Bismuth: Inorganic Chemistry
Update based on the original article by Kenton H. Whitmire, Encyclopedia of Inorganic Chemistry © 2005 John Wiley & Sons, Ltd.
Abstract
This review presents findings from 420 references. Bismuth has a diverse chemistry from the properties of the element to those of its important solid-state compounds and its varied coordination complexes. Bismuth is the heaviest stable element whose chemistry is dominated by the +3 oxidation state, but −3, +1, +2, and +5 oxidation numbers are also accessible. In contrast to the lighter pnictogens, very few inorganic bismuth(V) compounds have been reported. The best characterized of these is BiF5, which is a strongly oxidizing Lewis acid that readily forms the BiF6 − ion in the presence of a variety of F− ion donors. In this review, the chemistry of bismuth is organized by compound classification. Included are sections on the properties of the element, its intermetallic compounds and important solid-state materials such as the bismuth oxides, chalcogenides, and pnictides. Recent work has been directed toward production of elemental bismuth and key solid-state compounds in nanoparticle form. The solid-state materials have important applications including high TC superconductors, ferroelectric, and piezoelectric materials, oxide ion conductors, catalysts, thermoelectric materials, etc. In its reduced compounds with alkali and alkaline earth metals, bismuth forms a number of homometallic and heterometallic anionic Zintl ions showing Bi–Bi bonding and a strong tendency toward cluster formation. Cationic clusters in reduced halide species have been observed. Bi–Bi single and double bonds are known. Molecular compounds are discussed and organized by the donor elements coordinated to bismuth, including sections on amines and amides, alkoxides, carboxylates, thiolates, and halides. The halides along with Bi(NO3)3 · 5H2O are amongst the most common starting materials for synthesizing other bismuth complexes. The alkoxide and carboxylate complexes are subject to facile hydrolysis leading to a wide variety of oxo-alkoxide and oxo-carboxylate complexes. Particularly stable configurations for these oxo clusters are Bi9 and Bi38. These latter two cluster sizes stabilized by salicylate ligands are good model compounds for the bismuth subcarboxylate compounds, which have found widespread medicinal usage. High coordination numbers ranging from two to nine are common and the Bi3+ ion is well-known for its high Lewis acidity. Despite its identity as a heavy metal, its compounds are generally nontoxic to humans and enjoy a wide application as antibacterial and antifungal agents. Aspects of the biological chemistry of bismuth compounds are surveyed. A rich chemistry of bismuth coordinated to organometallic transition metal fragments is well developed. Many Fe, Co, Ru, Os, and Re metal carbonyl complexes have been reported as well as cyclopentadienyl metal derivatives. Unusual structure and bonding patterns have been observed in these compounds that include representatives from Groups 6 through 11 as well as one organometallic lanthanide complex.
References
- 1 J. Emsley (ed), The Elements 3rd edition, Oxford University Press, Oxford, 1996.
- 2 Y. Li, J. Wang, Z. Deng, Y. Wu, X. Sun, D. Yu, and P. Yang, J. Am. Chem. Soc., 2001, 123, 9904.
- 3 R. Boldt, M. Kaiser, D. Kohler, F. Krumeich, and M. Ruck, Nano Lett., 2010, 10, 208.
- 4 M. Ruck, Z. Kristallogr Cryst. Mater., 2010, 225, 167.
- 5
W. Frank, V. Reiland, and G. J. Reiss, Angew. Chem. Int. Ed. Engl., 1998, 37, 2984.
10.1002/(SICI)1521-3773(19981116)37:21<2983::AID-ANIE2983>3.0.CO;2-K CAS Web of Science® Google Scholar
- 6 E. V. Dikarev, T. G. Gray, and B. Li, Angew. Chem. Int. Ed., 2005, 44, 1721.
- 7 E. V. Dikarev, B. Li, A. Y. Rogachev, H. Zhang, and M. A. Petrukhina, Organometallics, 2008, 27, 3728.
- 8 E. V. Dikarev, B. Li, and H. Zhang, J. Am. Chem. Soc., 2006, 128, 2814.
- 9 A. S. Filatov, M. Napier, V. D. Vreshch, N. J. Sumner, E. V. Dikarev, and M. A. Petrukhina, Inorg. Chem., 2012, 51, 566.
- 10 N. Burford, Y.-Y. Carpenter, E. Conrad, and C. D. L. Saunders, in Biological Chemistry of Arsenic, Antimony and Bismuth, ed H. Sun, John Wiley & Sons, Chichester, 2011, p. 1.
- 11 Z. Guo and P. J. Sadler, Adv. Inorg. Chem., 2000, 49, 183.
- 12 H. Sun and P. J. Sadler, Top. Biol. Inorg. Chem., 1999, 2, 159.
- 13
Z. Guo and P. J. Sadler, Angew. Chem. Int. Ed., 1999, 38, 1512.
10.1002/(SICI)1521-3773(19990601)38:11<1512::AID-ANIE1512>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 14 P. J. Sadler and Z. Guo, Pure Appl. Chem., 1998, 70, 863.
- 15 H. Sun, H. Li, and P. J. Sadler, Chem. Ber., 1997, 130, 669.
- 16 J.D. Ranford, Michael Rhodes Peter J. Sadler, edited by Martin J. Stillman Shaw, C. Frank Kazuo T Suzuki From Metallothioneins, 1992, 408.
- 17 R. J. Meyer and E. H. E. Pietsch, Bismuth, Verlag Chemie, Weinheim, 1964, Vol. 19.
- 18
J. D. Smith Arsenic, Arsenic, Antimony and Bismuth, in Comprehensive Inorganic Chemistry, eds J. C. J. Bailar, H. J. Emeleus, R. Nyholm and A. F. Trotman-Dickenson Eds., Pergamon Press, Oxford, 1973, p. 547.
10.1016/B978-1-4832-8313-5.50015-2 Google Scholar
- 19 A. F. Wells, Structural Inorganic Chemistry 5th edition, Clarendon, Oxford, 1984.
- 20 F. Gascoin and S. C. Sevov, Inorg. Chem., 2001, 40, 5177.
- 21 K. Deller and B. Eisenmann, Z. Naturforsch., 1976, 31B, 29.
- 22 J. D. Corbett, Chem. Rev., 1985, 85, 383.
- 23 F. Gascoin and S. C. Sevov, J. Am. Chem. Soc., 2000, 122, 10251.
- 24 L. Xu, S. Bobev, J. El-Bahraoui, and S. C. Sevov, J. Am. Chem. Soc., 2000, 122, 1838.
- 25 A. Cisar and J. D. Corbett, Inorg. Chem., 1977, 16, 2482.
- 26 R. Kubiak, Z. Anorg. Allg. Chem., 1977, 431, 261.
- 27 S. Bobev and S. C. Sevov, Inorg. Chem., 1999, 38, 2672.
- 28 S. Bobev and S. C. Sevov, J. Solid State Chem., 2002, 163, 436.
- 29 S. C. Critchlow and J. D. Corbett, Inorg. Chem., 1982, 21, 3286.
- 30 L. Xu and S. C. Sevov, Inorg. Chem., 2000, 39, 5383.
- 31 A. Ugrinov and S. C. Sevov, J. Am. Chem. Soc., 2002, 124, 2442.
- 32 M. M. Gillett-Kunnath, A. Munoz-Castro, and S. C. Sevov, Chem. Commun., 2012, 48, 3524.
- 33 M. M. Gillett-Kunnath, A. G. Oliver, and S. C. Sevov, J. Am. Chem. Soc., 2011, 133, 6560.
- 34 T. Ould-Ely, J. H. Thurston, A. Kumar, M. Respaud, W. Guo, C. Weidenthaler, and K. H. Whitmire, Chem. Mater., 2005, 17, 4750.
- 35 B. T. Matthias, A. Jayaraman, T. H. Geballe, K. Andres, and E. Corenzwit, Phys. Rev. Lett., 1966, 17, 640.
- 36 K. Yoshida, T. Yamada, and Y. Taniguchi, Acta Crystallogr., 1989, B45, 40.
