Key 6G Technologies
Chamitha de Alwis
University of Bedfordshire, Luton, United Kingdom
Search for more papers by this authorChamitha de Alwis
University of Bedfordshire, Luton, United Kingdom
Search for more papers by this authorSummary
This chapter provides an overview of key technologies in future sixth-generation (6G) wireless systems. It presents important 6G radio network technologies, including terahertz (THz) communications and nonterrestrial networks toward 3D networking. THz band channel is highly frequency-selective. These channels suffer from high atmospheric absorption, atmospheric attenuation, and free-space path loss. Thanks to distinctive features and remarkable abilities, Artificial Intelligence (AI) has various applications in wireless and mobile networking. With 6G being envisioned to have AI/Machine Learning at its core, the role of AI/Federated Learning becomes important to 6G. The last couple of years have witnessed the rise of Distributed Ledger Technologies (DLT), in particular, blockchain technology. DLT is envisioned to unlock the doors to the decentralized future by overcoming the well-known impediments of centralized systems. One of the very first edge computing concepts, the so-called cloudlet, was proposed in 2009.
References
- W. Saad , M. Bennis , and M. Chen , “ A vision of 6G wireless systems: Applications, trends, technologies, and open research problems ,” IEEE Network , vol. 34 , no. 3 , pp. 134 – 142 , 2019 .
- Y. Lu and X. Zheng , “ 6G: A survey on technologies, scenarios, challenges, and the related issues ,” Journal of Industrial Information Integration , vol. 19 , p. 100158 , 2020 .
- Y. Liu , X. Yuan , Z. Xiong , J. Kang , X. Wang , and D. Niyato , “ Federated learning for 6G communications: Challenges, methods, and future directions ,” China Communications , vol. 17 , no. 9 , pp. 105 – 118 , 2020 .
- K. B. Letaief , W. Chen , Y. Shi , J. Zhang , and Y.-J. A. Zhang , “ The roadmap to 6G: AI empowered wireless networks ,” IEEE Communications Magazine , vol. 57 , no. 8 , pp. 84 – 90 , 2019 .
-
S. J. Nawaz
,
S. K. Sharma
,
S. Wyne
,
M. N. Patwary
, and
M. Asaduzzaman
, “
Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future
,”
IEEE Access
, vol.
7
, pp.
46 317
–
46 350
,
2019
.
10.1109/ACCESS.2019.2909490 Google Scholar
- F. Tariq , M. R. Khandaker , K.-K. Wong , M. A. Imran , M. Bennis , and M. Debbah , “ A speculative study on 6G ,” IEEE Wireless Communications , vol. 27 , no. 4 , pp. 118 – 125 , 2020 .
- Y. Xing and T. S. Rappaport , “Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz,” in 2018 IEEE Global Communications Conference (GLOBECOM) IEEE, 2018 , pp. 1 – 6 .
- A. Taha , M. Alrabeiah , and A. Alkhateeb , “ Enabling large intelligent surfaces with compressive sensing and deep learning ,” IEEE Access , vol. 9 , pp. 44 304 – 44 321 , 2021 .
- Q.-V. Pham , F. Fang , V. N. Ha , M. J. Piran , M. Le , L. B. Le , W.-J. Hwang , and Z. Ding , “ A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art ,” IEEE Access , vol. 8 , pp. 116 974 – 117 017 , 2020 .
- M. Alsenwi , N. H. Tran , M. Bennis , S. R. Pandey , A. K. Bairagi , and C. S. Hong , “ Intelligent resource slicing for eMBB and URLLC coexistence in 5G and beyond: A deep reinforcement learning based approach ,” IEEE Transactions on Wireless Communications , vol. 20 , pp. 4585 – 4600 , 2021 .
- H. Elayan , O. Amin , R. M. Shubair , and M.-S. Alouini , “Terahertz communication: The opportunities of wireless technology beyond 5G,” in 2018 International Conference on Advanced Communication Technologies and Networking (CommNet) IEEE, 2018 , pp. 1 – 5 .
- C. Han , Y. Wu , Z. Chen , and X. Wang , “ Terahertz Communications (TeraCom): Challenges and Impact on 6G Wireless Systems ,” arXiv preprint arXiv:1912.06040 , 2019 .
