Kaskel, Microporous Mesoporous Mater., 2008, 112, 108.
- 67C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, and R. Q. Snurr, Nat. Chem., 2012, 4, 83.
- 68Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. O'Keeffe, and B. Chen, Angew. Chem. Int. Ed., 2011, 50, 3178.
- 69C. E. Wilmer, O. K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A. A. Sarjeant, R. Q. Snurr, and J. T. Hupp, Energy Environ. Sci., 2013, 6, 1158.
- 70T. Düren, L. Sarkisov, O. M. Yaghi, and R. Q. Snurr, Langmuir, 2004, 20, 2683.
- 71H. Wu, J. M. Simmons, Y. Liu, C. M. Brown, X.-S. Wang, S. Ma, V. K. Peterson, P. D. Southon, C. J. Kepert, H.-C. Zhou, T. Yildirim, and W. Zhou, Chem.—Eur. J., 2010, 16, 5205.
- 72S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, Science, 1999, 283, 1148.
- 73W. Zhou, H. Wu, M. R. Hartman, and T. Yildirim, J. Phys. Chem. C, 2007, 111, 16131.
- 74D. Zhao, D. Yuan, D. Sun, and H.-C. Zhou, J. Am. Chem. Soc., 2009, 131, 9186.
- 75E. G. Kovaleva, M. B. Neibergall, S. Chakrabarty, and J. D. Lipscomb, Acc. Chem. Res., 2007, 40, 475.
- 76A. Karlsson, J. V. Parales, R. E. Parales, D. T. Gibson, H. Eklund, and S. Ramaswamy, Science, 2003, 299, 1039.
- 77R. B. Eldridge, Ind. Eng. Chem. Res., 1993, 32, 2208.