The Top Ten Clinical Trials in Patients Undergoing Transcatheter Aortic Valve Implantation
The Evolution of a Transformative Therapy into Clinical Practice
Ying-Hwa Chen
1 Division of Cardiology, Taipei Veterans General Hospital, Taiwan
2 National Yang-Ming Chiao-Tung University, Taiwan
Search for more papers by this authorYing-Hwa Chen
1 Division of Cardiology, Taipei Veterans General Hospital, Taiwan
2 National Yang-Ming Chiao-Tung University, Taiwan
Search for more papers by this authorEduardo J. de Marchena
International Medicine Institue, Miami, FL, United States
Search for more papers by this authorSummary
Over the past two decades, transcatheter aortic valve implantation (TAVI) has been established as an alternative to aortic valve replacement in symptomatic patients with severe aortic stenosis. Within these clinical studies are high-level randomized clinical trials that have informed Society guidelines. The purpose of this chapter is to describe nine randomized clinical trials and one single-arm study that help address the evidence base for TAVI in clinical practice. The clinical trials of interest are described in detail, as are the background and clinical questions raised by these trials. These large-scale, randomized clinical trials have established that TAVI is superior to medical therapy in patients who are not candidates for surgery and is a suitable alternative to surgery in patients who are high, intermediate, and low risk for surgery. Additional clinical trials are ongoing to evaluate the future of TAVI in patients with aortic valve disease. TAVI is now well established as an alternative to surgery in patients with symptomatic aortic valve stenosis.
Bibliography
- Adams , D.H. , Popma , J.J. , Reardon , M.J. et al. ( 2014 ). Transcatheter aortic-valve replacement with a self-expanding prosthesis . N. Engl. J. Med. 370 ( 19 ): 1790 – 1798 .
- Asch , F.M. , Vannan , M.A. , Singh , S. et al. ( 2018 ). Hemodynamic and echocardiographic comparison of the Lotus and CoreValve transcatheter aortic valves in patients with high and extreme surgical risk: an analysis from the REPRISE III randomized controlled trial . Circulation 137 ( 24 ): 2557 – 2567 .
- Blanke , P. , Leipsic , J.A. , Popma , J.J. et al. ( 2020 ). Bioprosthetic aortic valve leaflet thickening in the Evolut low risk sub-study . J. Am. Coll. Cardiol. 75 ( 19 ): 2430 – 2442 .
- Capodanno , D. , Petronio , A.S. , Prendergast , B. et al. ( 2017 ). Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) . Eur. J. Cardiothorac. Surg. 52 ( 3 ): 408 – 417 .
- Cribier , A. , Eltchaninoff , H. , Bash , A. et al. ( 2002 ). Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description . Circulation 106 ( 24 ): 3006 – 3008 .
- Feldman , T.E. , Reardon , M.J. , Rajagopal , V. et al. ( 2018 ). Effect of mechanically expanded vs self-expanding transcatheter aortic valve replacement on mortality and major adverse clinical events in high-risk patients with aortic stenosis: the REPRISE III randomized clinical trial . J. Am. Med. Assoc. 319 ( 1 ): 27 – 37 .
- Gaudiani , V. , Deeb , G.M. , Popma , J.J. et al. ( 2017 ). Causes of death from the randomized CoreValve US pivotal high-risk trial . J. Thorac. Cardiovasc. Surg. 153 ( 6 ): 1293 – 301 e1 .
- Genereux , P. , Piazza , N. , Alu , M.C. et al. ( 2021 ). Valve academic research consortium 3: updated endpoint definitions for aortic valve clinical research . Eur. Heart J. 42 ( 19 ): 1825 – 1857 .
- Grube , E. , Laborde , J.C. , Gerckens , U. et al. ( 2006 ). Percutaneous implantation of the CoreValve self-expanding valve prosthesis in high-risk patients with aortic valve disease: the Siegburg first-in-man study . Circulation 114 ( 15 ): 1616 – 1624 .
- Henrik , H. and Nielsen , M. ( 2012 ). Transcatheter aortic valve implantation . Dan. Med. J. 59 ( 19 ): B4556 .
- Jorgensen , T.H. , Thyregod , H.G.H. , Ihlemann , N. et al. ( 2021 ). Eight-year outcomes for patients with aortic valve stenosis at low surgical risk randomized to transcatheter vs. surgical aortic valve replacement . Eur. Heart J. 42 ( 30 ): 2912 – 2919 .
- Kapadia , S.R. , Kodali , S. , Makkar , R. et al. ( 2017 ). Protection against cerebral embolism during transcatheter aortic valve replacement . J. Am. Coll. Cardiol. 69 ( 4 ): 367 – 377 .
- Kappetein , A.P. , Head , S.J. , Genereux , P. et al. ( 2013 ). Updated standardized endpoint definitions for transcatheter aortic valve implantation: the valve academic research Consortium-2 consensus document . J. Thorac. Cardiovasc. Surg. 145 ( 1 ): 6 – 23 .
