Biologically Templated Nanostructure Assemblies
Silke S. Behrens
Karlsruhe Institute of Technology, Karlsruhe, Germany
Search for more papers by this authorSilke S. Behrens
Karlsruhe Institute of Technology, Karlsruhe, Germany
Search for more papers by this authorUpdate based on the original article by Silke S. Behrens, Encyclopedia of Inorganic Chemistry © 2005 John Wiley & Sons, Ltd
Abstract
Living organisms are able to manufacture a variety of sophisticated inorganic materials with precise control over chemical composition, crystal structure, and shape. Biomolecules offer unique functionalities such as specific recognition capabilities or catalytic activity. On the basis of these recognition capabilities, biological subunits are able to self-assemble into defined superstructures with unique shapes. Furthermore, they may respond to multiple physical, chemical, or biological stimuli, and therefore provide a potential means for manufacturing nanomachines. However, naturally occurring inorganic materials are typically based on protein scaffolds with inorganic minerals, for example, iron oxide or calcium carbonate, which limits their technical application. Hence, the knowledge of biological concepts, functions, and design features has been exploited for manufacturing new, technologically important, and functional inorganic nanomaterials that have no isomorphous complement in nature.
One major challenge in manufacturing nanostructures by biotemplating has been the need to either modify traditional methodologies derived from chemistry or microelectronics or to develop new synthetic pathways in order to make the material synthesis compatible with the relatively labile biotemplates. Various chemical procedures illustrated by selected examples have been elaborated to direct the nucleation and deposition of inorganic materials (e.g., metals, alloys, or semiconductors) on bioassemblies or to link preformed inorganic building blocks to functional biomolecules. Bioassemblies template complex, multidimensional, and inorganic nanoarchitectures that are typically not available by conventional material synthesis. Recently, the templating ability of natural bioassemblies has been improved by means of genetic engineering. Moreover, it has been demonstrated that the biological functionality of the system may be retained under appropriate conditions, which allows the manufacturing of inorganic nanostructures with motility functions. The use of diverse nanostructured bioassemblies based on both proteins (e.g., cell components such as microtubules, microfilaments, and S-layers) or microorganisms (i.e., viruses and diatoms) and deoxyribonucleic acid is discussed for their potential of templating of inorganic nanoarchitectures.
References
- 1E. Bäuerlein, Angew. Chem., Int. Ed. Engl., 2003, 42, 614.
- 2 S. Mann (ed.), Biomimetic Materials Chemistry, VCH, New York, 1996.
- 3 S. Mann (ed.), Biomineralization. Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press, Oxford, 2001.
- 4D. Schüler and R. B. Frankel, Appl. Microbiol. Biotechnol., 1999, 52, 464.
- 5E. Dujardin and S. Mann, Adv. Mater., 2002, 14, 775.
- 6C. M. Niemeyer, Angew. Chem., Int. Ed. Engl., 2001, 40, 4129.
- 7J. Storhoff and C. Mirkin, Chem. Rev., 1999, 99, 1849.
- 8R. Baron, B. Willner, and I. Willner, Chem. Commun., 2007, 4, 232.
- 9S. Behrens, E. Dinjus, and E. Unger, in Synthetic Nanoinorganics by Biomolecular Templating, ed H. S. Nalwa, American Scientific Publishers, Los Angeles, 2004, Vol. 10, p. 381, in Encyclopedia of Nanoscience and Nanotechnology.
- 10S. Behrens and E. Unger, in Nanostructural Materials Synthesized by Deposition of Metals on Microtubule Supports, ed J. A. Schwarz, Marcel Dekker, New York, 2004, p. 2563, in Encyclopedia of Nanoscience and Nanotechnology.
- 11J. Richter, Physica E, 2003, 16, 157.
- 12E. Katz and I. Willner, Angew. Chem., Int. Ed. Engl., 2004, 43, 6042.
- 13Y. Sacham-Diamand, A. Inberg, Y. Sverdlov, V. Bogush, N. Croitoru, H. Moscovitch, and A. Freeman, Electrochim. Acta., 2003, 48, 2987.
- 14 G. O. Mallory and J. B. Hajdu (eds), Electroless Plating: Fundamentals and Application, American Electroplaters and Surface Finishers Society, Orlando, 1990.
- 15L. C. Ciacchi, M. Mertig, R. Seidel, W. Pompe, and A. De Vito, Nanotechnology, 2003, 14, 840.
