Power Grid Architecture
Brian Johnson
Electrical and Computer Engineering, University of Idaho, Moscow, ID, USA
Search for more papers by this authorRômulo Bainy
Electrical and Computer Engineering, University of Idaho, Moscow, ID, USA
Search for more papers by this authorBrian Johnson
Electrical and Computer Engineering, University of Idaho, Moscow, ID, USA
Search for more papers by this authorRômulo Bainy
Electrical and Computer Engineering, University of Idaho, Moscow, ID, USA
Search for more papers by this authorCraig Rieger
Search for more papers by this authorRon Boring
Search for more papers by this authorBrian Johnson
Search for more papers by this authorTimothy McJunkin
Search for more papers by this authorSummary
This chapter describes the basic architecture of the power grid and differentiates the predominant power architectures of previous decades from emerging ones, which are broadly classified as smart grids. Grid applications of power electronics became more common, resulting in more flexibility and faster control for the system operator. The chapter provides an overview of classical power system architectures of the past 50 years and discusses recent trends toward smarter power grids. Grid architecture is one of the main tools to describe, define, and understand an electrical power grid. Two trends of interest are the emergence of smarter grids and growing interest in microgrids. The chapter also provides overviews of power system configurations, power systems operations, and of the power system planning process. The operation of the power system mainly relies on the control of active and reactive power. The chapter helps the readers learn the measures of power system performance.
Further Reading
- In addition to the references cited in this chapter, the following resources listed below would be beneficial for further reading.
- Glover , J.D. , Sarma , M.S. , and Overbye , T. ( 2016 ). Power System Analysis & Design , 6 e. Cengage Learning .
- Cornwall C.E. and Hurd C.L. ( 2013 ). Smart Grids Infrastructure , Technology, and Solutions, 73.
- Hatziargyriou , N. ( 2014 ). Microgrids: Architectures and Control . In: Wiley.
- Bebic , J. ( 2008 ). Power System Planning: Emerging Practices Suitable for Evaluating the Impact of High-Penetration Photovoltaics. NREL/SR-581-42297, US Department of Energy .
- Khuntia , S.R. , Tuin ema , B.W. , Rueda , J.L. , and van der Meijden , M.A.M.M. ( 2016 ). Time-horizons in the planning and operation of transmission networks: an overview . IET Generation Transmission and Distribution 10 ( 4 ): 841 – 848 . https://doi.org/10.1049/iet-gtd.2015.0791 .
- Wood , A.J. , Wollenberg , B.F. , and Sheble , G.B. ( 2013 ). Power Generation, Operation, and Control , 3 e. Wiley .
- IEEE Std 1366-2012 ( 2012 ). IEEE guide for electric power distribution reliability indices (Revision IEEE Std 1366-2003).
-
Karki , R.
,
Billinton , R.
, and
Verma , A.K.
(
2014
).
Reliability Modeling and Analysis of Smart Power Systems
.
Springer
.
10.1007/978-81-322-1798-5 Google Scholar
- Constable , G. ( 2003 ). A Century of Innovation . Washington, DC : Joseph Henry Press .
- Tesla Memorial Society of New York. https://www.teslasociety.com/adams.htm (accessed 05 December 2020).
- Glover , J.D. , Sarma , M.S. , and Overbye , T. ( 2016 ). Power System Analysis & Design , 6 e. Cengage Learning .
- PNNL (2021). Grid architecture. https://gridarchitecture.pnnl.gov (accessed 29 May 2021).
- Taft , J.D. ( 2019 ). Grid architecture . IEEE Power and Energy Magazine 17 : 104 .
-
Kulkarni , S. N.
and
Shingare , P.
(
2016
). A review on smart grid architecture and implementation challenges. International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016, 3285–3290, doi:
https://doi.org/10.1109/ICEEOT.2016.7755313
.
10.1109/ICEEOT.2016.7755313 Google Scholar
-
Budka , K.
,
Deshpande , J.
, and
Thottan , M.
(
2014
).
Communication Networks for Smart Grids: Making Smart Grid Real
.
Springer
.
10.1007/978-1-4471-6302-2 Google Scholar
-
Cunjiang , Y.
,
Huaxun , Z.
, and
Lei , Z.
(
2012
). Architecture design for smart grid. 2012 International Conference on Future Electrical Power and Energy Systems, 1524–1528, doi:
https://doi.org/10.1016/j.egypro.2012.02.276
.
