Mechanical Properties for 3D Printing of Polymers through Fused Deposition Modelling
Brajesh Kumar
School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, India
Search for more papers by this authorAnkush Raina
School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, India
Search for more papers by this authorRavi Pratap Singh
Department of Industrial and Production Engineering, Dr. B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
Search for more papers by this authorMir Irfan Ul Haq
School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, India
Search for more papers by this authorBrajesh Kumar
School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, India
Search for more papers by this authorAnkush Raina
School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, India
Search for more papers by this authorRavi Pratap Singh
Department of Industrial and Production Engineering, Dr. B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
Search for more papers by this authorMir Irfan Ul Haq
School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, India
Search for more papers by this authorDilbagh Panchal
Search for more papers by this authorMohit Tyagi
Search for more papers by this authorAnish Sachdeva
Search for more papers by this authorDragan Pamucar
Search for more papers by this authorSummary
3D Printing or Digital Fabrication is one of the fastest emerging technologies in the manufacturing industry. It is widely being used for the mass customization and fabrication of any type of geometrical design. Out of all 3D Printing techniques available, Fused Deposition Modelling is dominating the printing industry with its flexibility in materials for printing. It is widely being used in industries like aviation, healthcare, agriculture, and the automotive industry with a versatility in materials from thermoplastics to metals. However, the parts fabricated with FDM are still widely being used in prototyping, models, etc. and not in actual manufacturing industries for high-end products. This is because of the low strength of the parts which are not reliable for end-products. The introduction of fiber composites in FDM has solved this problem to a great extent by providing great improvements in mechanical properties of the printed products, but the performance of the FDM printed products is still low when compared to conventional machining processes. Numerous defects occur during the fabrication of these parts leading to undesirable properties. This chapter aims to present the materials compatible with FDM, the various process parameters, and the mechanical properties of the 3D printed parts printed via FDM.
References
- Akhoundi , B. , Behravesh , A. H. , & Bagheri Saed , A. ( 2019 ). Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer . Journal of Reinforced Plastics and Composites , 38 ( 3 ), 99 – 116 .
- Baba , Z. U. , Shafi , W. K. , Haq , M. I. U. , & Raina , A. ( 2019 ). Towards sustainable automobilesadvancements and challenges . Progress in Industrial Ecology, an International Journal , 13 ( 4 ), 315 – 331 .
- Bettini , P. , Alitta , G. , Sala , G. , & Di Landro , L. ( 2017 ). Fused deposition technique for continuous fiber reinforced thermoplastic . Journal of Materials Engineering and Performance , 26 ( 2 ), 843 – 848 .
- Bi , H. , Ren , Z. , Guo , R. , Xu , M. , & Song , Y. ( 2018 ). Fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition molding . Industrial crops and products , 122 , 76 – 84 .
- Billah , K. M. M. , Lorenzana , F. A. , Martinez , N. L. , Chacon , S. , Wicker , R. B. , & Espalin , D. ( 2019 ). Thermal analysis of thermoplastic materials filled with chopped fiber for large area 3D printing . In 30th Annual International Solid Fabrication Symposium (pp. 892 – 898 ).
- Bowyer , A. ( 2007 ). The self-replicating 3D printer—manufacturing for the masses . In Eighth national conference on rapid design, prototyping and manufacture .
- Caminero , M. A. , Chacón , J. M. , García-Moreno , I. , & Rodríguez , G. P. ( 2018 ). Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling . Composites Part B: Engineering , 148 , 93 – 103 .
- Chadha , A. , Haq , M. I. U. , Raina , A. , Singh , R. R. , Penumarti , N. B. , & Bishnoi , M. S. ( 2019 ). Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts . World Journal of Engineering .
- Chapiro , M. ( 2016 ). Current achievements and future outlook for composites in 3D printing . Reinforced Plastics , 60 ( 6 ), 372 – 375 .
- Cummins , K. ( 2010 , may 23). the rise of additive manufacturing . Retrieved from theengineer.co.uk : https://www.theengineer.co.uk/the-rise-of-additive-manufacturing/
- Dul , S. , Fambri , L. , & Pegoretti , A. ( 2016 ). Fused deposition modelling with ABS–graphene nanocomposites . Composites Part A: Applied Science and Manufacturing , 85 , 181 – 191 .
- El Magri , A. , El Mabrouk , K. , Vaudreuil , S. , & Ebn Touhami , M. ( 2019 ). Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling . Journal of Thermoplastic Composite Materials , 0892705719847244.
- Gavali , V. C. , Kubade , P. R. , & Kulkarni , H. B. ( 2020 ). Mechanical and thermo-mechanical properties of carbon fiber reinforced thermoplastic composite fabricated using fused deposition modeling method . Materials Today: Proceedings , 22 , 1786 - 1795 .