- 16S. Behrens, K. Rahn, W. Habicht, K. J. Böm, H. Rösner, E. Dinjus, and E. Unger, Adv. Mater., 2002, 14, 1621.
- 17M. Dinderman, W. Dressick, C. Kostelansky, R. Price, S. Qadri, and P. Schoen, Chem. Mater., 2006, 18, 4361.
- 18R. Kirsch, M. Mertig, W. Pompe, R. Wahl, G. Sadowski, K. J. Böhm, and E. Unger, Thin Solid Films, 1997, 305, 248.
- 19E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature, 1998, 981, 775.
- 20K. Boal, T. J. Headley, R. G. Tissot, and B. C. Bunker, Adv. Funct. Mater., 2004, 14, 19.
- 21S. S. Behrens, J. Mater. Chem., 2008, 18, 3788.
- 22H. Lee, A. Purdon, V. Chu, and R. Westervelt, Nano Lett., 2004, 4, 995.
- 23R. Kane and A. Stroock, Biotechnol. Progr., 2007, 23, 316.
- 24H. Lodish, A. Berk, S. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell, Molecular Cell Biology, Spektrum Akademischer Verlag, Heidelberg, 2001.
- 25E. Nogales, Annu. Rev. Biochem., 2000, 69, 277.
- 26S. Behrens, W. Habicht, K. Wagner, and E. Unger, Adv. Mater., 2006, 18, 284.
- 27S. Behrens, J. Wu, W. Habicht, and E. Unger, Chem. Mater., 2004, 16, 3085.
- 28Y. Yang, B. H. Constance, P. A. Deymier, J. Hoying, S. Raghavan, and B. J. J. Zelinski, J. Mater. Sci., 2004, 39, 1927.
- 29J. C. Zhou, X. Wang, M. Xue, Z. Xu, T. Hamasaki, Y. Yang, K. Wang, and B. Dunn, Mater. Sci. Eng.: C, 2010, 30, 20.
- 30J. C. Zhou, Y. Gao, A. A. Martinez-Molares, X. Jing, D. Yan, J. Lau, T. Hamasaki, C. S. Ozkan, M. Ozkan, E. Hu, and B. Dunn, Small, 2008, 4, 1507.
- 31J. Riegler, P. Nick, U. Kielmann, and T. Nann, J. Nanosci. Nanotechnol., 2003, 3, 380.
- 32J. Riegler and T. Nann, Anal. Bioanal. Chem., 2004, 379, 913.
- 33M. Achermann, S. Jeong, L. Balet, G. A. Montano, and J. A. Hollingsworth, ACS Nano, 2011, 5, 1761.
- 34E. D. Spoerke, A. K. Boal, G. D. Bachand, and B. C. Bunker, ACS Nano, 2013, 7, 2012.
- 35M. Kumara, B. Tripp, and S. Muralidharan, Chem. Mater., 2007, 19, 2056.
- 36G. D. Bachand, S. B. Rivera, A. K. Boal, J. Gaudioso, J. Liu, and B. C. Bunker, Nano Lett., 2004, 4, 817.
- 37E. Unger, W. Vater, and K.-J. Böhm, Electron. Microsc. Rev., 1990, 3, 355.
- 38R. Vale and R. Milligan, Science, 2003, 288, 88.
- 39Y. Aharonov and D. Bohm, Phys. Rev., 1959, 115, 485.
- 40S. Behrens, W. Habicht, W. Wenzel, and K. J. Böhm, J. Nanosci.Nanotechnol., 2009, 9, 6858.
- 41F. Patolsky, Y. Weizmann, and I. Willner, Nat. Mater., 2004, 3, 692.
- 42S. Howorka, J. Mater. Chem., 2007, 17, 2049.
- 43S. Mark, M. Berkvist, X. Yang, L. Teixeira, P. Bhatnagar, E. Angert, and C. Batt, Langmuir, 2006, 22, 3763.
- 44R. Wahl, H. Engelhardt, W. Pompe, and M. Mertig, Chem. Mater., 2005, 17, 1887.
- 45M. Bergkvist, S. Mark, X. Yang, E. Angert, and C. Batt, J. Phys. Chem. B, 2004, 108, 8241.