- 37 J. B. Yang, W. B. Yelon, W. J. James, Q. Cai, M. Kornecki, S. Roy, N. Ali, and P. L'Heritier, J. Phys.: Condens. Matter, 2002, 14, 6509.
- 38 J. B. Yang, K. Kamaraju, W. B. Yelon, W. J. James, Q. Cai, and A. Bollero, App. Phys. Lett., 2001, 79, 1846.
- 39 C. H. Chen and A. A. Gewirth, J. Am. Chem. Soc., 1992, 114, 5439.
- 40 C. H. Chen, K. D. Kepler, A. A. Gewirth, B. M. Ocko, and J. Wang, J. Phys. Chem., 1993, 97, 7290.
- 41 B. K. Niece and A. A. Gewirth, Langmuir, 1996, 12, 4909.
- 42 I. Oh, M. E. Biggin, and A. A. Gewirth, Langmuir, 2000, 16, 1397.
- 43 X. Li and A. A. Gewirth, J. Am. Chem. Soc., 2003, 125, 7086.
- 44 E. Amberger, Chem. Ber., 1961, 94, 1447.
- 45
W. Jerzembeck, H. Burger, L. Constantin, L. Margules, J. Demaison, J. Breidung, and W. Thiel, Angew. Chem. Int. Ed., 2002, 41, 2550.
10.1002/1521-3773(20020715)41:14<2550::AID-ANIE2550>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 46 R. W. Zoellner, Chemtracts, 2002, 15, 637.
- 47 E. J. Baran, Z. Naturforsch., 2003, 58A, 126.
- 48 X. Wang, P. F. Souter, and L. Andrews, J. Phys. Chem. A, 2003, 107, 4244.
- 49 S. S. Gomez, R. H. Romero, and G. A. Aucar, J. Chem. Phys., 2002, 117, 7942.
- 50 W. W. Schoeller and R. Schneider, Chem. Ber., 1997, 130, 1013.
- 51 J. Breidung and W. Thiel, J. Mol. Spectrosc., 1995, 169, 166.
- 52
N. J. Hardman, B. Twamley, and P. P. Power, Angew. Chem. Int. Ed., 2000, 39, 2771.
10.1002/1521-3773(20000804)39:15<2771::AID-ANIE2771>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 53 A. Kuczkowski, S. Schulz, and M. Nieger, Eur. J. Inorg. Chem., 2001, 2605.
- 54 A. Kuczkowski, S. Schulz, M. Nieger, and P. R. Schreiner, Organometallics, 2002, 21, 1408.
- 55 A. Kuczkowski, F. Thomas, S. Schulz, and M. Nieger, Organometallics, 2000, 19, 5758.
- 56 M. Matar, A. Kuczkowski, U. Kessler, S. Schulz, and U. Floerke, Eur. J. Inorg. Chem., 2007, 2472.
- 57
S. Schulz and M. Nieger, Angew. Chem. Int. Ed., 1999, 38, 967.
10.1002/(SICI)1521-3773(19990401)38:7<967::AID-ANIE967>3.0.CO;2-C CAS Web of Science® Google Scholar
- 58 F. Thomas, S. Schulz, and M. Nieger, Organometallics, 2002, 21, 2793.
- 59 F. Thomas, S. Schulz, H. Mansikkamaeki, and M. Nieger, Angew. Chem. Int. Ed., 2003, 42, 5641.
- 60 G. Prabusankar, C. Gemel, P. Parameswaran, C. Flener, G. Frenking, and R. A. Fischer, Angew. Chem. Int. Ed., 2009, 48, 5526.
- 61 G. Becker, H. Freudenblum, O. Mundt, M. Reti, and M. Sachs, Synth. Meth. Organomet. Inorg. Chem., 1996, 3, 193.
- 62 H. Schumann and H. J. Breunig, J. Organomet. Chem., 1975, 87, 83.
- 63 T. R. Bierschenk, M. A. Guerra, T. J. Juhlke, S. B. Larson, and R. J. Lagow, J. Am. Chem. Soc., 1987, 109, 4855.
- 64 O. Mundt, G. Becker, M. Roessler, and C. Witthauer, Z. Anorg. Allg. Chem., 1983, 506, 42.
- 65 K. Y. Monakhov, T. Zessin, and G. Linti, Eur. J. Inorg. Chem., 2010, 322.
- 66 G. Linti, W. Kostler, and H. Pritzkow, Eur. J. Inorg. Chem., 2002, 2643.
- 67 K. Y. Monakhov, G. Linti, L. P. Wolters, and F. M. Bickelhaupt, Inorg. Chem., 2011, 50, 5755.
- 68 K. Hassler, Silicon-phosphorus, -arsenic, -antimony, and -bismuth cages: Syntheses and structures in “ Organosilicon Chemistry II: From Molecules to Materials”, eds. N. Auner and J. Weis, Wiley-VCH, WeinheimVCH, 1996, p. 203.
- 69 G. Linti and W. Kostler, Z. Anorg. Allg. Chem., 2002, 628, 63.
- 70 M. N. Bochkarev, N. I. Gur'ev, and G. A. Razuvaev, J. Organomet. Chem., 1978, 162, 289.
- 71 M. N. Bochkarev, G. A. Razuvaev, L. N. Zakharov, and Y. T. Struchkov, J. Organomet. Chem., 1980, 199, 205.
- 72 L. V. Pankratov, L. N. Zakharov, R. I. Bochkova, G. K. Fukin, and Y. T. Struchkov, Izv. Akad. Nauk, Ser. Khim., 1994, 921.
- 73 C. J. Carmalt, A. H. Cowley, A. L. Hector, N. C. Norman, and I. P. Parkin, J. Chem. Soc., Chem. Comm., 1987, (1994).
- 74 G. C. Allen, C. J. Carmalt, A. H. Cowley, A. L. Hector, S. Kamepalli, Y. G. Lawson, N. C. Norman, I. P. Parkin, and L. K. Pickard, Chem. Mater., 1997, 9, 1385.
- 75 M. Martin-Gonzalez, A. L. Prieto, M. S. Knox, R. Gronsky, T. Sands, and A. M. Stacy, Chem. Mater., 2003, 15, 1676.
- 76 A. L. Prieto, M. Martin-Gonzalez, J. Keyani, R. Gronsky, T. Sands, and A. M. Stacy, J. Am. Chem. Soc., 2003, 125, 2388.
- 77 G. Alonzo, M. Consiglio, N. Bertazzi, and C. Preti, Inorg. Chim. Acta, 1985, 105, 51.
- 78 A. K. Biswas, J. R. Hall, and D. P. Schweinsberg, Inorg. Nucl. Chem. Lett., 1978, 14, 275.
- 79 A. K. Biswas, J. R. Hall, and D. P. Schweinsberg, Inorg. Chim. Acta, 1983, 75, 57.
- 80 F. Fischer and F. Schroter, Ber. Dtsch. Chem. Ges., 1910, 43, 1465.
- 81 O. Schmitz-DuMont and B. Ross, Z. Anorg. Allg. Chem., 1967, 349, 328.
- 82 W. Clegg, N. A. Compton, R. J. Errington, N. C. Norman, and N. Wishart, Polyhedron, 1989, 8, 1579.
- 83 W. Clegg, N. A. Compton, R. J. Errington, G. A. Fisher, M. E. Green, D. C. R. Hockless, and N. C. Norman, Inorg. Chem., 1991, 30, 4680.
- 84 M. J. S. Gynane, A. Hudson, M. F. Lappert, P. P. Power, and H. Goldwhite, J. Chem. Soc., Dalton Trans., 1980, 2428.
- 85 C. J. Carmalt, N. A. Compton, R. J. Errington, G. A. Fisher, I. Moenandar, and N. C. Norman, Inorg. Synth., 1997, 31, 98.
- 86 S. C. James, N. C. Norman, A. G. Orpen, M. J. Quayle, and U. Weckenmann, J. Chem. Soc., Dalton Trans., 1996, 4159.
- 87 A. M. Caminade, M. Veith, V. Huch, and W. Malisch, Organometallics, 1990, 9, 1798.
