Ab initio and Semiempirical Methods
Serge I. Gorelsky
University of Ottawa, Ottawa, Ontario, Canada
Search for more papers by this authorSerge I. Gorelsky
University of Ottawa, Ottawa, Ontario, Canada
Search for more papers by this authorAbstract
Ab initio and semiempirical methods play a very important role in modern computational chemistry. The main advantage of semiempirical methods is a substantial reduction in the required computation time and, consequently, an increase in ability to execute calculations for large molecules. The disadvantages are the loss of the variational principle (one can obtain a total energy that is below the true total energy), the limited applicability (methods can only be applied to molecules containing elements that have been parameterized), and the danger of spurious results (especially for molecular systems that are different from those used for parameterizations). On the other hand, high-level ab initio techniques enable researchers to obtain very accurate results and act as a reference to lower-accuracy methods. These ab initio methods play an important role for calculations of small molecular systems and progress is being made to extend the area of application of such methods to bigger systems.
References
- 1 A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, Dover Publications, Mineola, 1996.
- 2 C. H. Matrin and M. C. Zerner, Electronic structure calculations on transition metal complexes: Ab initio and approximate models, in Electronic Structure and Spectroscopy of Inorganic Compounds, eds. E. I. Solomon and A. B. P. Lever, John Wiley & Sons, Inc., New York, 1999, Vol. 1, p. 555.
- 3 R. J. Bartlett and J. F. Stanton, Applications of post-Hartree-Fock methods: a tutorial, in Reviews in Computational Chemistry, eds. K. B. Lipkowitz and D. B. Boyd, VCH Publishers, New York, 1994, Vol. 5, p. 65.
- 4
W. Koch and
M. C. Holthausen,
A Chemist's Guide to Density Functional Theory,
Wiley-VCH,
Weinheim,
2001.
10.1002/3527600043 Google Scholar
- 5
S. I. Gorelsky,
Semiempirical SCF MO methods, electronic spectra, and configurational interaction, in
Comprehensive Coordination Chemistry-II, eds.
J. A. McCleverty and
T. J. Meyer,
Elsevier,
Amsterdam,
2004, Vol.
2, p.
467.
10.1016/B0-08-043748-6/01182-8 Google Scholar
- 6 T. Bredow and K. Jug, Theor. Chem. Acc., 2005, 113, 1.
- 7
R. J. Deeth,
Molecular mechanics, in
Comprehensive Coordination Chemistry II, eds.
J. A. McCleverty and
T. J. Meyer,
Elsevier,
Amsterdam,
2004, Vol.
2, p.
457.
10.1016/B0-08-043748-6/01238-X Google Scholar
- 8 I. Shavitt, Int. J. Quantum Chem., 1977, 11, 131.
- 9 S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem., 1974, 8, 61.
- 10 R. J. Bartlett and D. M. Silver, Int. J. Quantum Chem., 1975, 9, 183.
- 11 J. Cizek, Adv. Chem. Phys., 1969, 14, 35.
- 12 C. Møller and M. S. Plesset, Phys. Rev., 1934, 46, 618.
- 13 J. A. Pople, R. Seeger, and R. Krishnan, Int. J. Quantum Chem., 1977, 11, 149.
- 14 J. A. Pople, J. S. Binkley, and R. Seeger, Int. J. Quantum Chem., 1976, 10, 1.
- 15 R. Krishnan and J. A. Pople, Int. J. Quantum Chem., 1978, 14, 91.
- 16 K. Raghavachari, J. A. Pople, E. S. Replogle, and M. Head-Gordon, J. Phys. Chem., 1990, 94, 5579.
- 17 G. D. Purvis and R. J. Bartlett, J. Chem. Phys., 1982, 76, 1910.
- 18 K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Headgordon, Chem. Phys. Lett., 1989, 157, 479.
- 19 G. E. Scuseria, J. Chem. Phys., 1991, 94, 442.