- 46J. Tang, H. Badelt-Lichtblau, A. Ebner, J. Preiner, B. Kraxberger, H. J. Gruber, U. B. Sleytr, N. Ilk, and P. Hinterdorfer, ChemPhysChem, 2008, 9, 2317.
- 47S. Mark, M. Bergkvist, X. Yang, E. Angert, and C. Batt, Biomacromolecules, 2006, 7, 1884.
- 48S. Mark, M. Bergkvist, P. Bhatnagar, C. Welch, A. Goodyear, X. Yang, E. Angert, and C. Batt, Colloids Surf., B, 2007, 57, 161.
- 49Y. Sierra-Sastre, S. Choi, S. T. Picraux, and C. A. Batt, J. Am. Chem. Soc., 2008, 130, 10488.
- 50Y. Sierra-Sastre, S. A. Dayeh, S. T. Picraux, and C. A. Batt, ACS Nano, 2010, 4, 1209.
- 51X. Mo, M. Krebs, and S. Yu, Small, 2006, 2, 526.
- 52M. T. Klem, D. A. Resnick, K. Gilmore, M. Young, Y. U. Idzerda, and T. Douglas, J. Am. Chem. Soc., 2007, 129, 197.
- 53B. Zhang, J. N. Harb, R. C. Davis, J.-W. Kim, S.-H. Chu, S. Choi, T. Miller, and G. D. Watt, Inorganic Chem., 2005, 44, 3738.
- 54J. W. Kim, S. H. Choi, P. T. Lillehei, S. H. Chu, G. C. King, and G. Watts, Chem. Commun., 2005, 32, 4101.
- 55M. Uenuma, T. Ban, N. Okamoto, B. Zheng, Y. Kakihara, M. Horita, Y. Ishikawa, I. Yamashita, and Y. Uraoka, RSC Advances, 2013, 3, 18044.
- 56M. J. Parker, M. A. Allen, B. Ramsay, M. T. Klem, M. Young, and T. Douglas, Chem. Mater., 2008, 20, 1541.
- 57K. Iwahori, K. Yoshizawa, M. Muraoka, and I. Yamashita, Inorganic Chem., 2005, 44, 6393.
- 58K. K. W. Wong and S. Mann, Adv. Mater., 1996, 8, 928.
- 59M. Okuda, Y. Suzumoto, K. Iwahori, S. Kang, M. Uchida, T. Douglas, and I. Yamashita, Chem. Commun., 2010, 46, 8797.
- 60I. Yamashita, J. Hayashi, and M. Hara, Chem. Lett., 2004, 33, 1158.
- 61K. Iwahori, T. Morioka, and I. Yamashita, Physica Status Solidi (a), 2006, 203, 2658.
- 62M. Naito, K. Iwahori, A. Miura, M. Yamane, and I. Yamashita, Angewandte Chemie Int. Ed, 2010, 49, 7006.
- 63Y. Suzumoto, M. Okuda, and I. Yamashita, Crystal Growth Design, 2012, 12, 4130.
- 64M. Li, C. Viravaidya, and S. Mann, Small, 2007, 3, 1477.
- 65H. Fukano, T. Takahashi, M. Aizawa, and H. Yoshimura, Inorganic Chem., 2011, 50, 6526.
- 66M. T. Klem, J. Mosolf, M. Young, and T. Douglas, Inorganic Chem., 2008, 47, 2237.
- 67M. Okuda, Y. Suzumoto, and I. Yamashita, Crystal Growth Design, 2011, 11, 2540.
- 68J.-W. Kim, A. E. Posey, G. D. Watt, S. H. Choi, and P. T. Lillehei, J Nanosci. Nanotechnol., 2010, 10, 1771.
- 69T. Kirchhausen, Ann. Rev. Biochem., 2000, 69, 699.
- 70A. P. Schoen, D. T. Schoen, K. N. L. Huggins, M. A. Arunagirinathan, and S. C. Heilshorn, J. Am. Chem. Soc., 2011, 133, 18202.
- 71K. N. L. Huggins, A. P. Schoen, M. A. Arunagirinathan, and S. C. Heilshorn, Adv. Funct. Mater., 2014, 24, 7737.
- 72J. M. Slocik, J. T. Moore, and D. W. Wright, Nano Lett., 2002, 2, 169.
- 73R. R. Naik, S. J. Stringer, G. Agarwal, S. E. Jones, and M. O. Stone, Nat. Mater., 2002, 1, 169.
