Arthromyces Peroxidase
Keiichi Fukuyama
Osaka University, Department of Biology, Graduate School of Science, Toyonaka, Osaka, Japan, 560-0043
Search for more papers by this authorKeiichi Fukuyama
Osaka University, Department of Biology, Graduate School of Science, Toyonaka, Osaka, Japan, 560-0043
Search for more papers by this authorAbstract
Heme peroxidase catalyzes the oxidation of a variety of compounds by utilizing hydrogen peroxide. The resting peroxidase reacts with hydrogen peroxide to yield an intermediate compound I, which is reduced to the resting state via the second intermediate compound II, by the use of reducing substrates. The reducing substrates include naturally occurring organic compounds such as phenols and ascorbic acid, diagnostic reagents such as luminol and 4-amino-antipyrine, as well as inorganic compounds such as halide ions, ferrocyanide, and isothiocyanate. Arthromyces peroxidase is a class II peroxidase in the plant peroxidase superfamily, and has the characteristics of giving extraordinarily high chemiluminescence in the oxidation of luminol.
3D Structure
References
- 1 K Akimoto, Y Shinmen, M Sumida, S Asami, T Amachi, H Yoshizumi, Y Saeki, S Shimizu and H Yamada, Anal Biochem, 189, 182–5 (1990).
- 2 BB Kim, VV Pisarev and AM Egorov, Anal Biochem, 199, 1–6 (1991).
- 3 KG Welinder, Curr Opin Struct Biol, 2, 388–93 (1992).
- 4 Y Shinmen, S Asami, T Amachi, S Shimizu and H Yamada, Agric Biol Chem, 50, 247–9 (1986).
- 5 MSA Leisola, B Kozulic, F Meussdoerffer and A Fiechter, J Biol Chem, 262, 419–24 (1987).
- 6 TK Kirk and RL Farrell, Ann Rev Microbiol, 41, 465–505 (1987).
- 7 H Sawai-Hatanaka, T Ashikari, Y Tanaka, Y Asada, T Nakayama, H Minakata, N Kunishima, K Fukuyama, H Yamada, Y Shibano and T Amachi, Biosci Biotech Biochem, 59, 1221–8 (1995).
- 8 Y Tanaka, T Ashikari, H Hatanaka, Y Shibano, T Amachi, T Nakayama and M Tsunoda, DDBJ/EMBL/Genbank databases, accession code E03864 (1995)
- 9 L Baunsgaard, H Dalbøge, G Houen, EM Rasmussen and KG Welinder, Eur J Biochem, 213, 605–11 (1993).
- 10 N Kunishima, K Fukuyama, S Wakabayashi, M Sumida, Y Takaya, Y Shibano, T Amachi and H Matsubara, Proteins: Struct Funct Genet, 15, 216–20 (1993).
- 11 M Kjalke, MB Anderson, P Schneider, B Christensen, M Schülein and KG Welinder, Biochim Biophys Acta, 1120, 248–56 (1992).
- 12 Y Morita, H Yamashita, B Mikami, H Iwamoto, S Aibara, M Terada and J Minami, J Biochem, 103, 693–9 (1988).
- 13 P Trinder, Ann Clin Biochem, 6, 24–7 (1969).
- 14 N Kunishima, PhD thesis. Osaka University, (1994).
- 15 GS Lukat, KR Rodgers, MN Jabro and HM Goff, Biochemistry, 28, 3338–45 (1989).
- 16 G Smulevich, A Feis, C Focardi, J Tams and KG Welinder, Biochemistry, 33, 15425–32 (1994).
- 17 JS de Ropp, GN La Mar, H Wariishi and MH Gold, J Biol Chem, 266, 15001–8 (1991).
- 18 G Smulevich, F Neri, MP Marzocchi and KG Welinder, Biochemistry, 35, 10576–85 (1996).
- 19 M Nissum, F Neri, D Mandelman, TL Poulos and G Smulevich, Biochemistry, 37, 8080–7 (1998).
- 20 ZS Farhangrazi, BR Copeland, T Nakayama, T Amachi, I Yamazaki and LS Powers, Biochemistry, 33, 5467–652 (1994).
- 21 N Kunishima, K Fukuyama, H Matsubara, H Hatanaka, Y Shibano and T Amachi, J Mol Biol, 235, 331–44 (1994).
- 22 JF Petersen, JW Tams, J Vind, A Svensson, H Dalbøge, KG Welinder and S Larsen, J Mol Biol, 232, 989–91 (1993).
- 23 JFW Petersen, A Kadziola and S Larsen, FEBS Lett, 339, 291–6 (1994).
- 24 BC Finzel, TL Poulos and J Kraut, J Biol Chem, 259, 13027–36 (1984).
- 25 WR Patterson and TL Poulos, Biochemistry, 34, 4331–41 (1995).
- 26 DJ Schuller, N Ban, RB van Huystee, A McPherson and TL Poulos, Structure, 4, 311–21 (1996).
- 27 M Gajhede, DJ Schuller, A Henriksen, AT Smith and TL Poulos, Nat Struct Biol, 4, 1032–8 (1997).
- 28 A Henriksen, KG Welinder and M Gajhede, J Biol Chem, 273, 2241–8 (1998).
