Alkali Metals: Inorganic Chemistry
Wing-Por Leung
The Chinese University of Hong Kong, Hong Kong, China
Search for more papers by this authorYuk-Chi Chan
The Chinese University of Hong Kong, Hong Kong, China
Search for more papers by this authorWing-Por Leung
The Chinese University of Hong Kong, Hong Kong, China
Search for more papers by this authorYuk-Chi Chan
The Chinese University of Hong Kong, Hong Kong, China
Search for more papers by this authorUpdate based on the original article by Wing-Por Leung and Queenie Wai-Yan Ip, Encyclopedia of Inorganic Chemistry © 2005 John Wiley & Sons, Ltd.
Abstract
This article is updated to cover the literature in the area of inorganic chemistry of alkali metals since 2006. The advancement in instrumentation and spectroscopic techniques in recent two decades has provided researchers with more powerful tools for structure determination of compounds. In this respect, mixed-sandwich electrides of alkali metals, complexes with dimers or chains of alkali metal anions, electrides with alkali metal ions intercalated into zeolites, and interstitial hydride enclosed by an unusual (Li+)8 cubic cage and a simpler more defined LiH-containing complex have recently been reported in the literature. Alkali metal ozonides, mixed alkali metal ozonide superoxide, and alkali metal suboxides have also been reported. The preparation of Na3N, K3N, ternary and higher nitride compounds of lithium are included in this article. The exact composition of “NaB6” and “KB6” is also included. The role of alkali metals in trielide clusters of traditional Zintl polyanions has been shown. Synthesis and structures of trimetallic Li–Na–K amide-alkoxide compounds, alkoxide compounds, enolates, and highly aggregated cage structures of lithium-heavier alkali metal alkoxides and heterotrimetallic alkoxide are included.
References
- 1 R. O. Bach (ed), Lithium: Current Applications in Science, Medicine, and Technology, Wiley, New York, 1985.
- 2 R. Thompson (ed), The Modern Inorganic Chemicals Industry, The Chemical Society, London, 1977.
- 3N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon Press, Oxford, 1984, p. 77, Chap. 4.
- 4P. J. Sadler, Adv. Inorg. Chem., 1991, 36, 1.
- 5N. J. Birch and J. D. Phillips, Adv. Inorg. Chem., 1991, 36, 49.
- 6M. Fieser, Reagents for Organic Synthesis, Wiley, New York, 1990, Vol. 15.
- 7M. Morton, Anionic Polymerization: Principles and Practice, Academic Press, London, 1983.
- 8M. V. Reddy, G. V. Subba Rao, and B. V. R. Chowdari, Chem. Rev., 2013, 113, 5364 and references cited therein.
- 9J. R. Partington, A Short History of Chemistry, 3rd edition, Harper & Brothers, New York, 1957, p. 182.
- 10W. W. Porterfield, Inorganic Chemistry: A Unified Approach, Addison-Wesley, Reading, MA, 1984, Chap. 1.
- 11C. C. Addison, The Chemistry of the Liquid Alkali Metals, Wiley, New York, 1984.
- 12B. J. Wakefield, Organolithium Methods, Academic Press, New York, 1988.
- 13L. Brandsma and H. D. Verkruijsse, Preparative Polar Organometallic Chemistry, Springer, Berlin, 1987, Vol. 1.
10.1007/978-3-642-87921-0 Google Scholar
- 14S. J. Thomson, Faraday Symposium 21, R.S.C. Autumn Meeting, Bath, September 1986, reported in J. Chem. Soc., Faraday Trans. 1, 1987, 83, 1893.
- 15S. Goodarznia and K. J. Smith, J. Mol. Catal. A: Chem., 2010, 320, 1.
- 16T. Ito, J.-X. Wang, C.-H. Lin, and J. H. Lunsford, J. Am. Chem. Soc., 1985, 107, 5062.
- 17G. J. Hutchings, M. S. Scurrell, and J. R. Woodhouse, J. Chem. Soc., Chem. Commun., 1987, 1388.
- 18C.-H. Lin, T. Ito, J.-X. Wang, and J. H. Lunsford, J. Am. Chem. Soc., 1987, 109, 4808.
- 19L. C. Freriks, P. C.de Jong-Versloot, A. G. T. G. Kortbeek, and J. P.van den Berg, J. Chem. Soc., Chem. Commun., 1986, 253.