10.1016/j.egypro.2012.02.276 Google Scholar
- Borlase , S. ( 2016 ). Smart Grids: Infrastructure, Technology, and Solutions . CRC Press .
-
Jolfaei , A.
and
Kant , K.
(
2017
). A lightweight integrity protection scheme for fast communications in smart grid. Proceedings of the 14th International Joint Conference on e-Business and Telecommunications, vol. 4, (January), 31–42, doi:
https://doi.org/10.5220/0006394200310042
.
10.5220/0006394200310042 Google Scholar
-
Uslar , M.
,
Specht , M.
,
Dänekas , C.
et al. (
2013
).
Standardization in Smargrids
.
Springer
.
10.1007/978-3-642-34916-4 Google Scholar
- Tomar , A. and Kandari , R. ( 2020 ). Advances in Smart Grid Power System . Elsevier .
-
Momoh , J.
(
2012
).
Smart Grid: Fundamental of Design and Developements
.
Wiley
.
10.1002/9781118156117 Google Scholar
- Hatziargyriou , N. ( 2014 ). Microgrids: Architectures and Control . Wiley .
- IEEE Std 1547.2-2008 ( 2008 ). IEEE application guide for IEEE Std 1547. IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.
- PES-TR71 ( 2019 ). Microgrid Protection Systems . IEEE Power and Energy Society .
- IEEE Std 2030.7-2017 ( 2018 ). IEEE standard for the specification of microgrid controllers.
- Kundur , P. ( 1994 ). Power System Stability and Control , 2 e. McGraw-Hill Professional .
-
Hu , W.L.
,
Rivetta , C.
,
MacDonald , E.
, and
Chassin , D.P.
(
2019
).
Modeling of operator performance for human-in-the-loop power systems
.
Lecture Notes in Computer Science
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) LNAI
11571
:
39
–
54
.
https://doi.org/10.1007/978-3-030-22507-0_4
.
10.1007/978?3?030?22507?0_4 Google Scholar
- Bao , Y. , Guo , C. , Zh ang , J. et al. ( 2018 ). Impact analysis of human factors on power system operation reliability . Journal of Modern Power Systems and Clean Energy 6,27 ( 1 ): – 39 . https://doi.org/10.1007/s40565-016-0231-6 .
- Thomas , M.S. and McDonald , J.D. ( 2012 ). Power System SCADA and Smart Grids . In: CRC Press .
- Thomas , M.S. and McDonald , J.D. ( 2012 ). Power System SCADA and Smart Grids . In: CRC Press .
- Bebic , J. ( 2008 ). Power System Planning: Emerging Practices Suitable for Evaluating the Impact of High-Penetration Photovoltaics NREL/SR-581-42297. US Department of Energy .
- Khuntia , S.R. , Tuinema , B.W. , Rueda , J.L. , and van der Meijden , M.A.M.M. ( 2016 ). Time-horizons in the planning and operation of transmission networks: an overview . IET Generation Transmission and Distribution 10 ( 4 ): 841 – 848 . https://doi.org/10.1049/iet-gtd.2015.0791.
- Grainger , J.J. , Stevenson , W.D. , and Stevenson , W.D. ( 1994 ). Power System Analysis . McGraw-Hill .
- Anderson , P.M. and Fouad , A.A. ( 2008 ). Power System Control and Stability . Wiley .
- Saadat , H. ( 1999 ). Power System Analysis , vol. 2 . McGraw-Hill .
-
Kasikci , I.
(
2018
).
Short Circuits in Power Systems: A Practical Guide to IEC 60909-0
.
Weinheim
:
Wiley-VCH Verlag GmbH & Co. KGaA
.
10.1002/9783527803378 Google Scholar
- Greenwood , A. ( 1991 ). Electrical Transients in Power Systems , 2 e. Wiley-Interscience .
-
IEEE Std 493-2007
(
2007
). IEEE recommended practice for the design of reliable industrial and commercial power systems. (Revision IEEE Std 493-1997), 1–383, doi:
https://doi.org/10.1109/IEEESTD.2007.380668
.
10.1109/IEEESTD.2007.380668 Google Scholar
- IEEE Std 1366-2012 ( 2012 ). IEEE guide for electric power distribution reliability indices. (Revision IEEE Std 1366-2003).