- 20 K. Kowalski and P. Piecuch, J. Chem. Phys., 2000, 113, 18.
- 21 Y. B. Ge, M. S. Gordon, and P. Piecuch, J. Chem. Phys., 2007, 127, 6.
- 22 M. Wloch, J. R. Gour, and P. Piecuch, J. Phys. Chem. A, 2007, 111, 11359.
- 23 P. Piecuch, J. R. Gour, and M. Wloch, Int. J. Quantum Chem., 2008, 108, 2128.
- 24 W. A. Goddard, T. H. Dunning, W. J. Hunt, and P. J. Hay, Acc. Chem. Res., 1973, 6, 368.
- 25 W. A. Goddard and L. B. Harding, Ann. Rev. Phys. Chem., 1978, 29, 363.
- 26 B. O. Roos, P. R. Taylor, and E. M. Per Siegbahn, Chem. Phys., 1980, 48, 157.
- 27
B. O. Roos and
U. Ryde,
Molecular orbital theory (SCF Methods and active space SCF), in
Comprehensive Coordination Chemistry-II, eds.
J. A. McCleverty and
T. J. Meyer,
Elsevier,
Amsterdam,
2004, Vol.
2, p.
519.
10.1016/B0-08-043748-6/01245-7 Google Scholar
- 28 B. O. Roos, K. Andersson, M. P. Fulscher, P.-A. Malmqvist, L. Serrano-Andres, K. Pierloot, and M. Merchan, Multiconfigurational perturbation theory: applications in electronic spectroscopy, in Advances in Chemical Physics, eds. I. Prigogine and S. A. Rice, John Wiley & Sons, Inc., New York, 1996, Vol. 93, p. 219.
- 29 L. Gagliardi and B. O. Roos, Chem. Soc. Rev., 2007, 36, 893.
- 30
T. Bally and
T. Borden,
Calculations on open-shell molecules: a Beginner's guide, in
Reviews in Computational Chemistry, eds.
K. B. Lipkowitz and
D. B. Boyd,
Wiley-VCH,
New York,
1999, Vol.
13, p.
1.
10.1002/9780470125908.ch1 Google Scholar
- 31 K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, J. Phys. Chem., 1990, 94, 5483.
- 32 K. Andersson, B. O. Roos, P. A. Malmqvist, and P. O. Widmark, Chem. Phys. Lett., 1994, 230, 391.
- 33 K. Andersson, C. W. Bauschlicher, B. J. Persson, and B. O. Roos, Chem. Phys. Lett., 1996, 257, 238.
- 34 F. Ferrante, L. Gagliardi, B. E. Bursten, and A. P. Sattelberger, Inorg. Chem., 2005, 44, 8476.
- 35 M. Brynda, L. Gagliardi, P. O. Widmark, P. P. Power, and B. O. Roos, Angew. Chem. Int. Ed. Engl., 2006, 45, 3804.
- 36 B. O. Roos, A. C. Borin, and L. Gagliardi, Angew. Chem. Int. Ed. Engl., 2007, 46, 1469.
- 37 G. La Macchia, L. Gagliardi, P. P. Power, and M. Brynda, J. Am. Chem. Soc., 2008, 130, 5104.
- 38 G. Balazs, F. G. N. Cloke, L. Gagliardi, J. C. Green, A. Harrison, P. B. Hitchcock, A. R. M. Shahi, and O. T. Summerscales, Organometallics, 2008, 27, 2013.
- 39
F. A. Cotton,
C. A. Murillo, and
R. A. Walton,
Multiple Bonds between Metal Atoms,
Springer,
New York,
2005.
10.1007/b136230 Google Scholar
- 40 R. S. Drago and C. J. Bilgrien, Polyhedron, 1988, 7, 1453.
- 41 C. J. Bilgrien, R. S. Drago, C. J. Oconnor, and N. Wong, Inorg. Chem., 1988, 27, 1410.