- Leon , M.B. , Piazza , N. , Nikolsky , E. et al. ( 2011 ). Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the valve academic research consortium . Eur. Heart J. 32 ( 2 ): 205 – 217 .
- Leon , M.B. , Smith , C.R. , Mack , M. et al. ( 2010 ). Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery . N. Engl. J. Med. 363 ( 17 ): 1597 – 1607 .
- Leon , M.B. , Smith , C.R. , Mack , M.J. et al. ( 2016 ). Transcatheter or surgical aortic-valve replacement in intermediate-risk patients . N. Engl. J. Med. 374 ( 17 ): 1609 – 1620 .
- Mack , M.J. , Leon , M.B. , Thourani , V.H. et al. ( 2019 ). Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients . N. Engl. J. Med. 380 ( 18 ): 1695 – 1705 .
- Makkar , R.R. , Blanke , P. , Leipsic , J. et al. ( 2020 ). Subclinical leaflet thrombosis in transcatheter and surgical bioprosthetic valves: PARTNER 3 cardiac computed tomography substudy . J. Am. Coll. Cardiol. 75 ( 24 ): 3003 – 3015 .
- Makkar , R.R. , Cheng , W. , Waksman , R. et al. ( 2020 ). Self-expanding intra-annular versus commercially available transcatheter heart valves in high and extreme risk patients with severe aortic stenosis (PORTICO IDE): a randomised, controlled, noninferiority trial . Lancet 396 ( 10252 ): 669 – 683 .
- Makkar , R.R. , Fontana , G. , Jilaihawi , H. et al. ( 2015 ). Possible subclinical leaflet thrombosis in bioprosthetic aortic valves . N. Engl. J. Med. 373 ( 21 ): 2015 – 2024 .
- Mihaljevic , T. , Nowicki , E.R. , Rajeswaran , J. et al. ( 2008 ). Survival after valve replacement for aortic stenosis: implications for decision making . J. Thorac. Cardiovasc. Surg. 135 ( 6 ): 1270 – 1278 . discussion 8-9.
- Otto , C.M. , Nishimura , R.A. , Bonow , R.O. et al. ( 2021 ). 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines . Circulation 143 ( 5 ): e35 – e71 .
- Pibarot , P. , Ternacle , J. , Jaber , W.A. et al. ( 2020 ). Structural deterioration of transcatheter versus surgical aortic valve bioprostheses in the PARTNER-2 trial . J. Am. Coll. Cardiol. 76 ( 16 ): 1830 – 1843 .
- Popma , J.J. , Adams , D.H. , Reardon , M.J. et al. ( 2014 ). Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery . J. Am. Coll. Cardiol. 63 ( 19 ): 1972 – 1981 .
- Popma , J.J. , Deeb , G.M. , Yakubov , S.J. et al. ( 2019 ). Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients . N. Engl. J. Med. 380 ( 18 ): 1706 – 1715 .
- Reardon , M.J. , Van Mieghem , N.M. , Popma , J.J. et al. ( 2017 ). Surgical or transcatheter aortic-valve replacement in intermediate-risk patients . N. Engl. J. Med. 376 ( 14 ): 1321 – 1331 .
- Schaff , H.V. ( 2011 ). Transcatheter aortic-valve implantation--at what price? N. Engl. J. Med. 364 ( 23 ): 2256 – 2258 .
- Smith , C.R. , Leon , M.B. , Mack , M.J. et al. ( 2011 ). Transcatheter versus surgical aortic-valve replacement in high-risk patients . N. Engl. J. Med. 364 ( 23 ): 2187 – 2198 .
- Tang , G.H.L. , Zaid , S. , Gupta , E. et al. ( 2019 ). Impact of initial Evolut transcatheter aortic valve replacement deployment orientation on final valve orientation and coronary reaccess . Circ. Cardiovasc. Interv. 12 ( 7 ): e008044 .
- Thourani , V.H. , Kodali , S. , Makkar , R.R. et al. ( 2016 ). Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis . Lancet 387 ( 10034 ): 2218 – 2225 .
- Vahanian , A. , Beyersdorf , F. , Praz , F. et al. ( 2021 ). 2021 ESC/EACTS guidelines for the management of valvular heart disease . Eur. Heart J. 43 : 561 – 632 .
- Yerasi , C. , Rogers , T. , Forrestal , B.J. et al. ( 2021 ). Transcatheter versus surgical aortic valve replacement in young, low-risk patients with severe aortic stenosis . JACC Cardiovasc. Interv. 14 ( 11 ): 1169 – 1180 .
- Yudi , M.B. , Sharma , S.K. , Tang , G.H.L. , and Kini , A. ( 2018 ). Coronary angiography and percutaneous coronary intervention after transcatheter aortic valve replacement . J. Am. Coll. Cardiol. 71 ( 12 ): 1360 – 1378 .