Application of Artificial Intelligence in Forecasting the Demand for Supply Chains Considering Industry 4.0
Alireza Goli
Department of Industrial Engineering and Future Studies, Faculty of Engineering, University of Isfahan, Isfahan, Iran
Search for more papers by this authorAmir-Mohammad Golmohammadi
Department of Industrial Engineering, Arak University, Arak, Iran
Search for more papers by this authorS. A. Edalatpanah
Department of Applied Mathematics, Ayandegan Institute of Higher Education, Tonekabon, Iran
Search for more papers by this authorAlireza Goli
Department of Industrial Engineering and Future Studies, Faculty of Engineering, University of Isfahan, Isfahan, Iran
Search for more papers by this authorAmir-Mohammad Golmohammadi
Department of Industrial Engineering, Arak University, Arak, Iran
Search for more papers by this authorS. A. Edalatpanah
Department of Applied Mathematics, Ayandegan Institute of Higher Education, Tonekabon, Iran
Search for more papers by this authorJyotir Moy Chatterjee
Search for more papers by this authorHarish Garg
Search for more papers by this authorR. N. Thakur
Search for more papers by this authorSummary
Nowadays, the speed of implementation of technological advances is increasing. Moreover, the economic challenges posed by technological and social developments have led industrial companies to increase their agility and responsiveness in order to be able to manage the entire value chain. On the other hand, one of the most interesting and at the same time one of the most important challenges facing supply chains is Industry 4.0, which is based on digital technology and varies greatly in scale and complexity. It is more than what humanity has experienced through previous industrial revolutions, and decisions need to be made faster and more accurately. Accordingly, in this paper, a comprehensive framework for accelerating supply chain decisions with respect to Industry 4.0 is provided. In this regard, first, Industry 4.0 is described in detail. Next, a framework for demand forecasting in the 4.0 industry-based supply chain is provided using artificial intelligence tools. In this context, the simultaneous use of time series methods and machine learning methods is emphasized. The analysis of the proposed framework demonstrates the suitable benefits of using it in different supply chains.
References
-
Salkin , C.
,
Oner , M.
,
Ustundag , A.
,
Cevikcan , E.
,
A conceptual framework for Industry 4.0
, in:
Industry 4.0: Managing the Digital Transformation
, pp.
3
–
23
,
Springer
,
Cham
,
2018
.
10.1007/978-3-319-57870-5_1 Google Scholar
-
Qin , J.
,
Liu , Y.
,
Grosvenor , R.
,
A categorical framework of manufacturing for industry 4.0 and beyond
.
Proc. CIRP
,
52
,
173
–
178
,
2016
.
10.1016/j.procir.2016.08.005 Google Scholar
- Alexopoulos , K. , Makris , S. , Xanthakis , V. , Sipsas , K. , Chryssolouris , G. , A concept for context-aware computing in manufacturing: The white goods case . Int. J. Comput. Integr. Manuf. , 29 , 8 , 839 – 849 , 2016 .
- Hofmann , E. and Rüsch , M. , Industry 4.0 and the current status as well as future prospects on logistics . Comput. Ind. , 89 , 23 – 34 , 2017 .
-
Tjahjono , B.
,
Esplugues , C.
,
Ares , E.
,
Pelaez , G.
,
What does industry 4.0 mean to supply chain?
Proc. Manuf.
,
13
,
1175
–
1182
,
2017
.
10.1016/j.promfg.2017.09.191 Google Scholar
- Coleman , D.C. , Industrial growth and industrial revolutions . Economica , 23 , 89 , 1 – 22 , 1956 .
- Vries , P. , The industrial revolution , in: Encyclopaedia of the Modern World , vol. 4 , pp. 158 – 161 , 2008 .
- Stearns , P.N. , The Industrial Revolution in World History , Westview Press , 2012 .
-
Jazdi , N.
,
Cyber physical systems in the context of industry 4.0
, in:
2014 IEEE International Conference on Automation, Quality and Testing, Robotics
,
IEEE
, pp.
1
–
4
, May
2014
.
10.1109/AQTR.2014.6857843 Google Scholar
-
Wu , Y.
,
Achieving Supply Chain Agility
,
Springer International Publishing
,
Harrison
,
2019
.
10.1007/978-3-319-98440-7 Google Scholar
-
Stock , T.
and
Seliger , G.
,
Opportunities of sustainable manufacturing in industry 4.0
.
Proc. CIRP
,
40
,
536
–
541
,
2016
.
10.1016/j.procir.2016.01.129 Google Scholar
- Lasi , H. , Fettke , P. , Kemper , H.G. , Feld , T. , Hoffmann , M. , Industry 4.0 . Bus. Inf. Syst. Eng. , 6 , 4 , 239 – 242 , 2014 .