- 42 F. A. Cotton, H. Chen, L. M. Daniels, and X. J. Feng, J. Am. Chem. Soc., 1992, 114, 8980.
- 43 K. E. Edgecombe and A. D. Becke, Chem. Phys. Lett., 1995, 244, 427.
- 44 R. Clerac, F. A. Cotton, S. P. Jeffery, C. A. Murillo, and X. P. Wang, Dalton Trans., 2003, 3022.
- 45 S. Ilango, B. Vidjayacoumar, S. Gambarotta, and S. I. Gorelsky, Inorg. Chem., 2008, 47, 3265.
- 46 S. Horvath, S. I. Gorelsky, S. Gambarotta, and I. Korobkov, Angew. Chem. Int. Ed. Engl., 2008, 47, 9937.
- 47 S. I. Gorelsky and T. K. Woo, in preparation.
- 48 P. A. Malmqvist, A. Rendell, and B. O. Roos, J. Phys. Chem., 1990, 94, 5477.
- 49 P. A. Malmqvist, K. Pierloot, A. R. M. Shahi, C. J. Cramer, and L. Gagliardi, J. Chem. Phys., 2008, 128, 204109.
- 50 R. Hoffmann and W. N. Lipscomb, J. Chem. Phys., 1962, 36, 2179.
- 51 R. Hoffmann and W. N. Lipscomb, J. Chem. Phys., 1962, 37, 2872.
- 52 R. Hoffmann, J. Chem. Phys., 1963, 39, 1397.
- 53 R. Hoffmann and W. N. Lipscomb, J. Chem. Phys., 1962, 36, 3489.
- 54 J. A. Pople, D. P. Santry, and G. A. Segal, J. Chem. Phys., 1965, 43, S129.
- 55 J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. Phys., 1967, 47, 2026.
- 56 T. A. Halgren and W. N. Lipscomb, J. Chem. Phys., 1973, 58, 1569.
- 57 D. S. Marynick and W. N. Lipscomb, Proc. Natl. Acad. Sci. USA, 1982, 79, 1341.
- 58 D. S. Marynick, PRDDO, in Encyclopedia of Computational Chemistry, eds. Pv. R. Schleyer, John Wiley & Sons, Ltd., Chichester, 1998, Vol. 3, p. 2153.
- 59 A. A. Voityuk, M. C. Zerner, and N. Rosch, J. Phys. Chem. A, 1999, 103, 4553.
- 60 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 1977, 99, 4899.
- 61 W. Thiel and A. A. Voityuk, J. Phys. Chem., 1996, 100, 616.
- 62 W. Thiel and A. A. Voityuk, Theor. Chim. Acta, 1992, 81, 391.
- 63 W. Thiel and A. A. Voityuk, Theor. Chim. Acta, 1996, 93, 315.
- 64 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.
- 65 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc., 1993, 115, 5348.
- 66 J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209.
- 67 J. J. P. Stewart, J. Comput. Chem., 1989, 10, 221.
- 68 J. J. P. Stewart, J. Comput. Chem., 1991, 12, 320.
- 69 J. J. P. Stewart, J. Mol. Model., 2004, 10, 155.
- 70 E. Anders, R. Koch, and P. Freunscht, J. Comput. Chem., 1993, 14, 1301.
- 71 J. J. P. Stewart, J. Mol. Model., 2007, 13, 1173.
- 72 J. J. P. Stewart, J. Mol. Model., 2008, 14, 499.
- 73 G. B. Rocha, R. O. Freire, A. M. Simas, and J. J. P. Stewart, J. Comput. Chem., 2006, 27, 1101.
- 74 P. Coffey and K. Jug, J. Am. Chem. Soc., 1973, 95, 7575.
- 75 K. Jug, Theor. Chim. Acta, 1973, 30, 231.
- 76 D. N. Nanda and K. Jug, Theor. Chim. Acta, 1980, 57, 95.
- 77 B. Ahlswede and K. Jug, J. Comput. Chem., 1999, 20, 563.