- 88 T. M. Klapötke and A. Schulz, Main Group Metal Chem., 1997, 20, 325.
- 89 P. Sayer, M. Gouterman, and C. R. Connell, Acc. Chem. Res., 1982, 15, 73.
- 90 T. Barbour, W. J. Belcher, P. J. Brothers, C. E. F. Rickard, and D. C. Ware, Inorg. Chem., 1992, 31, 746.
- 91 R. Luckay, I. Cukrowski, J. Mashishi, J. H. Reibenspies, A. H. Bond, R. D. Rogers, and R. D. Hancock, J. Chem. Soc., Dalton Trans., 1997, 901.
- 92 A. W. Snow and N. L. Jarvis, J. Am. Chem. Soc., 1984, 106, 4706.
- 93 J. Janczak, R. Kubiak, J. Richter, and H. Fuess, Polyhedron, 1999, 18, 2775.
- 94 N. C. Norman and N. L. Pickett, Coord. Chem. Rev., 1995, 145, 27.
- 95 G. R. Willey, L. T. Daly, and M. G. B. Drew, J. Chem. Soc., Dalton Trans., 1996, 1063.
- 96 W. Clegg, M. R. J. Elsegood, N. C. Norman, and N. L. Pickett, J. Chem. Soc., Dalton Trans., 1994, 1753.
- 97 W. Clegg, M. R. J. Elsegood, V. Graham, N. C. Norman, N. L. Pickett, and K. Tavakkoli, J. Chem. Soc., Dalton Trans., 1994, 1743.
- 98 W. Clegg, R. J. Errington, R. J. Flynn, M. E. Green, D. C. R. Hockless, N. C. Norman, V. C. Gibson, and K. Tavakkoli, J. Chem. Soc., Dalton Trans., 1992, 1753.
- 99
M. A. Beswick, N. Choi, A. D. Hopkins, Y. G. Lawson, M. McPartlin, A. Rothenberger, D. Stalke, A. E. H. Wheatley, and D. S. Wright, Angew. Chem. Int. Ed., 1999, 38, 3053.
10.1002/(SICI)1521-3773(19991018)38:20<3053::AID-ANIE3053>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 100 C. von Hanisch and D. Nikolova, Eur. J. Inorg. Chem., 2006, 4770.
- 101 A. R. J. Genge, N. J. Hill, W. Levason, and G. Reid, J. Chem. Soc., Dalton Trans., 2001, 1007.
- 102 E. Conrad, N. Burford, R. McDonald, and M. J. Ferguson, J. Am. Chem. Soc., 2009, 131, 5066.
- 103 A. Laarif and F. Theobald, Solid State Ionics, 1986, 21, 183.
- 104 R. Hoppe and B. Schwedes, Rev. Chim. Mineral., 1971, 8, 583.
- 105 B. Schwedes and R. Hoppe, Z. Anorg. Allg. Chem., 1972, 391, 313.
- 106 B. Schwedes and R. Hoppe, Z. Anorg. Allg. Chem., 1972, 392, 97.
- 107 C. N. R. Rao, L. Ganapathi, A. K. Ganguli, R. A. Moha Ram, R. Vijayaraghavan, A. M. Umarji, G. N. Sabbana, and P. Somassundarum, Chemistry of Oxide Superconductors, Blackwell Scientific Publications (for IUPAC), Boston, MA, 1988, p. 183 ff.
- 108 H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, Jpn. J. Appl. Phys., Part 2, 1988, 27, L209.
- 109 V. S. Kravchenko, Russ. Chem. Rev., 2008, 77, 555.
- 110
T. Doi, Mater. Eng., 2005, 28, 595.
10.1201/9781420027334.ch23 Google Scholar
- 111 P. Majewski, J. Mater. Res., 2000, 15, 854.
- 112 A. Gutbier and H. Micheler, Z. Anorg. Chem., 1908, 59, 143.
- 113 G. Gattow and W. Klippel, Z. Anorg. Allg. Chem., 1980, 470, 25.
- 114 V. A. Carlson and A. M. Stacy, Proc. Electrochem. Soc., 1992, 16, 104.
- 115 V. A. Carlson and A. M. J. Stacy, Solid State Chem., 1992, 96, 332.
- 116 M. Bharathy, H. S. Khalsa, M. D. Smith, and H. C. zur Loye, Solid State Sci., 2009, 11, 294.
- 117 R. K. Grasselli, J. D. Burrington, D. J. Buttrey, P. De Santo Jr, C. G. Lugmair, A. F. Volpe Jr and T. Weingand, Top. Catal., 2003, 23, 5.
- 118 R. K. Grasselli and J. D. Burrington, Adv. Catal., 1981, 30, 133.
- 119 T. A. Hanna, Coord. Chem. Rev., 2004, 248, 429.
- 120 S. Roggan and C. Limberg, Inorg. Chim. Acta, 2006, 359, 4698.
- 121 C. Knispel, C. Limberg, and C. Tschersich, Chem. Commun., 2011, 47, 10794.
- 122 C. Knispel and C. Limberg, Organometallics, 2011, 30, 3701.
- 123 C. Knispel, C. Limberg, and B. Ziemer, Inorg. Chem., 2010, 49, 4313.
- 124 C. Knispel, C. Limberg, and M. Mehring, Organometallics, 2009, 28, 646.
- 125 S. Roggan, C. Limberg, B. Ziemer, M. Siemons, and U. Simon, Inorg. Chem., 2006, 45, 9020.
- 126 S. Roggan, G. Schnakenburg, C. Limberg, S. Sandhoefner, H. Pritzkow, and B. Ziemer, Chem.—Eur. J., 2005, 11, 225.
- 127 S. Roggan, C. Limberg, and B. Ziemer, Angew. Chem. Int. Ed., 2005, 44, 5259.
- 128 S. Roggan, C. Limberg, M. Brandt, and B. Ziemer, J. Organomet. Chem., 2005, 690, 5282.
- 129 S. Roggan, C. Limberg, B. Ziemer, and M. Brandt, Angew. Chem. Int. Ed., 2004, 43, 2846.
- 130 C. Limberg, M. Hunger, W. Habicht, and E. Kaifer, Inorg. Chem., 2002, 41, 3359.
- 131 M. Hunger, C. Limberg, E. Kaifer, and P. Rutsch, J. Organomet. Chem., 2002, 641, 9.
- 132 M. Hunger, C. Limberg, and P. Kircher, Organometallics, 2000, 19, 1044.
- 133 A. Hanna Tracy, L. Rieger Anne, H. Rieger Philip, and X. Wang, Inorg. Chem., 2002, 41, 3590.
- 134 W. G. Klemperer and R. S. Liu, Inorg. Chem., 1980, 19, 3863.
- 135 D. Mendoza-Espinosa, L. Rheingold Arnold, and A. Hanna Tracy, Dalton Trans., 2009, 5226.
- 136 D. Mendoza-Espinosa and A. Hanna Tracy, Dalton Trans., 2009, 5211.
- 137 D. Mendoza-Espinosa and A. Hanna Tracy, Inorg. Chem., 2009, 48, 7452.
- 138 D. Mendoza-Espinosa and A. Hanna Tracy, Inorg. Chem., 2009, 48, 10312.
- 139 L. Liu, N. Zakharov Lev, A. Golen James, L. Rheingold Arnold, and A. Hanna Tracy, Inorg. Chem., 2008, 47, 11143.
- 140 L. Liu, L. N. Zakharov, A. L. Rheingold, and T. A. Hanna, Chem. Commun., 2004, 1472.
- 141 W. Frank, G. J. Reiss, and J. Schneider, Angew. Chem. Int. Ed. Engl., 1995, 34, 2416.
- 142 V. A. Maroni and T. G. Spiro, J. Am. Chem. Soc., 1966, 88, 1410.
- 143 V. A. Maroni and T. G. Spiro, Inorg. Chem., 1968, 7, 183.
- 144 F. Lazarini, Acta Crystallogr., 1978, B34, 3169.
- 145 F. Lazarini, Cryst. Struct. Commun., 1979, 8, 69.
- 146 F. Lazarini, Acta Crystallogr., 1979, B35, 448.