- T. Nagatsuma , “ Terahertz technologies: Present and future ,” IEICE Electronics Express , vol. 8 , no. 14 , pp. 1127 – 1142 , 2011 .
- X. Wu and K. Sengupta , “ Dynamic waveform shaping with picosecond time widths ,” IEEE Journal of Solid-State Circuits , vol. 52 , no. 2 , pp. 389 – 405 , 2016 .
- J. M. Jornet and I. F. Akyildiz , “Graphene-based plasmonic nano-transceiver for terahertz band communication,” in The 8th European conference on antennas and propagation (EuCAP 2014) IEEE, 2014 , pp. 492 – 496 .
- M. Hasan , S. Arezoomandan , H. Condori , and B. Sensale-Rodriguez , “ Graphene terahertz devices for communications applications ,” Nano Communication Networks , vol. 10 , pp. 68 – 78 , 2016 .
- I. F. Akyildiz and J. M. Jornet , “ Realizing ultra-massive MIMO (1024 × 1024) communication in the (0.06–10) terahertz band ,” Nano Communication Networks , vol. 8 , pp. 46 – 54 , 2016 .
- J. M. Jornet and I. F. Akyildiz , “ Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band ,” IEEE Transactions on Wireless Communications , vol. 10 , no. 10 , pp. 3211 – 3221 , 2011 .
- S. Priebe and T. Kurner , “ Stochastic modeling of THz indoor radio channels ,” IEEE Transactions on Wireless Communications , vol. 12 , no. 9 , pp. 4445 – 4455 , 2013 .
- S. Kim and A. Zajić , “ Statistical modeling and simulation of short-range device-to-device communication channels at sub-THz frequencies ,” IEEE Transactions on Wireless Communications , vol. 15 , no. 9 , pp. 6423 – 6433 , 2016 .
- M. A. Khalighi and M. Uysal , “ Survey on free space optical communication: A communication theory perspective ,” IEEE Communication Surveys and Tutorials , vol. 16 , no. 4 , pp. 2231 – 2258 , 2014 .
- S. Mollahasani and E. Onur , “Evaluation of terahertz channel in data centers,” in NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium IEEE, 2016 , pp. 727 – 730 .
- M. Mozaffari , A. T. Z. Kasgari , W. Saad , M. Bennis , and M. Debbah , “ Beyond 5G with UAVs: Foundations of a 3D wireless cellular network ,” IEEE Transactions on Wireless Communications , vol. 18 , no. 1 , pp. 357 – 372 , 2018 .
- M. Giordani and M. Zorzi , “ Non-terrestrial networks in the 6G era: Challenges and opportunities ,” IEEE Network , vol. 35 , no. 2 , pp. 244 – 251 , 2020 .
- N.-N. Dao , Q.-V. Pham , N. H. Tu , T. T. Thanh , V. N. Q. Bao , D. S. Lakew , and S. Cho , “ Survey on aerial radio access networks: Toward a comprehensive 6G access infrastructure ,” IEEE Communication Surveys and Tutorials , vol. 23 , no. 2 , pp. 1193 – 1225 , 2021 .
- “ FAA Aerospace Forecast Fiscal Year 201-2038 ,” Federal Aviation Administration, https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2019-39_FAA_Aerospace_Forecast.pdf [Accessed on 29.03.2021].
- S. D. Intelligence , “The g lobal UAV payload market 2012–2022,” Strategic Defence Intelligence: White Papers , 2013 .
- H. Chang , C.-X. Wang , Y. Liu , J. Huang , J. Sun , W. Zhang , and X. Gao , “ A novel non-stationary 6G UAV-to-ground wireless channel model with 3D arbitrary trajectory changes ,” IEEE Internet of Things Journal , vol. 8 , pp. 9865 – 9877 , 2020 .
- E. C. Strinati , S. Barbarossa , T. Choi , A. Pietrabissa , A. Giuseppi , E. De Santis , J. Vidal , Z. Becvar , T. Haustein , N. Cassiau et al ., “ 6G in the sky: On-demand intelligence at the edge of 3D networks ,” ETRI Journal , vol. 42 , no. 5 , pp. 643 – 657 , 2020 .