- 78 B. Ahlswede and K. Jug, J. Comput. Chem., 1999, 20, 572.
- 79 M. J. Filatov, I. L. Zilberberg, and G. M. Zhidomirov, Int. J. Quantum Chem., 1992, 44, 565.
- 80 M. Kolb and W. Thiel, J. Comput. Chem., 1993, 14, 775.
- 81 W. Weber and W. Thiel, Theor. Chem. Acc., 2000, 103, 495.
- 82 P. J. Hay, J. C. Thibeault, and R. Hoffmann, J. Am. Chem. Soc., 1975, 97, 4884.
- 83 R. S. Mulliken, J. Chem. Phys., 1955, 23, 1833.
- 84 R. S. Mulliken, J. Chem. Phys., 1955, 23, 1841.
- 85 S. I. Gorelsky and A. B. P. Lever, J. Organomet. Chem., 2001, 635, 187.
- 86 S. Dapprich and G. Frenking, J. Phys. Chem., 1995, 99, 9352.
- 87 T. Hughbanks and R. Hoffmann, J. Am. Chem. Soc., 1983, 105, 3528.
- 88
R. Hoffmann,
Solids and Surfaces: A Chemist's View of Bonding in Extended Structures,
Wiley-VCH Publishers,
New York,
1988.
10.21236/ADA196638 Google Scholar
- 89 S. I. Gorelsky and E. I. Solomon, Theoret. Chem. Acc., 2008, 129, 57.
- 90 S. I. Gorelsky, S. Ghosh, and E. I. Solomon, J. Am. Chem. Soc., 2006, 128, 278.
- 91 M. Wolfsberg and L. Helmholz, J. Chem. Phys., 1952, 20, 837.
- 92 M. J. S. Dewar and N. L. Sabelli, J. Phys. Chem., 1962, 66, 2310.
- 93 G. Klopman, J. Am. Chem. Soc., 1964, 86, 4550.
- 94 K. Ohno, Theor. Chim. Acta, 1964, 2, 219.
- 95 N. Mataga and K. Nishimoto, Z. Physik. Chem. (Frankfurt), 1957, 13, 140.
- 96 R. G. Parr, J. Chem. Phys., 1952, 20, 1499.
- 97 R. Pariser and R. G. Parr, J. Chem. Phys., 1953, 21, 466.
- 98 R. Pariser and R. G. Parr, J. Chem. Phys., 1953, 21, 767.
- 99 S. K. Ignatov, A. G. Razuvaev, and V. N. Kokorev, J. Struct. Chem., 1994, 35, 443.
- 100 A. A. Voityuk and N. Rosch, J. Phys. Chem. A, 2000, 104, 4089.
- 101 W. P. Anderson, T. R. Cundari, R. S. Drago, and M. C. Zerner, Inorg. Chem., 1990, 29, 1.
- 102 W. P. Anderson, T. R. Cundari, and M. C. Zerner, Int. J. Quantum Chem., 1991, 39, 31.
- 103 M. G. Cory, S. Kostlmeier, M. Kotzian, N. Rosch, and M. C. Zerner, J. Chem. Phys., 1994, 100, 1353.
- 104 J. D. D. Neto and M. C. Zerner, Int. J. Quantum Chem., 2001, 81, 187.
- 105 J. Ridley and M. Zerner, Theor. Chim. Acta, 1973, 32, 111.
- 106 J. E. Ridley and M. C. Zerner, Theor. Chim. Acta, 1976, 42, 223.
- 107 M. C. Zerner, G. H. Loew, R. F. Kirchner, and U. T. Muellerwesterhoff, J. Am. Chem. Soc., 1980, 102, 589.
- 108 W. P. Anderson, W. D. Edwards, and M. C. Zerner, Inorg. Chem., 1986, 25, 2728.
- 109 W. D. Edwards and M. C. Zerner, Can. J. Chem.-Rev. Can. Chim., 1985, 63, 1763.