- 147 B. Sundvall, Inorg. Chem., 1983, 22, 1906.
- 148 B. Sundvall, Acta. Chem. Scand. (A), 1974, A28, 1036.
- 149 B. Sundvall, Acta Chem. Scand. (A), 1979, A33, 219.
- 150 B. Sundvall, Acta Chem. Scand. (A), 1980, A34, 93.
- 151 D. Nelson, M. Whittingham, and T. George eds., Chemistry of High Temperature Superconductors, American Chemical Society, Washington, DC, 1987, Vol. 351.
- 152
D. L. Nelson and T. F. George eds., Chemistry of High Temperature Superconductors II, American Chemical Society, Washington, DC, 1988, Vol. 377.
10.1021/bk-1988-0377 Google Scholar
- 153
J. Lynn ed., High Temperature Superconductivity, Springer Verlag, New York, 1990.
10.1007/978-1-4612-3222-3 Google Scholar
- 154 K. Matsumura, H. Nobumasa, K. Shimizu, T. Arima, Y. Kitano, M. Tanaka, and K. Sushida, Jpn. J. App. Phys. Part 2, 1989, 28, L1797.
- 155 T. Nonaka, K. Kaneko, T. Hasegawa, K. Kishio, Y. Takahashi, K. Kobayashi, K. Kitazawa, and K. Fueki, Jpn. J. Appl. Phys. Part 2, 1988, 27, L867.
- 156 N. Tohge, M. Tatsumisago, and T. Minami, J. Non-Cryst. Solids, 1990, 121, 443.
- 157 H. Yamane, H. Kurosawa, and T. Hirai, Chem. Lett., 1988, 1515.
- 158 S. Hirano, T. Hayashi, M. Miura, and H. Tomonaga, Bull. Chem. Soc. Jpn., 1989, 62, 888.
- 159 T. Nonaka, M. Green, K. Kishio, T. Hasegawa, K. Kitazawa, K. Kaneko, and K. Kobayashi, Physica C, 1989, 160, 517.
- 160 K. H. Whitmire, Chemtracts: Inorg. Chem., 1995, 7, 167.
- 161 K. G. Caulton and L. G. Hubert-Pfalzgraf, Chem. Rev., 1990, 90, 969.
- 162 R. Mehrotra, Proc. Natl. Acad. Sci. India (A), 1995, 61, 253.
- 163 L. G. Hubert-Pfalzgraf, Inorg. Chem. Commun., 2003, 6, 102.
- 164 L. G. Hubert-Pfalzgraf, Phosphorus, Sulfur Silicon Relat. Elem., 2001, 168–169, 69.
- 165 R. C. Mehrotra and A. K. Rai, Ind. J. Chem., 1966, 4, 537.
- 166 W. J. Evans, J. H. Hain Jr, and J. W. Ziller, Chem. Commun., 1989, 1628.
- 167 A. Haaland, H. P. Verne, H. V. Volden, R. Papiernik, and L. G. Hubert-Pfalzgraf, Acta Chem. Scand., 1993, 47, 1043.
- 168 C. M. Jones, M. D. Burkart, and K. H. Whitmire, Angew. Chem. Int. Ed. Engl., 1992, 31(4), 451.
- 169 K. H. Whitmire, H. W. Roesky, S. Brooker, and G. M. Sheldrick, J. Organomet. Chem., 1991, 402, C4.
- 170 G. Gattow and R. Lingenfelder, Z. Anorg. Allg. Chem., 1979, 448, 115.
- 171 T. A. Hanna, G. Keitany, C. Ibarra, R. D. Sommer, and A. L. Rheingold, Polyhedron, 2001, 20, 2451.
- 172 R. D. Rogers, A. H. Bond, and S. Aguinaga, J. Am. Chem. Soc., 1992, 114, 2960.
- 173 W. T. Miller, J. Am. Chem. Soc., 1940, 62, 2707.
- 174 R. E. Bachman, K. H. Whitmire, J. H. Thurston, A. Gulea, O. Stavila, and V. Stavila, Inorg. Chim. Acta, 2003, 346, 249.
- 175 M. A. Matchett, M. Y. Chiang, and W. E. Buhro, Inorg. Chem., 1990, 29, 358.
- 176 M. C. Massiani, R. Papiernik, L. G. Hubert-Pfalzgraf, and J. C. Daran, Polyhedron, 1991, 10, 437.
- 177 M. C. Massiani, R. Papiernik, L. G. Hubert-Pfalzgraf, and J. C. Daran, J. Chem. Soc., Chem. Commun., 1990, 301.
- 178 W. A. Herrmann, N. W. Huber, R. Anwander, and T. Priermeier, Chem. Ber., 1993, 126, 1127.
- 179 G. Calingaert, H. Soroos, and V. Hnizda, J. Am. Chem. Soc., 1942, 64, 392.
- 180 M. Wieber and U. Baudis, Z. Anorg. Allg. Chem., 1978, 439, 139.
- 181 H. Schmidbaur and M. Bergfeld, Z. Anorg. Allg. Chem., 1968, 363, 84.
- 182 K. H. Whitmire, J. C. Hutchison, A. L. McKnight, and C. M. Jones, J. Chem. Soc., Chem. Commun., 1992, 1021.
- 183 J. L. Jolas, S. Hoppe, and K. H. Whitmire, Inorg. Chem., 1997, 36, 3335.
- 184 M. Mehring, D. Mansfeld, B. Costisella, and M. Schuermann, Eur. J. Inorg. Chem., 2006, 735.
- 185 K. H. Whitmire, S. Hoppe, O. Sydora, J. L. Jolas, and C. M. Jones, Inorg. Chem., 2000, 39, 85.
- 186 C. M. Jones, M. D. Burkart, R. E. Bachman, D. L. Serra, S. J. Hwu, and K. H. Whitmire, Inorg. Chem., 1993, 32, 5136.
- 187 K. H. Whitmire, C. M. Jones, M. D. Burkart, J. C. Hutchison, and A. McKnight, Mater. Res. Soc. Sym. Proc., 1992, 271, 149.
- 188 C. M. Jones, M. D. Burkart, and K. H. Whitmire, J. Chem. Soc., Chem. Commun., 1992, 1638.
- 189 D. Mansfeld, L. Miersch, T. Rueffer, D. Schaarschmidt, H. Lang, T. Boehle, R. W. Troff, C. A. Schalley, J. Mueller, and M. Mehring, Chem.—Eur. J., 2011, 17, 14805.
- 190 M. Schlesinger, D. Sattler, C. A. Schalley, and M. Mehring, Z. Anorg. Allg. Chem., 2012, 638, 1567.
- 191 P. C. Andrews, G. B. Deacon, C. M. Forsyth, P. C. Junk, I. Kumar, and M. Maguire, Angew. Chem. Int. Ed., 2006, 45, 5638.
- 192 M. K. Sharma, M. Sharma, A. Singh, and R. C. Mehrotra, Ind. J. Chem., 2001, 40A, 1226.
- 193
M. Hunger, C. Limberg, and P. Kircher, Angew. Chem. Int. Ed., 1999, 38, 1105.
10.1002/(SICI)1521-3773(19990419)38:8<1105::AID-ANIE1105>3.0.CO;2-U CAS PubMed Web of Science® Google Scholar
- 194 K. W. Terry, K. Su, T. D. Tilley, and A. L. Rheingold, Polyhedron, 1998, 17, 891.
- 195 D. Mansfeld, M. Mehring, and M. Schuermann, Angew. Chem. Int. Ed., 2005, 44, 245.
- 196 D. Mansfeld, M. Mehring, and M. Schuermann, Z. Anorg. Allg. Chem., 2004, 630, 1795.
- 197 S. Paalasmaa, D. Mansfeld, M. Schuermann, and M. Mehring, Z. Anorg. Allg. Chem., 2005, 631, 2433.
- 198 M. Mehring, D. Mansfeld, S. Paalasmaa, and M. Schuermann, Chem.—Eur. J., 2006, 12, 1767.
- 199 M. Mehring, S. Paalasmaa, and M. Schuermann, Eur. J. Inorg. Chem., 2005, 4891.