- T. Li , A. K. Sahu , A. Talwalkar , and V. Smith , “ Federated learning: Challenges, methods, and future directions ,” IEEE Signal Processing Magazine , vol. 37 , no. 3 , pp. 50 – 60 , 2020 .
- D. C. Nguyen , M. Ding , Q.-V. Pham , P. N. Pathirana , L. B. Le , A. Seneviratne , J. Li , D. Niyato , and H. V. Poor , “ Federated learning meets blockchain in edge computing: Opportunities and challenges ,” IEEE Internet of Things Journal , vol. 8 , no. 16 , pp. 12 806 – 12 825 , 2021 .
- Q. Yang , Y. Liu , T. Chen , and Y. Tong , “ Federated machine learning: Concept and applications ,” ACM Transactions on Intelligent Systems and Technology , vol. 10 , no. 2 , pp. 1 – 19 , 2019 .
- Y. Xiao , Y. Li , G. Shi , and H. V. Poor , “Optimizing resource-efficiency for federated edge intelligence in IoT networks,” in 2020 International Conference on Wireless Communications and Signal Processing (WCSP) IEEE, 2020 , pp. 86 – 92 .
- Y. Xiao , G. Shi , and M. Krunz , “ Towards Ubiquitous AI in 6G with Federated Learning ,” arXiv preprint arXiv:2004.13563 , 2020 .
- N. C. Luong , D. T. Hoang , S. Gong , D. Niyato , P. Wang , Y.-C. Liang , and D. I. Kim , “ Applications of deep reinforcement learning in communications and networking: A survey ,” IEEE Communication Surveys and Tutorials , vol. 21 , no. 4 , pp. 3133 – 3174 , 2019 .
- Y. Sun , M. Peng , Y. Zhou , Y. Hua ng , and S. Mao , “ Application of machine learning in wireless networks: Key techniques and open issues ,” IEEE Communication Surveys and Tutorials , vol. 21 , no. 4 , pp. 3072 – 3108 , 2019 .
- C. T. Nguyen , N. Van Huynh , N. H. Chu , Y. M. Saputra , D. T. Hoang , D. N. Nguyen , Q.-V. Pham , D. Niyato , E. Dutkiewicz , and W.-J. Hwang , “ Transfer Learning for Future Wireless Networks: A Comprehensive Survey ,” arXiv preprint arXiv:2102.07572 , 2021 .
- Q.-V. Pham , D. C. Nguyen , S. Mirjalili , D. T. Hoang , D. N. Nguyen , P. N. Pathirana , and W.-J. Hwang , “ Swarm intelligence for next-generation networks: Recent advances and applications ,” Journal of Network and Computer Applications , vol. 191 , p. 103141 , 2021 .
- L. U. Khan , S. R. Pandey , N. H. Tran , W. Saad , Z. Han , M. N. Nguyen , and C. S. Hong , “ Federated learning for edge networks: Resource optimization and incentive mechanism ,” IEEE Communications Magazine , vol. 58 , no. 10 , pp. 88 – 93 , 2020 .
- J. Kang , Z. Xiong , D. Niyato , S. Xie , and J. Zhang , “ Incentive mechanism for reliable federated learning: A joint optimization approach to combining reputation and contract theory ,” IEEE Internet of Things Journal , vol. 6 , no. 6 , pp. 10 700 – 10 714 , 2019 .
- W. Y. B. Lim , N. C. Luong , D. T. Hoang , Y. Jiao , Y.-C. Liang , Q. Yang , D. Niyato , and C. Miao , “ Federated learning in mobile edge networks: A comprehensive survey ,” IEEE Communication Surveys and Tutorials , vol. 22 , no. 3 , pp. 2031 – 2063 , 2020 .
- H. F. Atlam and G. B. Wills , “ Intersections between IoT and distributed ledger ,” in Advances in Computers . Elsevier , 2019 , vol. 115 , pp. 73 – 113 .
- Y. Lu , “ The blockchain: State-of-the-art and research challenges ,” Journal of Industrial Information Integration , vol. 15 , pp. 80 – 90 , 2019 .
- S. Daley , “ 25 Blockchain Applications & Real-World Use Cases Disrupting the Status Quo ,” 2020 , [Accessed on 29.03.2021]. [Online]. Available: https://builtin.com/blockchain/blockchain-applications .