- 74K.-I. Sano, S. Yoshii, I. Yamashita, and K. Shiba, Nano Lett., 2007, 7, 3200.
- 75K. T. Nam, D.-W. Kim, P. J. Yoo, C.-Y. Chiang, N. Meethong, P. T. Hammond, Y.-M. Chiang, and A. M. Belcher, Science, 2006, 312, 885.
- 76W.-X. Wang, O. Dgany, S. G. Wolf, I. Levy, R. Algom, Y. Pouny, A. Wolf, I. Marton, A. Altman, and O. Shoseyov, Biotechnol. Bioeng., 2006, 95, 161.
- 77I. Medalsy, O. Dgany, M. Sowwan, H. Cohen, A. Yukashevska, S. G. Wolf, A. Wolf, A. Koster, O. Almog, I. Marton, Y. Pouny, A. Altman, O. Shoseyov, and D. Porath, Nano Lett., 2008, 8, 473.
- 78S. Behrens, A. Heyman, R. Maul, S. Essig, S. Steigerwald, A. Quintilla, W. Wenzel, J. Bürck, O. Dgany, and O. Shoseyov, Advanced Materials, 2009, 21, 3515.
- 79L.-X. Qin, Y. Li, D.-W. Li, C. Jing, B.-Q. Chen, W. Ma, A. Heyman, O. Shoseyov, I. Willner, H. Tian, and Y.-T. Long, Angew. Chem. Int. Ed, 2012, 51, 140.
- 80R. A. McMillan, J. Howard, N. J. Zaluzec, H. K. Kagawa, R. Mogul, Y.-F. Li, C. D. Paavola, and J. D. Trent, J. Am. Chem. Soc., 2005, 127, 2800.
- 81R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, Nat. Mater., 2002, 1, 247.
- 82H. Xie, Y.-F. Li, H. K. Kagawa, J. D. Trent, K. Mudalige, M. Cotlet, and B. I. Swanson, Small, 2009, 5, 1036.
- 83S. Tang, M. Chuanbin, L. Yueran, D. Q. Kelly, and S. K. Banerjee, IEEE Trans. Electron. Devices, 2007, 54, 433.
- 84Z. Varpness, J. W. Peters, M. Young, and T. Douglas, Nano Let., 2005, 5, 2306.
- 85M. T. Klem, D. Willits, D. J. Solis, A. M. Belcher, M. Young, and T. Douglas, Adv. Funct. Mater., 2005, 15, 1489.
- 86C. Flynn, S. Lee, B. Peelle, and A. Belcher, Acta Mater., 2003, 51, 5867.
- 87M. Fischlechner and E. Donath, Angew. Chem., 2007, 46, 3184.
- 88M. M. Rahman, E. Ölçeroğlu, and M. McCarthy, Langmuir, 2014, 30, 11225.
- 89M. Knez, M. Sumser, A. Bittner, C. Wege, H. Jeske, P. Martin, and K. Kern, Adv. Mater., 2004, 14, 116.
- 90S. Balci, K. Noda, A. Bittner, A. Kadri, C. Wege, H. Jeske, and K. Kern, Angew. Chem., Int. Ed. Engl., 2007, 46, 3149.
- 91S. Lee, E. Royston, J. Culver, and M. Harris, Nanotechnology, 2005, 16, S435.
- 92J.-S. Lim, S.-M. Kim, S.-Y. Lee, E. A. Stach, J. N. Culver, and M. T. Harris, Nano Lett., 2010, 10, 3863.
- 93R. Tsukamoto, M. Muraoka, M. Seki, H. Tabata, and I. Yamashita, Chem. Mater., 2007, 19, 2389.
- 94E. Royston, S. Y. Lee, J. Culver, M. Harris, and J. Colloid Interface, Sci., 2006, 298, 706.
- 95E. Ölçeroğlu, C.-Y. Hsieh, M. M. Rahman, K. K. S. Lau, and M. McCarthy, Langmuir, 2014, 30, 7556.
- 96X. Chen, K. Gerasopoulos, J. Guo, A. Brown, C. Wang, R. Ghodssi, and J. N. Culver, Adv. Funct. Mater., 2011, 21, 380.
- 97X. Chen, K. Gerasopoulos, J. Guo, A. Brown, C. Wang, R. Ghodssi, and J. N. Culver, ACS Nano, 2010, 4, 5366.