- 200 M. Mehring, Coord. Chem. Rev., 2007, 251, 974.
- 201 M. Mehring, D. Mansfeld, C. Nolde, and M. Schuermann, Organosilicon Chem. VI, [Eur. Silicon Days], 2nd, 2005, 1, 233.
- 202 M. Mehring and M. Schurmann, Chem. Commun., 2001, 2354.
- 203 E. M. Campi, G. B. Deacon, G. L. Edwards, M. D. Fitzroy, N. Giunta, W. R. Jackson, and R. Trainor, J. Chem. Soc., Chem. Commun., 1989, 407.
- 204 G. Gattow and K. Sarter, Z. Anorg. Allg. Chem., 1980, 463, 163.
- 205 P. V. Radheshwar, R. Dev, and G. H. Cady, J. Inorg. Nucl. Chem., 1972, 34, 3913.
- 206 G. J. Reiss, W. Frank, and J. Schneider, Main Group Met. Chem., 1995, 18, 287.
- 207 V. Stavila, R. L. Davidovich, A. Gulea, and K. H. Whitmire, Coord. Chem. Rev., 2006, 250, 2782.
- 208 E. V. Dikarev and B. Li, Inorg. Chem., 2004, 43, 3461.
- 209 J. C. Durivage, N. E. Gruhn, B. Li, E. V. Dikarev, and D. L. Lichtenberger, J. Cluster Sci., 2008, 19, 275.
- 210 J. Hansen, B. Li, E. Dikarev, J. Autschbach, and H. M. L. Davies, J. Org. Chem., 2009, 74, 6564.
- 211 B. Li, H. Zhang, L. Huynh, C. Diverchy, S. Hermans, M. Devillers, and E. V. Dikarev, Inorg. Chem., 2009, 48, 6152.
- 212 J. H. Thurston and K. H. Whitmire, Inorg. Chem., 2002, 41, 4194.
- 213 J. H. Thurston and K. H. Whitmire, Inorg. Chem., 2003, 42, 2014.
- 214 J. H. Thurston, D. Trahan, T. Ould-Ely, and H. Whitmire Kenton, Inorg. Chem., 2004, 43, 3299.
- 215 J. H. Thurston, A. Kumar, C. Hofmann, and K. H. Whitmire, Inorg. Chem., 2004, 43, 8427.
- 216 P.J. Sadler, Congreso Iberoamericano de Quimica Inorganica, 6th, Puebla, Mex. Apr 20–25 1997, 1997, 487.
- 217 S. J. Berners-Price and P. J. Sadler, Coord. Chem. Rev., 1996, 151, 1.
- 218 G. G. Briand and N. Burford, Chem. Rev., 1999, 99, 2601.
- 219 P. J. Sadler, H. Li, and H. Sun, Coord. Chem. Rev., 1999, 185–186, 689.
- 220 G. S. Sandha, R. LeBlanc, S. J. O. V. Van Zanten, T. D. Sitland, L. Agocs, N. Burford, L. Best, D. Mahoney, P. Hoffman, and D. J. Leddin, Dig. Dis. Sci., 1998, 43, 2727.
- 221 N. Burford, M. D. Eelman, and W. G. LeBlanc, Can. J. Chem., 2004, 82, 1254.
- 222 W. A. Herrmann, E. Herdtweck, and L. Pajdla, Chem. Ber., 1993, 126, 895.
- 223 W. A. Herrmann, E. Herdtweck, W. Scherer, P. Kiprof, and L. Pajdla, Chem. Ber., 1993, 126, 51.
- 224 P. Kiprof, W. Scherer, L. Pajdla, E. Herdtweck, and W. A. Herrmann, Chem. Ber., 1992, 125, 43.
- 225 E. Asato, C. M. Hol, F. B. Hulsbergen, N. T. M. Klooster, and J. Reedijk, Inorg. Chim. Acta, 1993, 214, 159.
- 226 E. Asato, W. L. Driessen, R. A. G. De Graaff, F. B. Hulsbergen, and J. Reedijk, Inorg. Chem., 1991, 30, 4210.
- 227 P. J. Sadler and H. Sun, J. Chem. Soc., Dalton Trans., 1995, 1395.
- 228 M. W. Brechbiel, O. A. Gansow, C. G. Pippin, R. D. Rogers, and R. P. Planalp, Inorg. Chem., 1996, 35, 6343.
- 229 H. Sun, H. Li, I. Harvey, and P. J. Sadler, J. Biol. Chem., 1999, 274, 29094.
- 230 L. Zhang, K. Y. Szeto, W. B. Wong, T. T. Loh, P. J. Sadler, and H. Sun, Biochemistry, 2001, 40, 13281.
- 231 C.-N. Tsang, J. Bianga, H. Sun, J. Szpunar, and R. Lobinski, Metallomics, 2012, 4, 277.
- 232 H. Li and H. Sun, Curr. Opin. Chem. Biol., 2012, 16, 74.
- 233 H. Sun ed., Biological Chemistry of Arsenic, Antimony and Bismuth, John Wiley & Sons, Ltd, Chichester, 2011.
- 234 N. Yang and H. Sun, Coord. Chem. Rev., 2007, 251, 2354.
- 235 R. Ge and H. Sun, Acc. Chem. Res., 2007, 40, 267.
- 236 H. Sun, L. Zhang, and K.-Y. Szeto, Met. Ions Biol. Syst., 2004, 41, 333.
- 237 H. Sun and K. Y. Szeto, J. Inorg. Biochem., 2003, 94, 114.
- 238 H. Sun, H. Li, A. B. Mason, R. C. Woodworth, and P. J. Sadler, J. Biol. Chem., 2001, 276, 8829.
- 239 L. Jin, K.-Y. Szeto, L. Zhang, W. Du, and H. Sun, J. Inorg. Biochem., 2004, 98, 1331.
- 240 P. C. Andrews, R. Frank, P. C. Junk, L. Kedzierski, I. Kumar, and J. G. MacLellan, J. Inorg. Biochem., 2011, 105, 454.
- 241 W. A. Herrmann, E. Herdtweck, and L. Pajdla, Inorg. Chem., 1991, 30, 2579.
- 242 W. Li, L. Jin, N. Zhu, X. Hou, F. Deng, and H. Sun, J. Am. Chem. Soc., 2003, 125, 12408.
- 243 P. J. Barrie, M. I. Djuran, M. A. Mazid, M. McPartlin, P. J. Sadler, I. J. Scowen, and H. Sun, J. Chem. Soc., Dalton Trans., 1996, 2417.
- 244 W. A. Herrmann, E. Herdtweck, and L. Pajdla, Z. Kristall., 1992, 198, 257.
- 245 J. H. Thurston, E. M. Marlier, and K. H. Whitmire, J. Chem. Soc., Chem. Commun., 2002, 2834.
- 246 P. C. Andrews, R. L. Ferrero, P. C. Junk, J. G. MacLellan, and R. M. Peiris, Aus. J. Chem., 2012, 65, 883.
- 247 P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C. Junk, J. G. MacLellan, and A. Vom, Dalton Trans., 2012, 41, 11798.
- 248 P. C. Andrews, R. L. Ferrero, C. M. Forsyth, P. C. Junk, J. G. Maclellan, and R. M. Peiris, Organometallics, 2011, 30, 6283.
- 249 P. C. Andrews, G. B. Deacon, P. C. Junk, I. Kumar, and J. G. MacLellan, Organometallics, 2009, 28, 3999.
- 250 P. C. Andrews, G. B. Deacon, R. L. Ferrero, P. C. Junk, A. Karrar, I. Kumar, and J. G. MacLellan, Dalton Trans., 2009, 6377.
- 251 V. Stavila, J. C. Fettinger, and K. H. Whitmire, Organometallics, 2007, 26, 3321.
- 252 V. Andre, A. Hardeman, I. Halasz, R. S. Stein, G. J. Jackson, D. G. Reid, M. J. Duer, C. Curfs, M. T. Duarte, and T. Friscic, Angew. Chem. Int. Ed., 2011, 50, 7858.