- T. Maksymyuk , J. Gazda , M. Volosin , G. Bugar , D. Horvath , M. Klymash , and M. Dohler , “ Blockchain-empowered framework for decentralized network managementin 6G ,” IEEE Communications Magazine , vol. 58 , no. 9 , pp. 86 – 92 , 2020 .
- D. C. Nguyen , P. N. Pathirana , M. Ding , and A. Seneviratne , “ Blockchain for 5G and beyond networks: A s tate of the art survey ,” Journal of Network and Computer Applications , vol. 166 , p. 102693 , 2020 .
- S. Yrjölä , “How could blockchain transform 6G towards open ecosystemic business models?” in 2020 IEEE International Conference on Communications Workshops (ICC Workshops) IEEE, 2020 , pp. 1 – 6 .
- X. Ling , J. Wang , Y. Le , Z. Ding , and X. Gao , “ Blockchain radio access network beyond 5G ,” IEEE Wireless Communications , vol. 27 , pp. 160 – 168 , 2020 .
- W. Li , Z. Su , R. Li , K. Zhang , and Y. Wang , “ Blockchain-based data security for artificial intelligence applications in 6G networks ,” IEEE Network , vol. 34 , no. 6 , pp. 31 – 37 , 2020 .
- M. Satyanarayanan , P. Bahl , R. Caceres , and N. Davies , “ The case for vm-based cloudlets in mobile computing ,” IEEE Pervasive Computing , vol. 8 , no. 4 , pp. 14 – 23 , 2009 .
- S. Barbarossa , S. Sardellitti , and P. D. Lorenzo , “ Communicating while computing: Distributed mobile cloud computing over 5G heterogeneous networks ,” IEEE Signal Processing Magazine , vol. 31 , no. 6 , pp. 45 – 55 , Nov. 2014 .
- C. Mouradian , D. Naboulsi , S. Yangui , R. H. Glitho , M. J. Morrow , and P. A. Polakos , “ A comprehensive survey on fog computing: State-of-the-art and research challenges ,” IEEE Communication Surveys and Tutorials , vol. 20 , no. 1 , pp. 416 – 464 , 2018 .
- M. Mukherjee , L. Shu , and D. Wang , “ Survey of fog computing: Fundamental, network applications, and research challenges ,” IEEE Communication Surveys and Tutorials , vol. 20 , pp. 1826 – 1857 , 2018 .
- P. Mach and Z. Becvar , “ Mobile edge computing: A survey on architecture and computation offloading ,” IEEE Communication Surveys and Tutorials , vol. 19 , no. 3 , pp. 1628 – 1656 , 2017 .
- M. Chiang and T. Zhang , “ Fog and IoT: An overview of research opportunities ,” IEEE Internet of Things Journal , vol. 3 , no. 6 , pp. 854 – 864 , 2016 .
-
H. F. Atlam
,
R. J. Walters
, and
G. B. Wills
, “
Fog computing and the Internet of Things: A review
,”
Big Data and Cognitive Computing
, vol.
2
, no.
2
, p.
10
,
2018
.
10.3390/bdcc2020010 Google Scholar
- F. Bonomi , R. Milito , J. Zhu , and S. Addepalli , “Fog computing and its role in the Internet of Things,” in Proceedings of the 1st Edition of the MCC Workshop on Mobile Cloud Computing , 2012 , pp. 13 – 16 .
- K. Dolui and S. K. Datta , “Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing,” in 2017 Global Internet of Things Summit (GIoTS) , 2017 , pp. 1 – 6 .
- M. Patel , B. Naughton , C. Chan , N. Sprecher , S. Abeta , A. Neal et al ., “Mobile-edge computing introductory technical white paper,” White Paper, Mobile-edge Computing (MEC) industry initiative , Sept. 2014 .
- A. Ahmed and E. Ahmed , “A survey on mobile edge computing,” in 2016 10th International Conference on Intelligent Systems and Control (ISCO) , 2016 , pp. 1 – 8 .
- S. Kekki et al .,“ MEC in 5G networks ,” ETSI White Paper , no. 28, pp. 1 – 28 , 2018 .
