6G Radio Access Networks
Chamitha de Alwis
University of Bedfordshire, Luton, United Kingdom
Search for more papers by this authorChamitha de Alwis
University of Bedfordshire, Luton, United Kingdom
Search for more papers by this authorSummary
A Radio Access Network (RAN) is an important part of any wireless communication system that connects end users with the other components of a network through radio communication links. This chapter discusses the three key concepts of sixth-generation (6G) RANs, including Aerial Radio Access Network (ARAN), AI-enabled Radio Access Network, and Open Radio Access Network (O-RAN). Due to massive Internet of Things connection, diverse quality of service requirements, and numerous use cases, 6G RANs are expected to support flexibility, massive interconnectivity, and energy efficiency. In the context of comprehensive 6G access infrastructure, ARANs are positioned in the aerial communication layer to serve high-altitude and terrestrial users. O-RAN is centered on the concept of openness and intelligence of the network elements. There are two major O-RAN organizations, including the Telecom Infra Project and the O-RAN alliance.
References
- Q.-V. Pham , F. Fang , V. N. Ha , M. J. Piran , M. Le , L. B. Le , W.-J. Hwang , and Z. Ding , “ A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art ,” IEEE Access , vol. 8 , pp. 116 974 – 117 017 , 2020 .
-
C. De Alwis
,
Kalla , A.
,
Pham , Q.-V.
,
Kumar , P.
,
Dev , K.
,
Hwang , W.-J.
, and
Liyanage , M.
, “
Survey on 6G frontiers: Trends, applications, requirements, technologies and future research
,”
IEEE Open Journal of the Communications Society
, vol.
2
, pp.
836
–
886
,
2021
.
10.1109/OJCOMS.2021.3071496 Google Scholar
- H. Yang , A. Alphones , Z. Xiong , D. Niyato , J. Zhao , and K. Wu , “ Artificial intelligence-enabled intelligent 6G networks ,” IEEE Network , vol. 34 , no. 6 , pp. 272 – 280 , 2020 .
- N.-N. Dao , Q.-V. Pham , N. H. Tu , T. T. Thanh , V. N. Q. Bao , D. S. Lakew , and S. Cho , “ Survey on aerial radio access networks: Toward a comprehensive 6G access infrastructure ,” IEEE Communication Surveys and Tutorials , vol. 23 , no. 2 , pp. 1193 – 1225 , 2021 .
- T. Huynh-The , C.-H. Hua , Q.-V. Pham , and D.-S. Kim , “ MCNet: An efficient CNN architecture for robust automatic modulation classification ,” IEEE Communications Letters , vol. 24 , no. 4 , pp. 811 – 815 , 2020 .
- T. R. Gadekallu , Q.-V. Pham , D. C. Nguyen , P. K. R. Maddikunta , N. Deepa , B. Prabadevi , P. N. Pathirana , J. Zhao , and W.-J. Hwang , “ Blockchain for edge of things: Applications, opportunities, and challenges ,” IEEE Internet of Things Journal , vol. 9 , no. 2 , pp. 964 – 988 , 2022 .
- Q.-V. Pham , N. T. Nguyen , T. Huynh-The , L. B. Le , K. Lee , and W.-J. Hwang , “ Intelligent radio signal processing: A survey ,” IEEE Access , vol. 9 , pp. 83 818 – 83 850 , 2021 .
-
A. A. Zaidi
,
R. Baldemair
,
V. Molés-Cases
,
N. He
,
K. Werner
, and
A. Cedergren
, “
OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN
,”
IEEE Communications Standards Magazine
, vol.
2
, no.
2
, pp.
78
–
83
,
2018
.
10.1109/MCOMSTD.2018.1700021 Google Scholar
- N. Chi , Y. Zhou , Y. Wei , and F. Hu , “ Visible light communication in 6G: Advances, challenges, and prospects ,” IEEE Vehicular Technology Magazine , vol. 15 , no. 4 , pp. 93 – 102 , 2020 .
- Q.-V. Pham , T. Huynh-The , M. Alazab , J. Zhao , and W.-J. Hwang , “ Sum-rate maximization for UAV-assisted visible light communications using NOMA: Swarm intelligence meets machine learning ,” IEEE Internet of Things Journal , vol. 7 , no. 10 , pp. 10 375 – 10 387 , 2020 .
- X. Shen , J. Gao , W. Wu , M. Li , C. Zhou , and W. Zhuang , “ Holistic network virtualization and pervasive network intelligence for 6G ,” IEEE Communication Surveys and Tutorials , vol. 24 , pp. 1 – 30 , 2022 .