- Gaytan , S. M. , Cadena , M. A. , Karim , H. , Delfin , D. , Lin , Y. , Espalin , D. , … & Wicker , R. B. ( 2015 ). Fabrication of barium titanate by binder jetting additive manufacturing technology . Ceramics International , 41 ( 5 ), 6610 - 6619 .
- Gnanasekaran , K. , Heijmans , T. , Van Bennekom , S. , Woldhuis , H. , Wijnia , S. , de With , G. , & Friedrich , H. ( 2017 ). 3D printing of CNT-and graphene-based conductive polymer nanocomposites by fused deposition modeling . Applied materials today , 9 , 21 – 28 .
- Gray IV , R. W. , Baird , D. G. , & Bøhn , J. H. ( 1998 ). Thermoplastic composites reinforced with long fiber thermotropic liquid crystalline polymers for fused deposition modeling . Polymer composites , 19 ( 4 ), 383 – 394 .
- Hao , W. , Liu , Y. , Zhou , H. , Chen , H. , & Fang , D. ( 2018 ). Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites . Polymer Testing , 65 , 29 – 34 .
- Hao , W. , Liu , Y. , Zhou , H. , Chen , H. , & Fang , D. ( 2018 ). Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites . Polymer Testing , 65 , 29 – 34 .
- Haq , M. I. U. , Khuroo , S. , Raina , A. , Khajuria , S. , Javaid , M. , Haq , M. F. U. , & Haleem , A. ( 2020 ). 3D printing for development of medical equipment amidst coronavirus (COVID-19) pandemic— review and advancements . Research on Biomedical Engineering , 1 – 11 .
- Haq , R. H. A. , Rahman , M. N. A. , Ariffin , A. M. T. , Hassan , M. F. , Yunos , M. Z. , & Adzila , S. ( 2017 , August). Characterization and Mechanical Analysis of PCL/PLA composites for FDM feedstock filament. In IOP Conference Series: Materials Science and Engineering (Vol. 226 , No. 1 , p. 012038 ). IOP Publishing.
- Heidari-Rarani , M. , Rafiee-Afarani , M. , & Zahedi , A. M. ( 2019 ). Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites . Composites Part B: Engineering , 175 , 107147 .
- Horst , D. J. , Duvoisin , C. A. , & de Almeida Vieira , R. ( 2018 ). Additive manufacturing at Industry 4.0: a review . International journal of engineering and technical research , 8 ( 8 ).
- Hull , C. ( 2014 ). Layer-by-Layer: The evolution of 3D printing . IEEE Spectrum .
- Khonakdar , H. A. ( 2015 ). Dynamic mechanical analysis and thermal properties of LLDPE/EVA/ modified silica nanocomposites . Composites Part B: Engineering , 76 , 343 – 353 .
- Kim , H. , Park , E. , Kim , S. , Park , B. , Kim , N. , & Lee , S. ( 2017 ). Experimental study on mechanical properties of single-and dual-material 3D printed products . Procedia Manufacturing , 10 , 887 – 897 .
- Kruth , J. P. , Mercelis , P. , Van Vaerenbergh , J. , Froyen , L. , & Rombouts , M. ( 2005 ). Binding mechanisms in selective laser sintering and selective laser melting . Rapid prototyping journal .
- Kruth , J. P. , Mercelis , P. , Van Vaerenbergh , J. , Froyen , L. , & Rombouts , M. ( 2005 ). Binding mechanisms in selective laser sintering and selective laser melting . Rapid prototyping journal .
- Lebedev , S. M. , Gefle , O. S. , Amitov , E. T. , Zhuravlev , D. V. , Berchuk , D. Y. , & Mikutskiy , E. A. ( 2018 ). Mechanical properties of PLA-based composites for fused deposition modeling technology . The International Journal of Advanced Manufacturing Technology , 97 ( 1 ), 511 – 518 .
- Li , N. , Li , Y. , & Liu , S. ( 2016 ). Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing . Journal of Materials Processing Technology , 238 , 218 – 225 .
- Li , Y. , Gao , S. , Dong , R. , Ding , X. , & Duan , X. ( 2018 ). Additive manufacturing of PLA and CF/PLA binding layer specimens via fused deposition modeling . Journal of Materials Engineering and Performance , 27 ( 2 ), 492 – 500 .
- Liao , G. , Li , Z. , Cheng , Y. , Xu , D. , Zhu , D. , Jiang , S. , … & Zhu , Y. ( 2018 ). Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling . Materials & Design , 139 , 283 – 292 .
- Lin , L. , Ecke , N. , Huang , M. , Pei , X. Q. , & Schlarb , A. K. ( 2019 ). Impact of nanosilica on the friction and wear of a PEEK/CF composite coating manufactured by fused deposition modeling (FDM) . Composites Part B: Engineering , 177 , 107428 .