- 98X. Chen, K. Gerasopoulos, J. Guo, A. Brown, R. Ghodssi, J. N. Culver, and C. Wang, Electrochimica Acta., 2011, 56, 5210.
- 99E. Pomerantseva, K. Gerasopoulos, X. Chen, G. Rubloff, and R. Ghodssi, J. Power Sources, 2012, 206, 282.
- 100C. Yang, A. K. Manocchi, B. Lee, and H. Yi, J. Mater. Chem., 2011, 21, 187.
- 101C. Yang, C.-H. Choi, C.-S. Lee, and H. Yi, ACS Nano, 2013, 7, 5032.
- 102S. Whaley, D. English, E. Hu, P. Barbara, and A. Belcher, Nature, 2000, 405, 665.
- 103Q. C. Mao, D. Solis, B. Reiss, S. Kottmann, R. Sweeney, A. Hayhurst, G. Georgiou, B. Iverson, and A. Belcher, Science, 2004, 303, 213.
- 104B. Reiss, C. Mao, D. Solis, K. Ryan, T. Thomson, and A. Belcher, Nano Lett., 2004, 4, 1127.
- 105S. K. Lee, D. Yun, and A. Belcher, Biomacromolecules, 2006, 7, 14.
- 106M. Delalande, P. Marcoux, P. Reiss, and Y. Samson, J. Mater. Chem., 2007, 17, 1579.
- 107Y. Huang, C. Y. Chiang, S. Lee, Y. Gao, E. L. Hu, J.De Yoreo, and A. Belcher, Nano Lett., 2005, 5, 1429.
- 108K. Nam, B. Peelle, S. W. Lee, and A. Belcher, Nano Lett., 2004, 4, 23.
- 109E. Pouget and E. Grelet, Langmuir, 2013, 29, 8010.
- 110Y. J. Lee, H. Yi, W.-J. Kim, K. Kang, D. S. Yun, M. S. Strano, G. Ceder, and A. M. Belcher, Science, 2009, 324, 1051.
- 111P.-Y. Chen, X. Dang, M. T. Klug, J. Qi, N.-M. Dorval Courchesne, F. J. Burpo, N. Fang, P. T. Hammond, and A. M. Belcher, ACS Nano, 2013, 7, 6563.
- 112J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nature, 2013, 499, 316.
- 113N. Nuraje, X. Dang, J. Qi, M. A. Allen, Y. Lei, and A. M. Belcher, Adv. Mater., 2012, 24, 2885.
- 114J. Zhu and M. Zäch, Curr. Opin. Colloid Interf. Sci., 2009, 14, 260.
- 115Y. S. Nam, A. P. Magyar, D. Lee, J.-W. Kim, D. S. Yun, H. Park, T. S. Pollom, D. A. Weitz, and A. M. Belcher, Nat. Nano, 2010, 5, 340.
- 116C. K. Jeong, I. Kim, K.-I. Park, M. H. Oh, H. Paik, G.-T. Hwang, K. No, Y. S. Nam, and K. J. Lee, ACS Nano, 2013, 7, 11016.
- 117B. Neltner, B. Peddie, A. Xu, W. Doenlen, K. Durand, D. S. Yun, S. Speakman, A. Peterson, and A. Belcher, ACS Nano, 2010, 4, 3227.
- 118C. Radloff, R. Vaia, J. Brunton, G. Bouwer, and V. Ward, Nano Lett., 2005, 5, 1187.
- 119G. J. Bedwell, Z. Zhou, M. Uchida, T. Douglas, A. Gupta, and P. E. Prevelige, Biomacromolecules, 2014, 16, 214.
- 120B. Szuchmacher, C. Soto, C. Wilson, J. Cole, M. Kim, B. Gnade, A. Chatterji, W. Ochoa, T. Lin, J. Johnson, and B. Ratna, Nano Lett., 2004, 4, 867.
- 121J. Falkner, M. Turner, J. Bosworth, T. Trentler, J. Johnson, T. Lin, and V. Colvin, J. Am. Chem. Soc., 2005, 127, 5274.
- 122K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, and E. Braun, Science, 2002, 297, 72.
- 123K. Keren, R. S. Berman, and E. Braun, Nano Lett., 2004, 4, 323.