- Y. Qiao , M. Zhang , Y. Zhou , X. Kong , H. Zhang , J. Bi , M. Xu , and J. Wang , “ NetEC: Accelerating erasure coding reconstruction with in-network aggregation ,” IEEE Transactions on Parallel and Distributed Systems , vol. 33 , pp. 2571 – 2583 , 2022 .
- Q.-V. Pham , R. Ruby , F. Fang , D. C. Nguyen , Z. Yang , M. Le , Z. Ding , and W.-J. Hwang , “ Aerial computing: A new computing paradigm, applications, and challenges ,” IEEE Internet of Things Journal , vol. 9 , pp. 8339 – 8363 , 2022 .
- R. L. A. et al ., “ Smart Networks in the Context of NGI ,” White Paper, European Technology Platform NetWorld2020 , May 2020 .
- N. Gisin and R. Thew , “ Quantum communication ,” Nature Photonics , vol. 1 , no. 3 , pp. 165 – 171 , 2007 .
- X. Su , M. Wang , Z. Yan , X. Jia , C. Xie , and K. Peng , “ Quantum network based on non-classical light ,” Science China Information Sciences , vol. 63 , no. 8 , pp. 1 – 12 , 2020 .
- T. Brougham , S. M. Barnett , K. T. McCusker , P. G. Kwiat , and D. J. Gauthier , “ Security of high-dimensional quantum key distribution protocols using Franson interferometers ,” Journal of Physics B: Atomic, Molecular and Optical Physics , vol. 46 , no. 10 , p. 104010 , 2013 .
- R. Arul , G. Raja , A. O. Almagrabi , M. S. Alkatheiri , S. H. Chauhdary , and A. K. Bashir , “ A quantum-safe key hierarchy and dynamic security association for LTE/SAE in 5G scenario ,” IEEE Transactions on Industrial Informatics , vol. 16 , no. 1 , pp. 681 – 690 , 2019 .
- A. A. Abd EL-Latif , B. Abd-El-Atty , S. E. Venegas-Andraca , and W. Mazurczyk , “ Efficient quantum-based security protocols for information sharing and data protection in 5G networks ,” Future Generation Computer Systems , vol. 100 , pp. 893 – 906 , 2019 .
- D. Zavitsanos , A. Ntanos , G. Giannoulis , and H. Avramopoulos , “ On the QKD integration in converged fiber/wireless topologies for secured, low-latency 5G/B5G fronthaul ,” Applied Sciences , vol. 10 , no. 15 , p. 5193 , 2020 .
-
M. Z. Chowdhury
,
M. Shahjalal
,
M. Hasan
,
Y. M. Jang
et al
., “
The role of optical wireless communication technologies in 5G/6G and iot solutions: Prospects, directions, and challenges
,”
Applied Sciences
, vol.
9
, no.
20
, p.
4367
,
2019
.
10.3390/app9204367 Google Scholar
- D. Karunatilaka , F. Zafar , V. Kalavally , and R. Parthiban , “ Led based indoor visible light communications: State of the art ,” IEEE Communication Surveys and Tutorials , vol. 17 , no. 3 , pp. 1649 – 1678 , 2015 .
- D. Tsonev , S. Videv , and H. Haas , “ Towards a 100 Gb/s visible light wireless access network ,” Optics Express , vol. 23 , no. 2 , pp. 1627 – 1637 , 2015 .
- S. Soderi , “Enhancing security in 6G visible light communications,” in 2020 2nd 6G Wireless Summit (6G SUMMIT) IEEE, 2020 , pp. 1 – 5 .
- M. Katz and I. Ahmed , “Opportunities and challenges for visible light communications in 6G,” in 2020 2nd 6G Wireless Summit (6G SUMMIT) IEEE, 2020 , pp. 1 – 5 .
- S. Ariyanti and M. Suryanegara , “Visible light communication (vlc) for 6G technology: The potency and research challenges,” in 2020 4th World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4) IEEE, 2020 , pp. 490 – 493 .
- R. Alghamdi , R. Alhadrami , D. Alhothali , H. Almorad , A. Faisal , S. Helal , R. Shalabi , R. Asfour , N. Hammad , A. Shams et al ., “ Intelligent surfaces for 6G wireless networks: A survey of optimization and performance analysis techniques ,” IEEE Access , vol. 8 , pp. 202795 – 202818 , 2020 .