- 110 J. C. Culberson, P. Knappe, N. Rosch, and M. C. Zerner, Theor. Chim. Acta, 1987, 71, 21.
- 111 T. R. Cundari, M. C. Zerner, and R. S. Drago, Inorg. Chem., 1988, 27, 4239.
- 112 J. K. Feng, J. Li, Z. Z. Wang, and M. C. Zerner, Int. J. Quantum Chem., 1990, 37, 599.
- 113 M. G. Cory and M. C. Zerner, Chem. Rev., 1991, 91, 813.
- 114 M. Kotzian, N. Rosch, and M. C. Zerner, Theor. Chim. Acta, 1992, 81, 201.
- 115 K. K. Stavrev and M. C. Zerner, Chem. Phys. Lett., 1996, 263, 667.
- 116 M. G. Cory, K. K. Stavrev, and M. C. Zerner, Int. J. Quantum Chem., 1997, 63, 781.
- 117
S. I. Gorelsky,
MO description of transition metal complexes by DFT and INDO/S, in
Comprehensive Coordination Chemistry-II, eds.
J. A. McCleverty and
T. J. Meyer,
Elsevier,
Amsterdam,
2004, Vol.
2, p.
651.
10.1016/B0-08-043748-6/01097-5 Google Scholar
- 118 J. D. Baker and M. C. Zerner, Chem. Phys. Lett., 1990, 175, 192.
- 119 J. D. Baker and M. C. Zerner, J. Phys. Chem., 1991, 95, 8614.
- 120 M. M. Karelson and M. C. Zerner, J. Phys. Chem., 1992, 96, 6949.
- 121 V. I. Baranovskii, O. V. Sizova, A. I. Panin, and N. V. Ivanova, J. Struct. Chem., 1990, 31, 1.
- 122 O. V. Sizova and V. I. Baranovskii, J. Struct. Chem., 1993, 34, 844.
- 123 O. V. Sizova and V. I. Baranovskii, J. Struct. Chem., 1994, 35, 425.
- 124 O. V. Sizova, N. V. Ivanova, V. I. Baranovskii, and A. B. Nikolskii, J. Struct. Chem., 1994, 35, 433.
- 125 O. V. Sizova, V. I. Baranovski, N. V. Ivanova, and A. I. Panin, Int. J. Quantum Chem., 1997, 65, 183.
- 126 O. V. Sizova, A. I. Panin, V. I. Baranovskii, and N. V. Ivanova, J. Struct. Chem., 1996, 37, 171.
- 127 G. Blyholder, J. Head, and F. Ruette, Theor. Chim. Acta, 1982, 60, 429.
- 128 G. Blyholder, J. Head, and F. Ruette, Inorg. Chem., 1982, 21, 1539.
- 129 G. Blyholder, J. Head, and F. Ruette, Surf. Sci., 1983, 131, 403.
- 130 F. Ruette, G. Blyholder, and J. D. Head, Surf. Sci., 1984, 137, 491.
- 131 F. Ruette, G. Blyholder, and J. Head, J. Chem. Phys., 1984, 80, 2042.
- 132 R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 1975, 97, 1285.
- 133 R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 1975, 97, 1294.
- 134 R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 1975, 97, 1302.
- 135 R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 1975, 97, 1307.
- 136 M. J. S. Dewar, D. H. Lo, and C. A. Ramsden, J. Am. Chem. Soc., 1975, 97, 1311.
- 137 N. U. Zhanpeisov and G. M. Zhidomirov, J. Struct. Chem., 1992, 33, 128.
- 138 K. Jug, G. Geudtner, and T. Homann, J. Comput. Chem., 2000, 21, 974.
- 139 T. Bredow, G. Geudtner, and K. Jug, J. Comput. Chem., 2001, 22, 861.
- 140 P. Winget, A. H. C. Horn, C. Selcuki, B. Martin, and T. Clark, J. Mol. Model., 2003, 9, 408.