- Melchels , F. P. , Feijen , J. , & Grijpma , D. W. ( 2010 ). A review on stereolithography and its applications in biomedical engineering . Biomaterials , 31 ( 24 ), 6121 - 6130 .
- Milosevic , M. , Stoof , D. , & Pickering , K. L. ( 2017 ). Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites . Journal of Composites Science , 1 ( 1 ), 7.
- Ning , F. , Cong , W. , Hu , Y. , & Wang , H. ( 2017 ). Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties . Journal of Composite Materials , 51 ( 4 ), 451 – 462 .
- Ning , F. , Cong , W. , Hu , Z. , & Huang , K. ( 2017 ). Additive manufacturing of thermoplastic matrix composites using fused deposition modeling: A comparison of two reinforcements . Journal of Composite Materials , 51 ( 27 ), 3733 - 3742 .
- Owen , D. , Hickey , J. , Cusson , A. , Ayeni , O. I. , Rhoades , J. , Deng , Y. , … & Zhang , J. ( 2018 ). 3D printing of ceramic components using a customized 3D ceramic printer . Progress in additive manufacturing , 3 ( 1 ), 3 – 9 .
- Palmero , E. M. , & Bollero , A. ( 2020 ). 3D and 4D Printing of Functional and Smart Composite Materials .
- Parandoush , P. , & Lin , D. ( 2017 ). A review on additive manufacturing of polymer-fiber composites . Composite Structures , 182 , 36 – 53 .
- Prusinowski , A. , & Kaczyński , R. ( 2020 ). Tribological Behaviour of Additively Manufactured FiberReinforced Thermoplastic Composites in Various Environments . Polymers , 12 ( 7 ), 1551 .
- Ranganathan , S. , & Palanivelu , R. ( 2020 ). Enhancing the Tribological Properties PETG and CFPETG Composites Fabricated by FDM via Various Infill Density and Annealing (No. 2020-28-0429). SAE Technical Paper.
- Riddick , J. C. , Haile , M. A. , Von Wahlde , R. , Cole , D. P. , Bamiduro , O. , & Johnson , T. E. ( 2016 ). Fractographic analysis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition modeling . Additive Manufacturing , 11 , 49 – 59 .
- Standard , A. S. T. M. ( 2012 ). Standard terminology for additive manufacturing technologies . ASTM International F2792-12a .
- Tofail , S. A. , Koumoulos , E. P. , Bandyopadhyay , A. , Bose , S. , O' Donoghue , L. , & Charitidis , C. ( 2018 ). Additive manufacturing: scientific and technological challenges, market uptake and opportunities . Materials today , 21 ( 1 ), 22 – 37 .
- Triantou , M. I. , & Tarantili , P. A. ( 2014 ). Studies on morphology and thermomechanical performance of ABS/PC/Organoclay hybrids . Polymer composites , 35 ( 7 ), 1395 - 1407 .
- Van Humbeeck , J. ( 2018 ). Additive manufacturing of shape memory alloys . Shape Memory and Superelasticity , 4 ( 2 ), 309 – 312 .
- Wang , C. , Smith , L. M. , Zhang , W. , Li , M. , Wang , G. , Shi , S. Q. , … & Zhang , S. ( 2019 ). Reinforcement of Polylactic Acid for Fused Deposition Modeling Process with Nano Particles Treated Bamboo Powder . Polymers , 11 ( 7 ), 1146 .
- Wang , J. , Xie , H. , Weng , Z. , Senthil , T. , & Wu , L. ( 2016 ). A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling . Materials & Design , 105 , 152 - 159 .
- Wang , P. , Zou , B. , Ding , S. , Huang , C. , Shi , Z. , Ma , Y. , & Yao , P. ( 2020 ). Preparation of short CF/ GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing . Composites Part B: Engineering , 198 , 108175 .
- Weng , Z. , Wang , J. , Senthil , T. , & Wu , L. ( 2016 ). Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing . Materials & Design , 102 , 276 – 283 .
- Yang , Y. , Chen , Y. , Wei , Y. , & Li , Y. ( 2016 ). 3D printing of shape memory polymer for functional part fabrication . The International Journal of Advanced Manufacturing Technology , 84 ( 9 ), 2079 - 2095 .
- Zhong , W. , Li , F. , Zhang , Z. , Song , L. , & Li , Z. ( 2001 ). Short fiber reinforced composites for fused deposition modeling . Materials Science and Engineering: A , 301 ( 2 ), 125 – 130 .
- Zhou , Y. G. , Su , B. , & Turng , L. S. ( 2017 ). Deposition-induced effects of isotactic polypropylene and polycarbonate composites during fused deposition modeling . Rapid Prototyping Journal .