- M. Di Renzo , K. Ntontin , J. Song , F. H. Danufane , X. Qian , F. Lazarakis , J. De Rosny , D.-T. Phan-Huy , O. Simeone , R. Zhang et al ., “ Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison ,” IEEE Open Journal of the Communications Society , vol. 1 , pp. 798 – 807 , 2020 .
- M. Jung , W. Saad , and G. Kong , “ Performance Analysis of Large Intelligent Surfaces (LISs): Uplink Spectral Efficiency and Pilot Training ,” arXiv preprint arXiv:1904.00453 , 2019 .
- C. J. Vaca-Rubio , P. Ramirez-Espinosa , K. Kansanen , Z.-H. Tan , E. de Carvalho , and P. Popovski , “ Assessing Wireless Sensing Potential with Large Intelligent Surfaces ,” arXiv preprint arXiv:2011.08465 , 2020 .
- S. Stanković , “Compressive sensing: Theory, algorithms and applications,” in 2015 4th Mediterranean Conference on Embedded Computing (MECO) IEEE, 2015 , pp. 4 – 6 .
- Z. Gao , L. Dai , S. Han , I. Chih-Lin , Z. Wang , and L. Hanzo , “ Compressive sensing techniques for next-generation wireless communications ,” IEEE Wireless Communications , vol. 25 , no. 3 , pp. 144 – 153 , 2018 .
- Y. Huo , X. Dong , W. Xu , and M. Yuen , “ Enabling multi-functional 5G and beyond user equipment: A survey and tutorial ,” IEEE Access , vol. 7 , pp. 116 975 – 117 008 , 2019 .
- M. B. Shahab , R. Abbas , M. Shirvanimoghaddam , and S. J. Johnson , “ Grant-free non-orthogonal multiple access for IoT: A survey ,” IEEE Communication Surveys and Tutorials , vol. 22 , no. 3 , pp. 1805 – 1838 , 2020 .
- “ Zero-touch network and service management (ZSM); terminology for concepts in ZSM ,” August 2019 , [Accessed on 29.03.2021]. [Online]. Available: https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/007/01.01.01_60/gs_ZSM007v010101p.pdf .
- “ Zero-touch network and Service Management (ZSM); Requirements based on documented scenarios ,” Oct. 2019 , [Accessed on 29.03.2022]. [Online]. Available: https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/001/01.01.01_60/gs_ZSM001v010101p.pdf .
- T. Darwish , G. K. Kurt , H. Yanikomeroglu , G. Senarath , and P. Zhu , “ A Vision of Self-evolving Network Management for Future Intelligent Vertical HetNet ,” arXiv preprint arXiv:2009.02771 , 2020 .
- C. Benzaid and T. Taleb , “ ZSM security: Threat surface and best practices ,” IEEE Network , vol. 34 , no. 3 , pp. 124 – 133 , 2020 .
- N. H. Mahmood , H. Alves , O. A. López , M. Shehab , D. P. M. Osorio , and M. Latva-aho , “ Six Key Enablers for Machine Type Communication in 6G ,” arXiv preprint arXiv:1903.05406 , 2019 .
-
S. Hu
,
X. Chen
,
W. Ni
,
X. Wang
, an
d
E. Hossain
, “
Modeling and analysis of energy harvesting and smart grid-powered wireless communication networks: A contemporary survey
,”
IEEE Transactions on Green Communications and Networking
, vol.
4
, no.
2
, pp.
461
–
496
,
2020
.
10.1109/TGCN.2020.2988270 Google Scholar
- A. A. Nasir , X. Zhou , S. Durrani , and R. A. Kennedy , “ Relaying protocols for wireless energy harvesting and information processing ,” IEEE Transactions on Wireless Communications , vol. 12 , no. 7 , pp. 3622 – 3636 , 2013 .
- M. A. Hossain , R. M. Noor , K.-L. A. Yau , I. Ahmedy , and S. S. Anjum , “ A survey on simultaneous wireless information and power transfer with cooperative relay and future challenges ,” IEEE Access , vol. 7 , pp. 19 166 – 19 198 , 2019 .