Aminopeptidase P
J Mitchell Guss
University of Sydney, Department of Biochemistry, NSW, Australia, 2006
Search for more papers by this authorHans C Freeman
University of Sydney, Department of Biochemistry, NSW, Australia, 2006
Search for more papers by this authorJ Mitchell Guss
University of Sydney, Department of Biochemistry, NSW, Australia, 2006
Search for more papers by this authorHans C Freeman
University of Sydney, Department of Biochemistry, NSW, Australia, 2006
Search for more papers by this authorAbstract
Aminopeptidase P is a metalloprotease, which specifically cleaves the N-terminal residue of a peptide if the second residue is proline. The enzyme is a member of the pita-bread fold family of metalloenzymes that includes methionine aminopeptidase and prolidase. Escherichia coli aminopeptidase P is a tetramer in crystals and in solution. Each subunit has a dinuclear manganese (Mn) centre at its active site. A hydroxide ion that bridges the Mn atoms has been identified as the nucleophile in the enzymatic reaction.
3D Structure
Schematic representation of the structure of AMPP showing the monomer as a ribbon representation. The chain is ramp-colored from blue at the N-terminus to red at the C-terminus. The Mn ions in the active site are shown as magenta spheres. Prepared with programs MOLSCRIPT44 and RASTER3D.45 PDB code: 1AZ9.
References
- 1 A Yaron and F Naider, Crit Rev Biochem Mol Biol, 28, 31–81 (1993).
- 2 DF Cunningham and B O'Connor, Biochim Biophys Acta, 1343, 160–86 (1997).
- 3 T Yoshimoto, AT Orawski and WH Simmons, Arch Biochem Biophys, 311, 28–34 (1994).
- 4 N Blau, A Niederwieser and DH Shmerling, J Inherited Metabolic Disease, 11, 240–2 (1988).
- 5 P. Habermann, Eur. Pat. Appl. (1990).
- 6 MM Prechel, AT Orawski, LL Maggiora and WH Simmons, J Pharmacol Exp Ther, 275, 1136–42 (1995).
- 7 TC Cheng, SP Harvey and GL Chen, Appl Environ Microbiol, 62, 1636–41 (1996).
- 8 TC Cheng, L Liu, B Wang, J Wu, JJ Defrank, DM Anderson, VK Rastogi and AB Hamilton, J Ind Microbiol Biotechnol, 18, 49–55 (1997).
- 9 T Yoshimoto, H Tone, T Honda, K Osatomi, K Kobayashi and D Tsuru, J Biochem (Tokyo), 105, 412–16 (1989).
- 10 MJ Butler, A Bergeron, G Soostmeyer, T Zimny and LT Malek, Gene, 123, 115–19 (1993).
- 11 J Matos, M Nardi, H Kumura and V Monnet, Appl Environ Microbiol, 64, 4591–5 (1998).
- 12 RC Venema, H Ju, R Zou, VJ Venema and JW Ryan, Biochim Biophys Acta, 1354, 45–8 (1997).
- 13 G Czirjak, WA Burkhart, MB Moyer, J Antal, SB Shears and P Enyedi, Biochim Biophys Acta, 1444, 326–36 (1999).
- 14 K Nakahigashi and H Inokuchi, Nucleic Acids Res, 18, 6439 (1990).
- 15 M Ghosh, AM Grunden, DM Dunn, R Weiss and MW Adams, J Bacteriol, 180, 4781–9 (1998).
- 16 F Endo, A Tanoue, H Nakai, A Hata, Y Indo, K Titani and I Matsuda, J Biol Chem, 264, 4476–81 (1989).
- 17 A Yaron and D Mlynar, Biochem Biophys Res Commun, 32, 658–63 (1968).
- 18
A Yaron and
A Berger,
Methods Enzymol,
19,
521–34
(1970).
10.1016/0076-6879(70)19039-2 Google Scholar
- 19 T Yoshimoto, N Murayama, T Honda, H Tone and D Tsuru, J Biochem (Tokyo), 104, 93–7 (1988).
- 20 MCJ Wilce, CS Bond, NE Dixon, HC Freeman, JM Guss, PE Lilley and JA Wilce, Proc Natl Acad Sci USA, 95, 3472–7 (1998).
- 21 M Bergmann and JS Fruton, J Biol Chem, 117, 189–202 (1937).
- 22 A Ben-Bassat, K Bauer, SY Chang, K Myambo, A Boosman and S Chang, J Bacteriol, 169, 751–7 (1987).
- 23 P Wingfield, P Graber, G Turcatti, NR Movva, M Pelletier, S Craig, K Rose and CG Miller, Eur J Biochem, 180, 23–32 (1989).
- 24 YH Chang, U Teichert and JA Smith, J Biol Chem, 265, 2–7 (1990).
- 25 KW Walker and RA Bradshaw, Protein Sci, 7, 2684–7 (1998).
- 26 WH Simmons and AT Orawski, J Biol Chem, 267, 4897–903 (1992).
- 27 L Zhang, MJ Crossley, NE Dixon, PJ Ellis, ML Fisher, GF King, PE Lilley, D MacLachlan, RJ Pace and HC Freeman, J Biol Inorg Chem, 3, 470–83 (1998).
- 28 J Jancarik and S Kim, J Appl Cryst, 24, 409–11 (1991).
- 29 JF Bazan, LH Weaver, SL Roderick, R Huber and BW Matthews, Proc Natl Acad Sci USA, 91, 2473–7 (1994).
- 30 HW Hoeffken, SH Knof, PA Bartlett and R Huber, J Mol Biol, 204, 417–33 (1988).
- 31 SL Roderick and BW Matthews, Biochemistry, 32, 3907–12 (1993).
- 32 GC Dismukes, Chem Rev, 96, 2909–26 (1996).
- 33 ZF Kanyo, LR Scolnick, DE Ash and DW Christianson, Nature, 383, 554–7 (1996).
- 34 MC Bewley, PD Jeffrey, ML Patchett, ZF Kanyo and EN Baker, Structure, 7, 435–48 (1999).
- 35 LR Scolnick, ZF Kanyo, RC Cavalli, DE Ash and DW Christianson, Biochemistry, 36, 10558–65 (1997).
- 36 H Umezawa, T Aoyagi, H Suda, M Hamada and T Takeuchi, J Antibiot, 29, 97–9 (1976).
- 37 SK Burley, PR David, RM Sweet, A Taylor and WN Lipscomb, J Mol Biol, 224, 113–40 (1992).
- 38 I Myers, C Charpentier and A Lemonnier, Life Sci, 34, 1985–98 (1984).
- 39 GF King, MJ Crossley and PW Kuchel, Eur J Biochem, 180, 377–84 (1989).
- 40 G Manao, P Nassi, G Cappugi, G Camici and G Ramponi, Physiol Chem Phys, 4, 75–87 (1972).
- 41 WL Mock and PC Green, J Biol Chem, 265, 19600–10 (1990).
- 42 WL Mock, PC Green and KD Boyer, J Biol Chem, 265, 19600–5 (1990).
- 43 WT Lowther, AM Orville, DT Madden, S Lim, DH Rich and BW Matthews, Biochemistry, 38, 7678–88 (1999).
- 44 PJ Kraulis, J Appl Cryst, 24, 946–50 (1991).
- 45 EA Merritt and MEP Murphy, Acta Cryst, D50, 869–73 (1994).