- 20J. Nunan, K. Klier, C.-W. Young, P. B. Himelfarb, and R. G. Herman, J. Chem. Soc., Chem. Commun., 1986, 193.
- 21R. J. P. Williams, Proc. R. Soc. London, 1981, 213, 361.
- 22N. J. Birch, Chem. Rev., 1999, 99, 2659.
- 23J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, and A. Kojic, J. Electrochem. Soc., 2012, 159, R1.
- 24A. Abouimrane, D. Dambournet, K. W. Chapman, P. J. Chupas, W. Weng, and K. Amine, J. Am. Chem. Soc., 2012, 134, 4505.
- 25Z. Wei, A. S. Filatov, and E. V. Dikarev, J. Am. Chem. Soc., 2013, 135, 12216.
- 26H. J. Reich, Chem. Rev., 2013, 113, 7130 and references cited therein.
- 27P. v. R. Schleyer, Pure Appl. Chem., 1983, 55, 355.
- 28A. Streitwieser, Acc. Chem. Res., 1984, 17, 353.
- 29E. Zurek, P. P. Edwards, and R. Hoffmann, Angew. Chem. Int. Ed., 2009, 48, 8198 and references cited therein.
- 30K.-L. Tsai and J. L. Dye, J. Am. Chem. Soc., 1991, 113, 1650.
- 31J. Birch and H. Smith, Q. Rev. Chem. Soc., 1958, 12, 17.
- 32I. Schön, Chem. Rev., 1984, 84, 287.
- 33Z. Jedliński, A. Czech, H. Janeczek, and M. Kowalczuk, J. Am. Chem. Soc., 1995, 117, 8678.
- 34L. Perrin, J. Wang, and M. Szwarc, J. Am. Chem. Soc., 2000, 122, 4569.
- 35J. L. Dye, Acc. Chem. Res., 2009, 42, 1564 and references cited therein.
- 36J. L. Dye, M. Y. Redko, R. H. Huang, and J. E. Jackson, Adv. Inorg. Chem., 2006, 59, 205 and references cited therein.
- 37V. Bonačić-Koutecký, P. Fantucci, and J. Koutecký, Chem. Rev., 1991, 91, 1035.
- 38V. I. Srdanov, K. Haug, H. Metiu, and G. D. Stucky, J. Phys. Chem., 1992, 96, 9039.
- 39B. Xu and L. Kevan, J. Phys. Chem., 1992, 96, 2642.
- 40C. J. Reinhold, P. A. Anderson, P. P. Edwards, V. V. Terskikh, C. I. Ratcliffe, and J. A. Ripmeester, J. Phys. Chem. C, 2008, 112, 17796 and references cited therein.
- 41R. Csuk, B. I. Glänzer, and A. Fürstner, Adv. Organomet. Chem., 1988, 28, 85.
- 42R. Matsumoto, M. Arakawa, H. Yoshida, and N. Akuzawa, Synt. Met., 2012, 162, 2149.
- 43S. H. Glarum, S. J. Duclus, and R. C. Haddon, J. Am. Chem. Soc., 1992, 114, 1996.
- 44C. D. Stevenson, J. R. Noyes, and R. C. Reiter, J. Am. Chem. Soc., 2000, 122, 12905.
- 45C. Schade and P. V. R. Schleyer, Adv. Organomet. Chem., 1987, 27, 169.
- 46K. M. MacKay, Hydrogen Compounds of the Metallic Elements, E. & F. N. Spon, London, 1966, p. 19.
- 47S. Harder, Chem. Commun., 2012, 48, 11165 and references cited therein.
- 48M. Y. Redko, M. Vlassa, J. E. Jackson, A. W. Misiolek, R. H. Huang, and J. L. Dye, J. Am. Chem. Soc., 2002, 124, 5928.
- 49A. Sawicka, P. Skurski, and J. Simons, J. Phys. Chem. A, 2005, 109, 922 and references cited therein.
- 50F. Wells, Structural Inorganic Chemistry, 4th edition, Clarendon Press, Oxford, 1975, p. 261.
- 51R. L. Whetten, Acc. Chem. Res., 1993, 26, 49.
- 52G. D. Zissi and G. N. Papatheodorou, Phys. Chem. Chem. Phys., 2004, 6, 4480 and references cited therein.
- 53O. Pauvert, M. Salanne, D. Zanghi, C. Simon, S. Reguer, D. Thiaudire, Y. Okamoto, H. Matsuura, and C. Bessada, J. Phys. Chem. B, 2011, 115, 9160.