- 29 TL Poulos, SL Edwards, H Wariishi and MH Gold, J Biol Chem, 268, 4429–40 (1993).
- 30 K Piontek, T Glumoff and K Winterhalter, FEBS Lett, 315, 119–24 (1993).
- 31 M Sundaramoorthy, K Kishi, MH Gold and TL Poulos, J Biol Chem, 269, 32759–67 (1994).
- 32 A Abbadi, M Mcharfi, A Aubry, S Premilat, G Boussard and M Murraud, J Am Chem Soc, 113, 2729–35 (1991).
- 33 K Tsukamoto, H Itakura, K Sato, K Fukuyama, S Miura, S Takahashi, H Ikezawa and T Hosoya, Biochemistry, 38, 12558–68 (1999).
- 34 N Kunishima, F Amada, K Fukuyama, M Kawamoto, T Matsunaga and H Matsubara, FEBS Lett, 378, 291–4 (1996).
- 35 S Nagano, M Tanaka, Y Watanabe and I Morishima, Biochem Biophys Res Commun, 207, 417–23 (1995).
- 36 K Fukuyama, K Sato, H Itakura, S Takahashi and T Hosoya, J Biol Chem, 272, 5752–6 (1997).
- 37 Y Shiro, M Kurono and I Morishima, J Biol Chem, 261, 9382–90 (1986).
- 38 M Tanaka, K Ishimori and I Morishima, Biochemistry, 38, 10463–73 (1999).
- 39 NC Veitch, JW Tams, J Vind, H Dalbørge and KG Welinder, Eur J Biochem, 222, 909–18 (1994).
- 40 J Sakurada, S Takahasgi and T Hosoya, J Biol Chem, 261, 9657–62 (1986).
- 41 I Morishima and S Ogawa, J Biol Chem, 254, 2814–20 (1979).
- 42 NC Veitch and RJP Williams, Eur J Biochem, 229, 629–40 (1995).
- 43 J Sakurada, S Takahashi and T Hosoya, J Biol Chem, 262, 4007–10 (1987).
- 44 K Fukuyama, N Kunishima, F Amada, T Kubota and H Matsubara, J Biol Chem, 270, 21884–92 (1995).
- 45 L Banci, I Bertini, T Turano, M Tien and TK Kirk, Proc Natl Acad Sci USA, 88, 6956–60 (1991).
- 46 V Thanabal, JS de Ropp and GN La Mar, J Am Chem Soc, 110, 3027–35 (1988).
- 47 JD Satterlee and JE Erman, Biochemistry, 30, 4398–405 (1991).
- 48 SL Edwards and TL Poulos, J Biol Chem, 265, 2588–95 (1990).
- 49 A Henriksen, AT Smith and M Gajhede, J Biol Chem, 274, 35005–11 (1999).
- 50 V Fülöp, RP Phizackerley, SM Soltis, IJ Clifton, S Wakatsuki, J Erman, J Hajdu and SL Edwards, Structure, 2, 201–8 (1994).
- 51 H Itakura, Y Oda and K Fukuyama, FEBS Lett, 412, 107–10 (1990).
- 52 GR Shonbaum, J Biol Chem, 248, 502–11 (1973).
- 53 G Smulevich, M Paoli, JF Burke, SA Sander, RNF Thorneley and AT Smith, Biochemistry, 33, 7398–407 (1994).
- 54 A Henriksen, DJ Schuller, K Meno, KG Welinder, AT Smith and M Gajhede, Biochemistry, 37, 8054–60 (1998).
- 55 CA Davey and RE Fenna, Biochemistry, 35, 10967–73 (1996).
- 56 H Wariishi, D Nonaka, T Johjima, N Nakamura, Y Naruta, S Kubo and K Fukuyama, J Biol Chem, 275, 32919–24 (2000).
- 57 P Kraulis, J Appl Crystallogr, 24, 946–50 (1991).
- 58 T Yonetani, H Yamamoto, JE Erman and JS Leigh Jr and GH Reed, J Biol Chem, 247, 2447–55 (1972).
- 59 D Nonaka, Thesis. Kyushu University (1998).
- 60 MB Anderson, Y Hsuanyu, KG Welinder, P Schneider and HB Dunford, Acta Chem Scand, 45, 206–211 (1991).
- 61 HB Dunford and JS Stillman, Coord Chem Review, 19, 187–251 (1976).
- 62 MB Anderson, Y Hsuanyu, KG Welinder, P Schneider and HB Dunford, Acta Chem Scand, 45, 1080–6 (1991).
- 63 LB Vitello, JE Erman, MA Miller, J Wang and J Kraut, Biochemistry, 32, 9807–18 (1993).
- 64 JN Rodriguez-Lopez, AT Smith and RNF Thorneley, J Biol Chem, 271, 4023–30 (1996).
- 65 JR Cherry, MH Lamsa, P Schneider, J Vind, A Svendsen, A Jones and AH Pedersen, Nature Biotech, 17, 379–84 (1999).
- 66 G Smulevich, A Feis, C Indiani, M Becucci and MP Marzocchi, J Biol Inorg Chem, 4, 39–47 (1999).