- 253 L. Miersch, T. Ruffer, and M. Mehring, Chem. Commun., 2011, 47, 6353.
- 254 E. V. Dikarev, H. Zhang, and B. Li, Angew. Chem. Int. Ed., 2006, 45, 5448.
- 255 P. J. Sadler, H. Sun, and H. Li, Chem.—Eur. J., 1996, 2, 701.
- 256 H. Sun, H. Li, A. B. Mason, R. C. Woodworth, and P. J. Sadler, Biochem. J., 1999, 337, 105.
- 257 H. Sun, M. C. Cox, H. Li, A. B. Mason, R. C. Woodworth, and P. J. Sadler, FEBS Lett., 1998, 422, 315.
- 258 H. Li, P. J. Sadler, and H. Sun, J. Biol. Chem., 1996, 271, 9483.
- 259 J. Fang, F. Chen, K. L. Stokes, J. He, J. Tang, and C. J. O'Connor, Mater. Res. Soc. Symp. Proc., 2002, 730, 119.
- 260 S. K. Mishra, S. Satpathy, and O. Jepsen, J. Phys.: Condens. Matter, 1997, 9, 461.
- 261 V. Stavila, K. H. Whitmire, and I. Rusakova, Chem. Mater., 2009, 21, 5456.
- 262 P. Christian and P. O'Brien, J. Mater. Chem., 2005, 15, 3021.
- 263 B. Zhang, X. Ye, W. Hou, Y. Zhao, and Y. Xie, J. Phys. Chem. B, 2006, 110, 8978.
- 264 J. Jiang, S.-H. Yu, W.-T. Yao, H. Ge, and G.-Z. Zhang, Chem. Mater., 2005, 17, 6094.
- 265 T. Lu, Y. T. Han, and J. J. Vittal, Cryst. Growth Des., 2008, 8, 734.
- 266 Q. Han, J. Chen, X. Yang, L. Lu, and X. Wang, J. Phys. Chem. C, 2007, 111, 14072.
- 267 W. Lou, M. Chen, X. Wang, and W. Liu, Chem. Mater., 2007, 19, 872.
- 268 X.-P. Shen, G. Yin, W.-L. Zhang, and Z. Xu, Solid State Commun., 2006, 140, 116.
- 269 A. K. Jain, V. Sharma, R. Bohra, A. A. Sukumar, V. S. Raju, J. E. Drake, M. B. Hursthouse, and M. E. Light, J. Organomet. Chem., 2006, 691, 4128.
- 270 G. Xie, Z.-P. Qiao, M.-H. Zeng, X.-M. Chen, and S.-L. Gao, Cryst. Growth Des., 2004, 4, 513.
- 271 H. A. Phillips and N. Burford, Inorg. Chem., 2008, 47, 2428.
- 272 H. A. Phillips, M. D. Eelman, and N. Burford, J. Inorg. Biochem., 2007, 101, 736.
- 273 G. G. Briand, N. Burford, M. D. Eelman, N. Aumeerally, L. Chen, T. S. Cameron, and K. N. Robertson, Inorg. Chem., 2004, 43, 6495.
- 274 N. Burford, D. Eelman Melanie, and K. Groom, J. Inorg. Biochem., 2005, 99, 1992.
- 275 N. Burford, D. Eelman Melanie, E. Mahony David, and M. Morash, Chem Commun., 2003, 146.
- 276 W. Levason, S. Maheshwari, R. Ratnani, G. Reid, M. Webster, and W. Zhang, Inorg. Chem., 2010, 49, 9036.
- 277 G. R. Willey, M. T. Lakin, and N. W. Alcock, J. Chem. Soc., Dalton Trans., 1992, 591.
- 278 G. R. Willey, M. T. Lakin, M. Ravindran, and N. W. Alcock, J. Chem. Soc., Chem. Commun., 1991, 271.
- 279 G. R. Willey, M. T. Lakin, and N. W. Alcock, J. Chem. Soc., Dalton Trans., 1992, 1339.
- 280 A. J. Blake, D. Fenske, W.-S. Li, V. Lippolis, and M. Schroder, J. Chem. Soc., Dalton Trans., 1998, 3961.
- 281 W. Clegg, N. C. Norman, and N. L. Pickett, Polyhedron, 1993, 12, 1251.
- 282 H. W. Yim, K.-C. Lam, A. L. Rheingold, and D. Rabinovich, Polyhedron, 2000, 19, 849.
- 283 H. Gilman and J. F. Nelson, J. Am. Chem. Soc., 1937, 59, 935.
- 284 W. Clegg, M. R. J. Elsegood, L. J. Farrugia, F. J. Lawlor, N. C. Norman, and A. J. Scott, J. Chem. Soc., Dalton Trans., 1995, 2129.
- 285 D. A. Atwood, A. H. Cowley, R. D. Hernandez, R. A. Jones, L. L. Rand, S. G. Bott, and J. L. Atwood, Inorg. Chem., 1993, 32, 2972.
- 286 E. Block, G. Ofori-Okai, H. Kang, J. Wu, and J. Zubieta, Inorg. Chem., 1991, 30, 4784.
- 287 R. Engler, Z. Anorg. Allg. Chem., 1974, 407, 35.
- 288 R. Engler, Z. Anorg. Allg. Chem., 1974, 406, 74.
- 289 M. Draeger and B. M. Schmidt, J. Organomet. Chem., 1985, 290, 133.
- 290 G. G. Briand, N. Burford, and T. S. Cameron, J. Chem. Soc., Chem. Commun., 2000, 13.
- 291 G. G. Briand, N. Burford, and T. S. Cameron, J. Chem. Soc., Chem. Commun., 1997, 2365.
- 292 G. G. Briand, N. Burford, M. D. Eelman, T. S. Cameron, and K. N. Robertson, Inorg. Chem., 2003, 42, 3136.
- 293 G. G. Briand, N. Burford, T. S. Cameron, and W. Kwiatkowski, J. Am. Chem. Soc., 1998, 120, 11374.
- 294 N. Burford, M. D. Eelman, and T. S. Cameron, J. Chem. Soc., Chem. Commun., 2002, 1402.
- 295 C. L. Raston and A. H. White, J. Chem. Soc., Dalton Trans., 1976, 791.
- 296 C. L. Raston, G. L. Rowbottom, and A. H. White, J. Chem. Soc., Dalton Trans., 1981, 1383.
- 297 C. L. Raston, G. L. Rowbottom, and A. H. White, J. Chem. Soc., Dalton Trans., 1981, 1379.
- 298 C. L. Raston, G. L. Rowbottom, and A. H. White, J. Chem. Soc. , Dalton Trans., 1981, 1369.
- 299 C. L. Raston, G. L. Rowbottom, and A. H. White, J. Chem. Soc., Dalton Trans., 1981, 1352.
- 300 C. L. Raston, G. L. Rowbottom, and A. H. White, J. Chem. Soc., Dalton Trans., 1981, 1389.
- 301 C. L. Raston, G. L. Rowbottom, and A. H. White, J. Chem. Soc., Dalton Trans., 1981, 1372.
- 302 C. L. Raston, G. L. Rowbottom, and A. H. White, J. Chem. Soc., Dalton Trans., 1981, 1366.
- 303 G. E. Manoussakis, C. A. Tsipis, and A. G. Christophides, Inorg. Chem., 1973, 12, 3015.
- 304 G. E. Manoussakis, C. A. Tsipis, and A. G. Christophides, Z. Anorg. Allg. Chem., 1975, 417, 235.
- 305 L. J. Farrugia, F. J. Lawlor, and N. C. Norman, J. Chem. Soc., Dalton Trans., 1995, 1163.
- 306 L. J. Farrugia, F. J. Lawlor, and N. C. Norman, Polyhedron, 1995, 14, 311.
- 307 C. Hebecker, Z. Anorg. Allg. Chem., 1971, 384, 111.
- 308 A. Wosylus, S. Hoffmann, M. Schmidt, and M. Ruck, Eur. J. Inorg. Chem., 2010, 1469.
- 309 H. Schmidbaur, J. M. Wallis, R. Nowak, B. Huber, and G. Mueller, Chem. Ber., 1987, 120, 1837.