- 54A.-L. Rollet, M. Salanne, and H. Groult, J. Fluorine Chem., 2012, 134, 44.
- 55H. Nuss, J. Nuss, and M. Jansen, Z. Anorg. Allg. Chem., 2008, 634, 1291.
- 56H. Nuss and M. Jansen, Z. Anorg. Allg. Chem., 2012, 638, 501.
- 57M. Driess and H. Nöth, Molecular Clusters of the Main Group Elements, Wiley-VCH, 2004.
10.1002/3527602445 Google Scholar
- 58 J. C. Bailar, H. J. Emeléus, R. Nyholm, and A. F. Trotman-Dickenson (eds), Comprehensive Inorganic Chemistry, Pergamon Press, Oxford, 1973, Vol. 1.
- 59O. EI Jaroudi, E. Picquenard, A. Demortier, J.-P. Lelieur, and J. Corset, Inorg. Chem., 1999, 38, 2394.
- 60N. Tapia-Ruiz, M. Segalés, and D. H. Gregory, Coord. Chem. Rev., 2013, 257, 1978.
- 61M. E. Schlesinger, Chem. Rev., 2002, 102, 4267.
- 62H. Schäfer, B. Eisemann, and W. Müller, Angew. Chem., Int. Ed. Engl., 1973, 12, 694.
- 63U. Ruschewitz, Coord. Chem. Rev., 2003, 244, 115 and references cited therein.
- 64M. Hamberger, S. Liebig, U. Friedrich, N. Korber, and U. Ruschewitz, Angew. Chem., Int. Ed., 2012, 51, 13006.
- 65S. C. Sevov and J. M. Goicoechea, Organometallics, 2006, 25, 5678 and references cited therein.
- 66F. Li and S. C. Sevov, Inorg. Chem., 2012, 51, 2706.
- 67F. Li, A. Mu∼oz-Castro, and S. C. Sevov, Angew. Chem. Int. Ed., 2012, 51, 8581.
- 68C. Schrenk, F. Winter, R. Pöttgen, and A. Schnepf, Inorg. Chem., 2012, 51, 8583.
- 69T. F. Fässler, Struct. Bond, 2011, 140, 91 and references cited therein.
- 70M. W. Hull, A. Ugrinov, I. Petrov, and S. C. Sevov, Inorg. Chem., 2007, 46, 2704.
- 71M. Waibel and T. F. Fässler, Inorg. Chem., 2013, 52, 5861.
- 72B. Albert and H. Hillebrecht, Angew. Chem. Int. Ed., 2009, 48, 8640 and references cited therein.
- 73A. Ammar, M. Ménétrier, A. Villesuzanne, S. Matar, B. Chevalier, and J. Etourneau, Inorg. Chem., 2004, 43, 4974.
- 74H. Schäfer, Ann. Rev. Mater. Sci., 1985, 15, 1.
- 75J. D. Corbett, Inorg. Chem., 2010, 49, 13 and references cited therein.
- 76M. Cobián, P. Alemany, A. García, and E. Canadell, Inorg. Chem., 2009, 48, 9792.
- 77P. Li and Z.-H. Liu, J. Chem. Eng. Data, 2009, 54, 830.
- 78P. Li and Z.-H. Liu, J. Chem. Eng. Data, 2011, 56, 102.
- 79Ž. P. Čančarević, J. C. Schön, and M. Jansen, Chem. Eur. J., 2007, 13, 7330.
- 80J. Mähler, I. Persson, and R. B. Herbert, Dalton Trans., 2013, 42, 1364.
- 81C. Hirschle and C. Röhr, Z. Anorg. Allg. Chem., 2000, 626, 1305.
10.1002/(SICI)1521-3749(200006)626:6<1305::AID-ZAAC1305>3.0.CO;2-L CAS Web of Science® Google Scholar
- 82F. Emmerling and C. Röhr, Z. Anorg. Allg. Chem., 2002, 628, 1218.
- 83M. E. Burke-Laing and K. N. Trueblood, Acta Crystallogr., Sect. B, 1977, 33, 2698.
10.1107/S0567740877009273 Google Scholar
- 84A. Sequeira, I. Bernal, I. D. Brown, and R. Faggiani, Acta Crystallogr., Sect. B, 1975, 31, 1735.
- 85S. Walha, M. Bouchaala, and A. B. Salah, Acta Crystallogr., Sect. C, 2013, 69, 315.