- Brettel , M. , Friederichsen , N. , Keller , M. , Rosenberg , M. , How virtualization, decentralization and network building change the manufacturing landscape: An industry 4.0 perspective . FormaMente, 12, Germany , 2017 .
- Alicke , K. , Rexhausen , D. , Seyfert , A. , Supply chain 4.0 in consumer goods . Mckinsey & Company , 1 – 11 , 2017 .
- Swafford , P.M. , Ghosh , S. , Murthy , N. , Achieving supply chain agility through IT integration and flexibility . Int. J. Prod. Econ. , 116 , 2 , 288 – 297 , 2008 .
- Chiang , C.Y. , Kocabasoglu-Hillmer , C. , Suresh , N. , An empirical investigation of the impact of strategic sourcing and flexibility on firm's supply chain agility . Int. J. Oper. Prod. Manage. , 32 , 1 , 49 – 78 , 2012 .
-
Popkova , E.G.
,
Ragulina , Y.V.
,
Bogoviz , A.V.
,
Fundamental differences of transition to industry 4.0 from previous industrial revolutions
, in:
Industry 4.0: Industrial Revolution of the 21st Century
, pp.
21
–
29
,
Springer
,
Cham
,
2019
.
10.1007/978-3-319-94310-7_3 Google Scholar
- Rüßmann , M. , Lorenz , M. , Gerbert , P. , Waldner , M. , Justus , J. , Engel , P. , Harnisch , M. , Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries , vol. 9 , pp. 54 – 89 , Boston Consulting Group , 2015 .
- Brunelli , J. , Lukic , V. , Milon , T. , Tantardini , M. , Five Lessons from the Frontlines of Industry 4.0 , The Boston Consulting Group , Boston, MA, USA , 2017 .
- Pfohl , H.C. , Yahsi , B. , Kurnaz , T. , The impact of Industry 4.0 on the supply chain , in: Innovations and Strategies for Logistics and Supply Chains: Technologies, Business Models and Risk Management. Proceedings of the Hamburg International Conference of Logistics (HICL) , vol. 20 , EPubli GmbH , Berlin , pp. 31 – 58 , 2015 .
- Kang , H.S. , Lee , J.Y. , Choi , S. , Kim , H. , Park , J.H. , Son , J.Y. , Do Noh , S. , Smart manufacturing: Past research, present findings, and future directions . Int. J. Precis. Eng. Manuf. Green Technol. , 3 , 1 , 111 – 128 , 2016 .
-
Hamzeh , R.
,
Zhong , R.
,
Xu , X.W.
,
A survey study on industry 4.0 for New Zealand manufacturing
.
Proc. Manuf.
,
26
,
49
–
57
,
2018
.
10.1016/j.promfg.2018.07.007 Google Scholar
-
Paschou , T.
,
Adrodegari , F.
,
Rapaccini , M.
,
Saccani , N.
,
Perona , M.
,
Towards Service 4.0: A new framework and research priorities
.
Proc. CIRP
,
73
,
148
–
154
,
2018
.
10.1016/j.procir.2018.03.300 Google Scholar
- Schwab , K. , The Fourth Industrial Revolution , Currency , 2017 .
- Zhou , H. and Benton Jr. , W.C. , Supply chain practice and information sharing . J. Oper. Manage. , 25 , 6 , 1348 – 1365 , 2007 .
-
Goli , A.
and
Davoodi , S.M.R.
,
Coordination policy for production and delivery scheduling in the closed loop supply chain
.
Prod. Eng.
,
12
,
5
,
621
–
631
,
2018
.
10.1007/s11740-018-0841-0 Google Scholar
- Goli , A. , Zare , H.K. , Tavakkoli-Moghaddam , R. , Sadegheih , A. , Multiobjective fuzzy mathematical model for a financially constrained closed-loop supply chain with labor employment . Comput. Intell. , 36 , 1 , 4 – 34 , 2020 .
- Dejonckheere , J. , Disney , S.M. , Lambrecht , M.R. , Towill , D.R. , Measuring and avoiding the bullwhip effect: A control theoretic approach . Eur. J. Oper. Res. , 147 , 3 , 567 – 590 , 2003 .
- Kilimci , Z.H. , Akyuz , A.O. , Uysal , M. , Akyokus , S. , Uysal , M.O. , Atak Bulbul , B. , Ekmis , M.A. , An improved demand forecasting model using deep learning approach and proposed decision integration strategy for supply chain . Complexity , 1–15 , 2019 , 2019 .