6G Requirements
Chamitha de Alwis
University of Bedfordshire, Luton, United Kingdom
Search for more papers by this authorChamitha de Alwis
University of Bedfordshire, Luton, United Kingdom
Search for more papers by this authorSummary
The sixth-generation (6G) networks are required to develop over existing fifth-generation (5G) networks to support emerging technologies and applications. Enhanced Mobile Broadband (eMBB) represents a continuing evolution from traditional Long-Term Evolution, which enables mobile broadband in limited applications. In 5G, eMBB is being enhanced greatly. In 6G, Ultramassive Machine Type Communication will enable several key applications including Internet of Industrial smart Things, smart buildings, Internet-enabled supply-chain, logistics, and fleet management, as well as air and water quality monitoring. In large dimension networks, Long Distance and High Mobility Communications (LDHMC) are indispensable requirements in 6G. In 5G, LDHMC services are undeniable as they can support up to 500 km/h. Area traffic capacity corresponds to the total traffic throughput served per geographic area. In this regard, it is widely anticipated that 5G may enable a traffic capacity of 10 Mbps per square meter in dedicated hotspot areas.
References
- W. Saad , M. Bennis , and M. Chen , “ A vision of 6G wireless systems: Applications, trends, technologies, and open research problems ,” IEEE Network , vol. 34 , no. 3 , pp. 134 – 142 , 2019 .
- F. Fang , Y. Xu , Q.-V. Pham , and Z. Ding , “ Energy-efficient design of IRS-NOMA networks ,” IEEE Transactions on Vehicular Technology , vol. 69 , no. 11 , pp. 14 088 – 14 092 , 2020 .
- Z. Zhang , Y. Xiao , Z. Ma , M. Xiao , Z. Ding , X. Lei , G. K. Karagiannidis , and P. Fan , “ 6G wireless networks: Vision, requirements, architecture, and key technologies ,” IEEE Vehicular Technology Magazine , vol. 14 , no. 3 , pp. 28 – 41 , 2019 .
- Z. Na , Y. Liu , J. Shi , C. Liu , and Z. Gao , “ UAV-supported clustered NOMA for 6G-enabled Internet of Things: Trajectory planning and resource allocation ,” IEEE Internet of Things Journal , vol. 8 , no. 20 , pp. 15 041 – 15 048 , 2021 .
- Y. Xing and T. S. Rappaport , “Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz,” in 2018 IEEE Global Communications Conference (GLOBECOM) IEEE, 2018 , pp. 1 – 6 .
-
S. Nayak
and
R. Patgiri
, “
6G communication technology: A vision on intelligent healthcare
,” in
Health Informatics: A Computational Perspective in Healthcare
.
Springer
,
2021
, pp.
1
–
18
.
10.1007/978-981-15-9735-0_1 Google Scholar
- E. Markoval , D. Moltchanov , R. Pirmagomedov , D. Ivanova , Y. Koucheryavy , and K. Samouylov , “Priority-based coexistence of eMBB and URLLC traffic in industrial 5G NR deployments,” in 2020 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) IEEE, 2020, pp. 1 – 6 .
-
H. E. Melcherts
,
The Internet of Everything and Beyond
.
Wiley Online Library
,
2017
.
10.1002/9781119341451.ch10 Google Scholar
- M. A. Siddiqi , H. Yu , and J. Joung , “ 5G ultra-reliable low-latency communication implement ation challenges and operational issues with IoT devices ,” Electronics , vol. 8 , no. 9 , p. 981 , 2019 .
-
C. De Alwis
,
Kalla , A.
,
Pham , Q.-V.
,
Kumar , P.
,
Dev , K.
,
Hwang , W.-J.
, and
Liyanage , M.
, “
Survey on 6G frontiers: Trends, applications, requirements, technologies and future research
,”
IEEE Open Journal of the Communications Society
, vol.
2
, pp.
836
–
886
,
2021
.
10.1109/OJCOMS.2021.3071496 Google Scholar
- M. Alsenwi , N. H. Tran , M. Bennis , S. R. Pandey , A. K. Bairagi , and C. S. Hong , “ Intelligent resource slicing for eMBB and URLLC coexistence in 5G and beyond: A deep reinforcement learning based approach ,” IEEE Transactions on Wireless Communications , vol. 20 , pp. 4585 – 4600 , 2021 .
- I. F. Akyildiz , C. Han , and S. Nie , “ Combating the distance problem in the millimeter wave and Terahertz frequency bands ,” IEEE Communications Magazine , vol. 56 , no. 6 , pp. 102 – 108 , 2018 .
- H. Sarieddeen , N. Saeed , T. Y. Al-Naffouri , and M.-S. Alouini , “ Next generation terahertz communications: A rendezvous of sensing, imaging, and localization ,” IEEE Communications Magazine , vol. 58 , no. 5 , pp. 69 – 75 , 2020 .
- G. Gür , “ Expansive networks: Exploiting spectrum sharing for capacity boost and 6G vision ,” Journal of Communications and Networks , vol. 22 , no. 6 , pp. 444 – 454 , 2020 .
- N. Mahmood , A. Munari , F. Clazzer , and H. Bartz , “ Critical and massive machine type communication towards 6G ,” 2020 .
- N. H. Mahmood , S. Böcker , A. Munari , F. Clazzer , I. Moerman , K. Mikhaylov , O. Lopez , O.-S. Park , E. Mercier , H. Bartz et al ., “ White Paper on Critical and Massive Machine Type Communication towards 6G ,” arXiv preprint arXiv:2004.14146 , 2020 .