- 86P. C. Andrews, N. D. R. Barnett, R. E. Mulvey, W. Clegg, P. A. O'Neil, D. Barr, L. Cowton, A. J. Dawson, and B. J. Wakefield, J. Organomet. Chem., 1996, 518, 85.
- 87W. Clegg, S. Kleditzsch, R. E. Mulvey, and P. O'Shaughnessy, J. Organomet. Chem., 1998, 558, 193.
- 88B. Grotjahn, P. M. Sheridan, I. Al Jihad, and L. M. Ziurys, J. Am. Chem. Soc., 2001, 123, 5489.
- 89F. Kraus and N. Korber, J. Solid State Chem., 2005, 178, 1241.
- 90A. R. Kennedy, J. G. MacLellan, and R. E. Mulvey, Angew. Chem. Int. Ed., 2001, 40, 3245.
10.1002/1521-3773(20010903)40:17<3245::AID-ANIE3245>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- 91F. M. Mackenzie, R. E. Mulvey, W. Clegg, and L. Horsburgh, J. Am. Chem. Soc., 1996, 118, 4721.
- 92K.-D. Ehrhardt, W. Press, and G. Heger, Acta Crystallogr., Sect. B, 1983, 39, 171.
- 93J. Marsden, J. Chem. Soc., Dalton Trans., 1984, 1279.
- 94D. Swank and R. D. Willett, Inorg. Chem., 1965, 4, 499.
- 95H. K. Spencer, M. V. Lakshmikantham, and M. P. Cava, J. Am. Chem. Soc., 1977, 99, 1470.
- 96A. Berry, M. L. H. Green, J. A. Brady, and K. Prout, J. Chem. Soc., Dalton Trans., 1991, 2185.
- 97M. J. Bearpark, G. S. McGrady, P. D. Prince, and J. W. Steed, J. Am. Chem. Soc., 2001, 123, 7736.
- 98J. G. Hinman, A. J. Lough, and R. H. Morris, Inorg. Chem., 2007, 46, 4392.
- 99M. Y. Darensbourg, Prog. Inorg. Chem., 1985, 33, 221.
- 100M. Y. Darensbourg and C. E. Ash, Adv. Organomet. Chem., 1987, 27, 1.
- 101J. E. Ellis, Inorg. Chem., 2006, 45, 3167.
- 102R. Armstrong, D. Barr, W. Clegg, S. R. Drake, R. J. Singer, R. Snaith, D. Stalke, and D. S. Wright, Angew. Chem., Int. Ed. Engl., 1991, 30, 1707.
- 103N. S. Poonia and A. V. Bajaj, Chem. Rev., 1979, 79, 389.
- 104P. C. Andrews, D. R. Armstrong, R. E. Mulvey, and D. Reed, J. Am. Chem. Soc., 1988, 110, 5235.
- 105J. Pedersen, Angew. Chem., Int. Ed. Engl., 1988, 27, 1021.
- 106R. M. Izatt, K. Pawlak, J. S. Bradshaw, and R. L. Bruening, Chem. Rev., 1991, 91, 1721.
- 107D. Parker, Adv. Inorg. Chem. Radiochem., 1983, 27, 1.
- 108S. R. Cooper, Crown Compounds–Towards Future Applications, VCH, Cambridge, MA, 1992.
- 109J. C. Bryan, R. A. Sachleben, J. M. Lavis, M. C. Davis, J. H. Burns, and B. P. Hay, Inorg. Chem., 1998, 37, 2749.
- 110J. C. Bryan, R. A. Sachleben, and B. P. Hay, Inorg. Chim. Acta, 1999, 290, 86.
- 111S. T. Liddle, W. Clegg, and C. A. Morrison, Dalton Trans., 2004, 2514.
- 112B. Dietrich, J. M. Lehn, and J. P. Sauvage, Tetrahedron Lett., 1969, 2885, 2889.
10.1016/S0040-4039(01)88300-3 Google Scholar
- 113X. X. Zhang, R. M. Izatt, J. S. Bradshaw, and K. E. Krakowiak, Coord. Chem. Rev., 1998, 174, 179.
- 114G. W. Gokel, W. M. Leevy, and M. E. Weber, Chem. Rev., 2004, 104, 2723.
- 115M. Xue, Y. Yang, X. Chi, Z. Zhang, and F. Huang, Acc. Chem. Res., 2012, 45, 1294.
- 116G. Mezei, C. M. Zaleski, and V. L. Pecoraro, Chem. Rev., 2007, 107, 4933.