- 141 P. Winget and T. Clark, J. Mol. Model., 2005, 11, 439.
- 142 H. Kayi and T. Clark, J. Mol. Model., 2007, 13, 965.
- 143 W. J. Hehre and J. G. Yu, Abstr. Pap. Am. Chem. Soc., 1995, 210, 77.
- 144 W. J. Hehre and J. G. Yu, Abstr. Pap. Am. Chem. Soc., 1996, 211, 216.
- 145 T. R. Cundari and J. Deng, J. Chem. Inf. Comput. Sci., 1999, 39, 376.
- 146 S. K. Ignatov, A. G. Razuvaev, V. N. Kokorev, and Y. A. Aleksandrov, J. Struct. Chem., 1995, 36, 538.
- 147 S. K. Ignatov, A. G. Razuvaev, V. N. Kokorev, and Y. A. Alexandrov, J. Phys. Chem., 1996, 100, 6354.
- 148 M. J. Filatov, A. G. Pelmenschikov, and G. M. Zhidomirov, J. Mol. Catal., 1993, 80, 243.
- 149 I. L. Zilberberg, G. M. Zhidomirov, and I. Y. Skuratovskii, Theochem.-J. Mol. Struct., 1993, 104, 129.
- 150 I. L. Zilberberg, M. A. Milov, and G. M. Zhidomirov, J. Struct. Chem., 1999, 40, 350.
- 151 M. A. Milov, I. L. Zilberberg, S. F. Ruzankin, and G. M. Zhidomirov, J. Struct. Chem., 2000, 41, 200.
- 152 I. L. Zilberberg and G. M. Zhidomirov, J. Struct. Chem., 1999, 40, 187.
- 153 M. J. S. Dewar, C. X. Jie, and J. G. Yu, Tetrahedron, 1993, 49, 5003.
- 154 M. J. S. Dewar, C. X. Jie, and J. G. Yu, Tetrahedron, 1993, 49, 7393.
- 155 A. J. Holder and R. D. Dennington, J. Mol. Structure: Theochem., 1997, 401, 207.
- 156 A. J. Holder, Abstr. Pap. Am. Chem. Soc., 1995, 210, 113.
- 157 A. J. Holder, Abstr. Pap. Am. Chem. Soc., 1996, 212, 198.
- 158 A. J. Holder, SAM1, in Encyclopedia of Computational Chemistry, eds. Pv. R. Schleyer, Wiley, Chichester, 1998, Vol. 4, p. 2542.
- 159 A. B. P. Lever and S. I. Gorelsky, Struct. Bonding (Berlin), 2004, 107, 77.
- 160 A. B. P. Lever, Inorganic Electronic Spectroscopy, 2 edition, Elsevier, Amsterdam, 1984.
- 161 S. I. Gorelsky, E. S. Dodsworth, A. B. P. Lever, and A. A. Vlcek, Coord. Chem. Rev., 1998, 174, 469.
- 162 S. I. Gorelsky and A. B. P. Lever, Can. J. Anal. Sci. Spectr., 2003, 48, 93.
- 163 S. I. Gorelsky, A. B. P. Lever, and M. Ebadi, Coord. Chem. Rev., 2002, 230, 97.
- 164 J. Rusanova, E. Rusanov, S. I. Gorelsky, D. Christendat, R. Popescu, A. A. Farah, R. Beaulac, C. Reber, and A. B. P. Lever, Inorg. Chem., 2006, 45, 6246.
- 165 J. Delbene and H. H. Jaffe, J. Chem. Phys., 1968, 48, 1807.
- 166 J. Delbene and H. H. Jaffe, J. Chem. Phys., 1968, 48, 4050.
- 167 J. Delbene and H. H. Jaffe, J. Chem. Phys., 1968, 49, 1221.
- 168 J. Delbene and H. H. Jaffe, J. Chem. Phys., 1969, 50, 1126.