- K. Mikhaylov , V. Petrov , R. Gupta , M. A. Lema , O. Galinina , S. Andreev , Y. Koucheryavy , M. Valkama , A. Pouttu , and M. Dohler , “ Energy efficiency of multi-radio massive machine-type communication (MR-MMTC): Applications, challenges, and solutions ,” IEEE Communications Magazine , vol. 57 , no. 6 , pp. 100 – 106 , 2019 .
-
F. A. De Figueiredo
,
F. A. Car doso
,
I. Moerman
, and
G. Fraidenraich
, “
On the application of massive MIMO systems to machine type communications
,”
IEEE Access
, vol.
7
, pp.
2589
–
2611
,
2018
.
10.1109/ACCESS.2018.2886030 Google Scholar
- “ Robotic Surgery ,” https://www.womencentre.com.au/robotic-surgery.html ., 2019 , [Accessed on 29.03.2021].
- C. Huang , A. Zappone , G. C. Alexandropoulos , M. Debbah , and C. Yuen , “ Reconfigurable intelligent surfaces for energy efficiency in wireless communication ,” IEEE Transactions on Wireless Communications , vol. 18 , no. 8 , pp. 4157 – 4170 , 2019 .
- C.-X. Wang , J. Huang , H. Wang , X. Gao , X. You , and Y. Hao , “ 6G wireless channel measurements and models: Trends and challenges ,” IEEE Vehicular Technology Magazine , vol. 15 , no. 4 , pp. 22 – 32 , 2020 .
- H. Yang , A. Alphones , Z. Xiong , D. Niyato , J. Zhao , and K. Wu , “ Artificial intelligence-enabled intelligent 6G networks ,” IEEE Network , vol. 34 , no. 6 , pp. 272 – 280 , 2020 .
- “ Space Tourism May Mean One Giant Leap for Researchers ,” https://www.nytimes.com/2011/03/01/science/space/01orbit.html , [Online; Accessed 25.03.2021].
- “ How to visit the deep sea for around ,” https://www.telegraph.co.uk/travel/activity-and-adventure/how-to-dive-to-the-deep-sea/ , [Online; Accessed 25.03.2021].
- “ high speed rail ,” https://www.iconfinder.com/icons/2539308/bullet_high_speed_rail_railway_train_icon , [Online; Accessed 25.03.2021].
- P. Fan , J. Zhao , and I. Chih-Lin , “ 5G high mobility wireless communications: Challenges and solutions ,” China Communications , vol. 13 , no. 2 , pp. 1 – 13 , 2016 .
- J. Chen , S. Li , J. Tao , S. Fu , and G. E. Sobelman , “ Wireless beam modulation: An energy-and spectrum-efficient communication technology for future massive iot systems ,” IEEE Wireless Communications , vol. 27 , no. 5 , pp. 60 – 66 , 2020 .
- S. P. Rout , “6G wireless communication: Its vision, viability, application, requirement, technologies, encounters and research,” in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) IEEE, 2020 , pp. 1 – 8 .
- S. Han , I. Chih-Lin , T. Xie , S. Wang , Y. Huang , L. Dai , Q. Sun , and C. Cui , “ Achieving high spectrum efficiency on high speed train for 5G new radio and beyond ,” IEEE Wireless Communications , vol. 26 , no. 5 , pp. 62 – 69 , 2019 .
- J. Navarro-Ortiz , P. Romero-Diaz , S. Sendra , P. Ameigeiras , J. J. Ramos-Munoz , and J. M. Lopez-Soler , “ A survey on 5G usage scenarios and traffic models ,” IEEE Communication Surveys and Tutorials , vol. 22 , no. 2 , pp. 905 – 929 , 2020 .
- P. Fernandes and U. Nunes , “ Multiplatooning leaders positioning and cooperative behavior algorithms of communicant automated vehicles for high traffic capacity ,” IEEE Transactions on Intelligent Transportation Systems , vol. 16 , no. 3 , pp. 1172 – 1187 , 2015 .
- M. Ergen , F. Inan , O. Ergen , I. Shayea , M. F. Tuysuz , A. Azizan , N. K. Ure , and M. Nekovee , “ Edge on wheels with OMNIBUS networking for 6G technology ,” IEEE Access , vol. 8 , pp. 215 928 – 215 942 , 2020 .
- M. S. Elbamby , C. Perfecto , M. Bennis , and K. Doppler , “ Toward low-latency and ultra-reliable virtual reality ,” IEEE Network , vol. 32 , no. 2 , pp. 78 – 84 , 2018 .
- A. Alshahrani , I. A. Elgendy , A. Muthanna , A. M. Alghamdi , and A. Alshamrani , “ Efficient multi-player computation offloading for VR edge-cloud computing systems ,” Applied Sciences , vol. 10 , no. 16 , p. 5515 , 2020 .
- T. Park and W. Saad , “ Distributed learning for low latency machine type communication in a massive Internet of Things ,” IEEE Internet of Things Journal , vol. 6 , no. 3 , pp. 5562 – 5576 , 2019 .
- F. Tang , Y. Kawamoto , N. Kato , and J. Liu , “ Future intelligent and secure vehicular network toward 6G: Machine-learning approaches ,” Proceedings of the IEEE , vol. 108 , no. 2 , pp. 292 – 307 , 2020 .