- 117A. R. Kennedy, J. Klett, R. E. Mulvey, S. Newton, and D. S. Wright, Chem. Commun., 2008, 308.
- 118D. Barr, R. Snaith, D. S. Wright, R. E. Mulvey, and K. Wade, J. Am. Chem. Soc., 1987, 109, 7891.
- 119A. Harrison-Marchand and F. Mongin, Chem. Rev., 2013, 113, 7470 and references cited therein.
- 120P. L. Hall, J. H. Gilchrist, and D. B. Collum, J. Am. Chem. Soc., 1991, 113, 9571.
- 121S. Mair, W. Clegg, and P. A. O'Neil, J. Am. Chem. Soc., 1993, 115, 3388.
- 122D. Seebach, Aldrichimica Acta, 1992, 25, 59.
- 123M. J. Barr, S. R. Doyle, P. R. Drake, R. Raithby, D. S. Snaith, and D. S. Wright, Inorg. Chem., 1989, 28, 1768.
- 124R. Armstrong, A. H. Khandelwal, P. R. Raithby, R. Snaith, D. Stalke, and D. S. Wright, Inorg. Chem., 1993, 32, 2132.
- 125L. Raston, C. R. Whitaker, and A. H. White, Aust. J. Chem., 1988, 41, 1917.
- 126J. Haywood and A. E. H. Wheatley, Eur. J. Inorg. Chem., 2009, 5010 and references cited therein.
- 127K. Tatsumi, Y. Inoue, A. Nakamura, R. E. Cramer, W. Van Doorne, and J. W. Gilje, Angew. Chem., Int. Ed. Engl., 1990, 29, 422.
- 128V. Snieckus, Advances in Carbanion Chemistry, JAI, Greenwich, CT, 1992, Vol. 1.
- 129G. Boche, I. Langlotz, M. Marsch, K. Harms, and N. E. S. Nudelman, Angew. Chem., Int. Ed. Engl., 1992, 31, 1205.
- 130K. Kennepohl, S. Brooker, G. M. Sheldrick, and H. W. Roesky, Chem. Ber., 1991, 124, 2223.
- 131E. Hevia, A. R. Kennedy, R. E. Mulvey, D. L. Ramsay, and S. D. Robertson, Chem. Eur. J., 2013, 19, 14069.
- 132P. P. Power, Acc. Chem. Res., 1988, 21, 147.
- 133K. F. Tesh, T. P. Hanusa, and J. C. Huffman, Inorg. Chem., 1990, 29, 1584.
- 134K. W. Henderson, P. G. Williard, and P. R. Bernstein, Angew. Chem., Int. Ed. Engl., 1995, 34, 1117.
- 135W. N. Setzer and P. v. R. Schleyer, Adv. Organomet. Chem., 1985, 24, 353.
- 136K. G. Caulton and L. G. Hubert-Pfalzgraf, Chem. Rev., 1990, 90, 969.
- 137C. S. Weinert, P. E. Fanwick, and I. P. Rothwell, Inorg. Chem., 2003, 42, 6089.
- 138R. Armstrong, W. Clegg, A. M. Drummond, S. T. Liddle, and R. E. Mulvey, J. Am. Chem. Soc., 2000, 122, 11117.
- 139X. Wei, Q. Dong, H. Tong, J. Chao, D. Liu, and M. F. Lappert, Angew. Chem. Int. Ed., 2008, 47, 3976.
- 140E. Hey-Hawkins and E. Sattler, J. Chem. Soc., Chem. Commun., 1992, 10, 775.
- 141J. Banister, W. Clegg, and W. R. Gill, J. Chem. Soc., Chem. Commun., 1987, 850.
- 142J. Banister, W. Clegg, and W. R. Gill, J. Chem. Soc., Chem. Commun., 1988, 131.
- 143U. Englich and K. Ruhlandt-Senge, Coord. Chem. Rev., 2000, 210, 135.
- 144C. Kleeberg, Dalton Trans., 2013, 42, 8276.
- 145J. J. Morris, B. C. Noll, A. J. Schultz, P. M. B. Piccoli, and K. W. Henderson, Inorg. Chem., 2007, 46, 10473.
- 146A. Banbury, M. G. Davidson, P. R. Raithby, R. Snaith, and D. Stalke, J. Chem. Soc., Chem. Commun., 1992, 1492.
Further Reading
- P. v. R. Schleyer, Pure Appl. Chem., 1984, 56, 151.