- 310 H. Schmidbaur, R. Nowak, A. Schier, J. M. Wallis, B. Huber, and G. Mueller, Chem. Ber., 1987, 120, 1829.
- 311 A. Schier, J. M. Wallis, G. Moeller, and H. Schmidbaur, Angew. Chem., 1986, 98, 742.
- 312 A. Decken, G. B. Nikiforov, and J. Passmore, Polyhedron, 2005, 24, 2994.
- 313 W. G. McPherson and E. A. Meyers, J. Phys. Chem., 1968, 72, 3117.
- 314 G. Alonzo, F. Benetollo, N. Bertazzi, and G. Bombieri, J. Chem. Crystallogr., 1999, 29, 913.
- 315 C. J. Carmalt, W. Clegg, M. R. J. Elsegood, R. J. Errington, J. Havelock, P. Lightfoot, N. C. Norman, and A. J. Scott, Inorg. Chem., 1996, 35, 3709.
- 316 J. R. Eveland and K. H. Whitmire, Inorg. Chim. Acta, 1996, 249, 41.
- 317 R. D. Rogers, A. H. Bond, S. Aguinaga, and A. Reyes, J. Am. Chem. Soc., 1992, 114, 2967.
- 318 N. W. Alcock, M. Ravindran, and G. R. Willey, J. Chem. Soc., Chem. Commun., 1989, 1063.
- 319 H. J. Breunig, M. Denker, R. E. Schulz, and E. Lork, Z. Anorg. Allg. Chem., 1998, 624, 81.
- 320 T. Groeer and M. Scheer, Organometallics, 2000, 19, 3683.
- 321 N. W. Alcock, M. Ravindran, and G. R. Willey, Acta Crystallogr., 1993, B49, 507.
- 322 M. Schaefer, G. Frenzen, B. Neumueller, and K. Dehnicke, Angew. Chem., 1992, 104, 354.
- 323 R. Garbe, B. Vollmer, B. Neumueller, J. Pebler, and K. Dehnicke, Z. Anorg. Allg. Chem., 1993, 619, 271.
- 324 W. Clegg, L. J. Farrugia, A. McCamley, N. C. Norman, A. G. Orpen, N. L. Pickett, and S. E. Stratford, J. Chem. Soc., Dalton Trans., 1993, 2579.
- 325 L. J. Farrugia, N. C. Norman, and N. L. Pickett, Acta Crystallogr., 1998, C54, 476.
- 326 S. C. James, N. C. Norman, and A. G. Orpen, J. Chem. Soc., Dalton Trans., 1999, 2837.
- 327 S. C. James, Y. G. Lawson, N. C. Norman, A. G. Orpen, and M. J. Quayle, Acta Crystallogr., 2000, C56, 427.
- 328 K. O. Christe, W. W. Wilson, and C. J. Schack, J. Fluor. Chem., 1978, 11, 71.
- 329 R. J. Gillespie, D. Martin, G. J. Schrobilgen, and D. R. Slim, J. Chem. Soc., Dalton Trans., 1977, 2234.
- 330 A. M. Ellern, M. Y. Antipin, A. V. Sharabarin, and Y. T. Struchkov, Zh. Neorg. Khim., 1992, 37, 86.
- 331 A. W. Jache and G. H. Cady, J. Phys. Chem., 1952, 56, 1106.
- 332 R. Bougon, P. Charpin, K. O. Christe, J. Isabey, M. Lance, M. Nierlich, J. Vigner, and W. W. Wilson, Inorg. Chem., 1988, 27, 1389.
- 333 J. Beck, C. J. Brendel, L. Bengtsson-Kloo, B. Krebs, M. Mummert, A. Stankowski, and S. Ulvenlund, Chem. Ber., 1996, 129, 1219.
- 334 J. D. Corbett and R. M. Friedman, J. Chem. Soc., Chem. Commun., 1971, 422.
- 335 R. M. Friedman and J. D. Corbett, Inorg. Chem., 1973, 12, 1134.
- 336 B. Krebs, M. Hucke, and C. J. Brendel, Angew. Chem., 1982, 94, 453.
- 337 J. D. Corbett, Inorg. Chem., 1968, 7, 198.
- 338 R. C. Burns, R. J. Gillespie, and W.-C. Luk, Inorg. Chem., 1978, 17, 3596.
- 339 M. F. Groh, A. Isaeva, and M. Ruck, Chem.—Eur. J., 2012, 18, 10886.
- 340 A. Gerisch and M. Ruck, Z. Kristallogr., 2011, 226, 613.
- 341 B. Wahl, M. Erbe, A. Gerisch, L. Kloo, and M. Ruck, Z. Anorg. Allg. Chem., 2009, 635, 743.
- 342 B. Wahl and M. Ruck, Z. Anorg. Allg. Chem., 2008, 634, 2267.
- 343 B. Wahl, L. Kloo, and M. Ruck, Angew. Chem. Int. Ed., 2008, 47, 3932.
- 344 F. Steden, P. Schmidt, B. Wahl, A. Isaeva, and M. Ruck, Z. Anorg. Allg. Chem., 2008, 634, 69.
- 345 V. Dubenskyy and M. Ruck, Z. Anorg. Allg. Chem., 2004, 630, 2458.
- 346 M. Ruck, V. Dubenskyy, and T. Soehnel, Angew. Chem. Int. Ed., 2003, 42, 2978.
- 347 M. Ruck, Solid State Sci., 2001, 3, 369.
- 348 M. Ruck, Z. Anorg. Allg. Chem., 1997, 623, 1583.
- 349 M. Ruck, Z. Anorg. Allg. Chem., 1997, 623, 1591.
- 350 M. Ruck, Angew. Chem. Int. Ed. Engl., 1997, 36, 1971.
- 351 R. B. King, I. Silaghi-Dumitrescu, and M. M. Uta, Inorg. Chem., 2009, 48, 8508.
- 352 J. M. Wallis, G. Mueller, and H. Schmidbaur, J. Organomet. Chem., 1987, 325, 159.
- 353 J. M. Wallis, G. Mueller, and H. Schmidbaur, Inorg. Chem., 1987, 26, 458.
- 354 J. M. Wallis, G. Mueller, J. Riede, and H. J. Schmidbaur, Organomet. Chem., 1989, 369, 165.
- 355 G. Etzrodt, R. Boese, and G. Schmid, Chem. Ber., 1979, 112, 2574.
- 356 W. Clegg, N. A. Compton, R. J. Errington, N. C. Norman, A. J. Tucker, and M. J. Winter, J. Chem. Soc., Dalton Trans., 1988, 2941.
- 357 W. Clegg, N. A. Compton, R. J. Errington, and N. C. Norman, J. Chem. Soc., Dalton Trans., 1988, 1671.
- 358 N. C. Norman, N. L. Pickett, W. D. Storr, N. M. Boag, and A. J. Goodby, Polyhedron, 1994, 13, 2525.
- 359 R. D. Adams and W. C. Pearl, Inorg. Chem., 2009, 48, 9519.
- 360 R. D. Adams and W. C. Pearl Jr, J. Organomet. Chem., 2010, 695, 937.
- 361 R. D. Adams and W. C. Pearl Jr, J. Organomet. Chem., 2011, 696, 1198.
- 362 W. Clegg, N. A. Compton, R. J. Errington, and N. C. Norman, Polyhedron, 1987, 6, 2031.
- 363 W. Clegg, N. A. Compton, R. J. Errington, D. C. R. Hockless, N. C. Norman, M. Ramshaw, and P. M. Webster, J. Chem. Soc., Dalton Trans., 1990, 2375.
- 364 R. J. Errington, L. J. Farrugia, G. A. Fisher, A. Niklaus, and N. C. Norman, J. Chem. Soc., Dalton Trans., 1993, 1201.
- 365 T. Groer and M. Scheer, J. Chem. Soc., Dalton Trans., 2000, 647.
- 366 A. Crispini, R. J. Errington, G. A. Fisher, F. J. Funke, N. C. Norman, A. G. Orpen, S. E. Stratford, and O. Struve, J. Chem. Soc., Dalton Trans., 1994, 1327.