- 124C. M. Niemeyer and M. Adler, Angew. Chem., Int. Ed. Engl., 2002, 40, 3779.
- 125F. Patolsky, Y. Weizmann, O. Lioubashevski, and I. Willner, Angew. Chem., Int. Ed. Engl., 2002, 41, 2323.
10.1002/1521-3773(20020703)41:13<2323::AID-ANIE2323>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 126K. Hamad-Schifferli, J. Schwartz, A. Santos, S. Zhang, and J. Jacobson, Nature, 2002, 415, 152.
- 127C. M. Niemeyer, M. Adler, S. Lehnert, S. Gao, H. Fuchs, and L. Chi, ChemBiochem., 2001, 2, 260.
10.1002/1439-7633(20010401)2:4<260::AID-CBIC260>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 128R. Mirkin and R. Letsinger, Nature, 1996, 382, 607.
- 129S. Park, A. Lazarides, C. Mirkin, P. Brazis, C. Kannewurf, and R. Letsinger, Angew. Chem., Int. Ed. Engl., 2000, 39, 3845.
- 130N. Rosi and C. A. Mirkin, Chem. Rev., 2005, 105, 1547.
- 131J. S. Lee, A. Lytton-Jean, S. Hurst, and C. Mirkin, Nano Lett., 2007, 7, 2112.
- 132H. Yao, C. Yi, C. H. Tzang, J. Zhu, and M. Yan, Nanotechnology, 2007, 18, 015102.
- 133H. Li, S. Partk, J. Reif, T. LaBean, and H. Yan, J. Am. Chem. Soc., 2004, 126, 418.
- 134J. Zhang, Y. Liu, Y. Ke, and H. Yan, Nano Lett., 2006, 6, 248.
- 135J. Zheng, P. Constantinou, C. Micheel, P. A. Alivisatos, R. Kiehl, and N. C. Seeman, Nano Lett., 2006, 6, 1502.
- 136F. A. Aldaye and H. Sleiman, J. Am. Chem. Soc., 2007, 129, 4130.
- 137F. A. Aldaye and H. Sleiman, Angew. Chem. Int. Ed. Engl., 2006, 45, 2204.
- 138A. J. Mastroianni, S. A. Claridge, A. P. Alivisatos, and J. Am, Chem. Soc., 2009, 131, 8455.
- 139X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, and B. Ding, Nano Lett., 2013, 13, 2128.
- 140W. P. Klein, C. N. Schmidt, B. Rapp, S. Takabayashi, W. B. Knowlton, J. Lee, B. Yurke, W. L. Hughes, E. Graugnard, and W. Kuang, Nano Lett., 2013, 13, 3850.
- 141Q. Liu, C. Song, Z.-G. Wang, N. Li, and B. Ding, Methods, 2014, 67, 205.
- 142P. Hazarika, J. Irrgang, M. Spengler, and C. Niemeyer, Adv. Funct. Mater., 2007, 17, 437.
- 143G. Woehrle, M. Warner, and J. Hutchison, Langmuir, 2004, 20, 5982.
- 144J. Kinsella and A. Ivanisevic, Langmuir, 2007, 23, 3886.
- 145S. Srivastava, B. Samanta, P. Arumugam, G. Han, and V. Rotello, J. Mater. Chem., 2007, 17, 52.
- 146J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke, and H. Schackert, Adv. Mater., 2000, 12, 507.
- 147A. A. Zinchenko, K. Yoshikawa, and D. Baigl, Adv. Mater., 2005, 17, 2820.
- 148M. Pilo-Pais, S. Goldberg, E. Samano, T. H. LaBean, and G. Finkelstein, Nano Lett., 2011, 11, 3489.
- 149A. C. Pearson, J. Liu, E. Pound, B. Uprety, A. T. Woolley, R. C. Davis, and J. N. Harb, J. Phys. Chem. B., 2012, 116, 10551.
- 150W. Sun, E. Boulais, Y. Hakobyan, W. L. Wang, A. Guan, M. Bathe, and P. Yin, Science, 2014, 346, 1258361.
- 151A. Zinchenko, Y. Miwa, L. I. Lopatina, V. G. Sergeyev, and S. Murata, ACS Appl. Mater. Interf., 2014, 6, 3226.
- 152N. Rosi, C. Thaxton, and C. Mirkin, Angew. Chem., Int. Ed. Engl., 2004, 43, 5500.