- D. C. Nguyen , M. Ding , P. N. Pathirana , A. Seneviratne , J. Li , D. Niyato , O. Dobre , and H. V. Poor , “ 6G Internet of Things: A comprehensive survey ,” IEEE Internet of Things Journal , vol. 9 , pp. 359 – 383 , 2021 .
- S. Wijethilaka and M. Liyanage , “ Survey on network slicing for Internet of Things realization in 5G networks ,” IEEE Communication Surveys and Tutorials , vol. 23 , no. 2 , pp. 957 – 994 , 2021 .
- W. Shi , H. Zhou , J. Li , W. Xu , N. Zhang , and X. Shen , “ Drone assisted vehicular networks: Architecture, challenges and opportunities ,” IEEE Network , vol. 32 , no. 3 , pp. 130 – 137 , 2018 .
- X. Huang , J. A. Zhang , R. P. Liu , Y. J. Guo , and L. Hanzo , “ Airplane-aided integrated networking for 6G wireless: Will it work? ” IEEE Vehicular Technology Magazine , vol. 14 , no. 3 , pp. 84 – 91 , 2019 .
- D. S. Lakew , U. Sa'ad , N.-N. Dao , W. Na , and S. Cho , “ Routing in flying ad hoc networks: A comprehensive survey ,” IEEE Communications Survey and Tutorials , vol. 22 , no. 2 , pp. 1071 – 1120 , 2020 .
- Z. Lin , M. Lin , J.-B. Wang , T. de Cola , and J. Wang , “ Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access ,” IEEE Journal of Selected Topics in Signal Processing , vol. 13 , no. 3 , pp. 657 – 670 , 2019 .
- L. Song , Z. Han , and B. Di , “Aerial access networks for 6G: From UAV, HAP, to satellite communication networks,” in IEEE International Conference on Communications (ICC) , Virtual Program, 2020 , pp. 1 – 1 .
- United States. Department of the Army , “ 'Eyes of the army': U.S. army roadmap for unmanned systems , 2010 – 2035 ,” Apr. 2010 .
- M. Kishk , A. Bader , and M.-S. Alouini , “ Aerial base station deployment in 6G cellular networks using tethered drones: The mobility and endurance tradeoff ,” IEEE Vehicular Technology Magazine , vol. 15 , no. 4 , pp. 103 – 111 , 2020 .
-
S. C. Arum
,
D. Grace
, and
P. D. Mitchell
, “
A review of wireless communication using high-altitude platforms for extended coverage and capacity
,”
Computer Communications
, vol.
157
, no.
1
, pp.
232
–
256
,
2020
.
10.1016/j.comcom.2020.04.020 Google Scholar
- Y. Su , Y. Liu , Y. Zhou , J. Yuan , H. Cao , and J. Shi , “ Broadband LEO satellite communications: Architectures and key technologies ,” IEEE Wireless Communications , vol. 26 , no. 2 , pp. 55 – 61 , 2019 .
- F. Davoli , C. Kourogiorgas , M. Marchese , A. Panagopoulos , and F. Patrone , “ Small satellites and CubeSats: Survey of structures, architectures, and protocols ,” International Journal of Satellite Communications and Networking , vol. 37 , no. 4 , pp. 343 – 359 , 2019 .
- T. O'Shea and J. Hoydis , “ An introduction to deep learning for the physical layer ,” IEEE Transactions on Cognitive Communications and Networking , vol. 3 , no. 4 , pp. 563 – 575 , 2017 .
- D. H. Nguyen , “ Neural network-optimized channel estimator and training signal design for MIMO systems with few-bit ADCs ,” IEEE Signal Processing Letters , vol. 27 , pp. 1370 – 1374 , 2020 .
- N. T. Nguyen and K. Lee , “ Deep learning-aided tabu search detection for large MIMO systems ,” IEEE Transaction on Wireless Communication , vol. 19 , no. 6 , pp. 4262 – 4275 , 2020 .
-
A. Garcia-Saavedra
and
X. Costa-Perez
, “
O-RAN: Disrupting the virtualized ran ecosystem
,”
IEEE Communications Standards Magazine
, vol.
5
,
96
–
103
,
2021
.
10.1109/MCOMSTD.101.2000014 Google Scholar
- A. S. Abdalla , P. S. Upadhyaya , V. K. Shah , and V. Marojevic , “ Toward Next Generation open Radio Access Network–What O-RAN Can and Cannot Do! ” arXiv preprint arXiv:2111.13754 , 2021 .
- L. Bonati , S. D'Oro , M. Polese , S. Basagni , and T. Melodia , “ Intelligence and learning in O-RAN for data-driven NextG cellular networks ,” IEEE Communications Magazine , vol. 59 , no. 10 , pp. 21 – 27 , 2021 .