- 367 W. Clegg, N. A. Compton, R. J. Errington, G. A. Fisher, D. C. R. Hockless, N. C. Norman, N. A. L. Williams, S. E. Stratford, and S. J. Nichols, J. Chem. Soc., Dalton Trans., 1992, 193.
- 368 J. Von Seyerl and G. Huttner, J. Organomet. Chem., 1980, 195, 207.
- 369 W. Clegg, N. A. Compton, R. J. Errington, G. A. Fisher, N. C. Norman, and T. B. Marder, J. Chem. Soc., Dalton Trans., 1991, 2887.
- 370 D. Fenske, A. Rothenberger, and S. Wieber, Z. Anorg. Allg. Chem., 2003, 629, 929.
- 371 W. Kruppa, D. Blaeser, R. Boese, and G. Schmid, Z. Naturforsch., 1982, 37B, 209.
- 372 G. Ciani, M. Moret, A. Fumagalli, and S. Martinengo, J. Organomet. Chem., 1989, 362, 291.
- 373 K. H. Whitmire, J. S. Leigh, and M. E. Gross, J. Chem. Soc., Chem. Commun., 1987, 926.
- 374 M. Shieh, F. D. Mia, S. M. Peng, and G. H. Lee, Inorg. Chem., 1993, 32, 2785.
- 375 J. W. van Hal, K. H. Whitmire, B. Zouchoune, J.-F. Halet, and J.-Y. Saillard, Inorg. Chem., 1995, 34, 5455.
- 376 L. Xu and K. H. Whitmire, Organometallics, 2002, 21, 2581.
- 377 E. Gianotti, V. N. Shetti, M. Manzoli, J. A. L. Blaine, W. C. Pearl Jr, R. D. Adams, S. Coluccia, and R. Raja, Chem.—Eur. J., 2010, 16, 8202.
- 378 J. S. Leigh and K. H. Whitmire, Angew. Chem., 1988, 100, 399.
- 379 S. Martinengo, A. Fumagalli, G. Ciani, and M. Moret, J. Organomet. Chem., 1988, 347, 413.
- 380 C. J. Carmalt, L. J. Farrugia, N. C. Norman, and S. Sunley, Inorg. Chim. Acta, 1995, 234, 189.
- 381 C. J. Carmalt, L. J. Farrugia, and N. C. Norman, J. Chem. Soc., Dalton Trans., 1996, 455.
- 382 J. R. Eveland, J.-Y. Saillard, and K. H. Whitmire, Inorg. Chem., 1997, 36, 4387.
- 383 J. R. Eveland, K. H. Whitmire, and J.-Y. Saillard, Inorg. Chem., 1996, 35, 4400.
- 384 S. Martinengo and G. Ciani, J. Chem. Soc., Chem. Commun., 1987, 1589.
- 385 T. A. Albright, K. A. Yee, J. Y. Saillard, S. Kahlal, J. F. Halet, J. S. Leigh, and K. H. Whitmire, Inorg. Chem., 1991, 30, 1179.
- 386 R. D. Adams, M. Chen, G. Elpitiya, and Q. Zhang, Organometallics, 2012, 31, 7264.
- 387 M. R. Churchill, J. C. Fettinger, K. H. Whitmire, and C. B. Lagrone, J. Organomet. Chem., 1986, 303, 99.
- 388
M. Shieh, J.-J. Cherng, Y.-W. Lai, C.-H. Ueng, S.-M. Peng, and Y.-H. Liu, Chem.—Eur. J., 2002, 8, 4522.
10.1002/1521-3765(20021004)8:19<4522::AID-CHEM4522>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 389 M. Shieh, Y. Liou, and B. W. Jeng, Organometallics, 1993, 12, 4926.
- 390
M. Shieh, Y. Liou, M.-H. Hsu, R.-T. Chen, S.-J. Yeh, S.-M. Peng, and G.-H. Lee, Angew. Chem. Int. Ed., 2002, 41, 2384.
10.1002/1521-3773(20020703)41:13<2384::AID-ANIE2384>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 391 K. H. Whitmire, C. B. Lagrone, M. R. Churchill, J. C. Fettinger, and L. V. Biondi, Inorg. Chem., 1984, 23, 4227.
- 392 K. H. Whitmire, C. B. Lagrone, and A. L. Rheingold, Inorg. Chem., 1986, 25, 2472.
- 393 K. H. Whitmire, T. A. Albright, S. K. Kang, M. R. Churchill, and J. C. Fettinger, Inorg. Chem., 1986, 25, 2799.
- 394 K. H. Whitmire, M. R. Churchill, and J. C. Fettinger, J. Am. Chem. Soc., 1985, 107, 1056.
- 395 K. H. Whitmire, M. Shieh, C. B. Lagrone, B. H. Robinson, M. R. Churchill, J. C. Fettinger, and R. F. See, Inorg. Chem., 1987, 26, 2798.
- 396 J. R. Eveland, J.-Y. Saillard, and K. H. Whitmire, Inorg. Chem., 1997, 36, 330.
- 397 S. N. Konchenko, N. A. Pushkarevsky, A. V. Virovets, and M. Scheer, J. Chem. Soc., Dalton Trans., 2003, 581.
- 398 K. H. Whitmire, K. S. Raghuveer, M. R. Churchill, J. C. Fettinger, and R. F. See, J. Am. Chem. Soc., 1986, 108, 2778.
- 399 S. Kahlal, J.-F. Halet, J.-Y. Saillard, and K. H. Whitmire, J. Organomet. Chem., 1994, 478, 1.
- 400 K. Y. Monakhov, T. Zessin, and G. Linti, Eur. J. Inorg. Chem., 2010, 3212.
- 401 H. G. Ang, C. M. Hay, B. F. G. Johnson, J. Lewis, P. R. Raithby, and A. J. Whitton, J. Organomet. Chem., 1987, 330, C5.
- 402 C. M. Hay, B. F. G. Johnson, J. Lewis, P. R. Raithby, and A. J. Whitton, J. Chem. Soc., Dalton Trans., 1988, (2091).
- 403 B. F. G. Johnson, J. Lewis, P. R. Raithby, and A. J. Whitton, J. Chem. Soc., Chem. Commun., 1988, 401.
- 404 B. F. G. Johnson, J. Lewis, and A. J. Whitton, J. Chem. Soc., Dalton Trans., 1990, 3129.
- 405 R. D. Adams and W. C. Pearl Jr, Inorg. Chem., 2010, 49, 7170.
- 406
K. H. Whitmire, J. Cluster Sci., 1991, 2, 231.
10.1007/BF00702955 Google Scholar
- 407 P. D. Mlynek and L. F. Dahl, Organometallics, 1997, 16, 1655.
- 408 V. G. Albano, F. Demartin, M. C. Iapalucci, G. Longoni, M. Monari, and P. Zanello, J. Chem. Soc., Dalton Trans., 1992, 497.
- 409 G. Huttner, Pure Appl. Chem., 1986, 58, 585.
- 410 G. Huttner, U. Weber, and L. Zsolnai, Z. Naturforsch., 1982, 37B, 707.
- 411 A. M. Arif, A. H. Cowley, N. C. Norman, and M. Pakulski, Inorg. Chem., 1986, 25, 4836.
- 412 W. J. Evans, S. L. Gonzales, and J. W. Ziller, J. Am. Chem. Soc., 1991, 113, 9880.
- 413 J. L. Stark, B. Harms, I. Guzman-Jimenez, K. H. Whitmire, R. Gautier, J.-F. Halet, and J.-Y. Saillard, J. Am. Chem. Soc., 1999, 121, 4409.
- 414 L. Xu, A. Ugrinov, and S. C. Sevov, J. Am. Chem. Soc., 2001, 123, 4091.
- 415 K. H. Whitmire and J. R. Eveland, J. Chem. Soc., Chem. Commun., 1994, 1335.
- 416 B. Zouchoune, F. Ogliaro, J.-F. Halet, J.-Y. Saillard, J. R. Eveland, and K. H. Whitmire, Inorg. Chem., 1998, 37, 865.