Integrating Remote Sensing and Social Sensing to Examine Socioeconomic Dynamics
A Case Study of Twitter and Nighttime Light Imagery
Guofeng Cao
Department of Geography, University of Colorado, Boulder, CO, USA
Search for more papers by this authorNaizhuo Zhao
Division of Clinical Epidemiology, McGill University Health Centre, Montreal, QC, Canada
Search for more papers by this authorGuofeng Cao
Department of Geography, University of Colorado, Boulder, CO, USA
Search for more papers by this authorNaizhuo Zhao
Division of Clinical Epidemiology, McGill University Health Centre, Montreal, QC, Canada
Search for more papers by this authorXiaojun Yang
Search for more papers by this authorSummary
In the past decade, the landscape of geospatial sciences and technologies has been shifting dramatically. New sources of geospatial data on human activities and socioeconomic development become increasingly available, marked by the rise of social sensing (e.g. location-based social media) and a growing variety of remote sensors (e.g. satellite imagery of nighttime lights). The remote sensing and social sensing provide a complementary set of information sources to examine complex socioeconomic dynamics across different spatial and temporal scales. In this chapter, we highlight the potential of integrating these two information sources in studying socioeconomic dynamics and illustrate the potential with two specific types of remote sensing and social sensing, satellite imagery of nighttime light brightness and the geo-tagged Twitter posts. Specifically, we first explore the potentials and problems of geo-tagged Twitter posts in representing socioeconomic factors and compare it with the commonly used NTL imagery. We then describe a practical approach to integrate the two heterogeneous data sources to improve the mapping of socioeconomic dynamics. The advantages of the integration as a reliable indicator of socioeconomic factors are then showcased using case studies .
REFERENCES
-
Aggarwal , C.C.
,
Abdelzaher , T.
,
2013
.
Social sensing
, in:
Managing and Mining Sensor Data
(ed.
C. C. Aggarwal
),
Springer
,
Boston, MA
, pp.
237
–
297
. doi:10.1007/978-1-4614-6309-2_9
10.1007/978-1-4614-6309-2_9 Google Scholar
- Backstrom , L. , Sun , E. , Marlow , C. , 2010 . Find me if you can: improving geographical prediction with social and spatial proximity , in: Proceedings of the 19th International Conference on World Wide Web. ACM , pp. 61 – 70 .
- Bennett , M.M. , Smith , L.C. , 2017 . Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics . Remote Sensing of Environment , 192 , 176 – 197 . doi:10.1016/j.rse.2017.01.005
- California Energy Commission (CEC) , 2020 . Electricity Consumption by County .
- Cao , G. , Wang , S. , Hwang , M. , Padmanabhan , A. , Zhang , Z. , Soltani , K. , 2015 . A scalable framework for spatiotemporal analysis of location-based social media data . Computers, Environment and Urban Systems 51 , 70 – 82 .
- Center for International Earth Science Information Network - CIESIN - Columbia University , 2017 . Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals, Revision 10 .
- Chen , X. , Nordhaus , W.D. , 2011 . Using luminosity data as a proxy for economic statistics . Proceedings of the National Academy of Sciences of the United States of America 108 , 8589 – 8594 . doi:10.1073/pnas.1017031108
- Cho , E. , Myers , S.A. , Leskovec , J. , 2011 . Friendship and mobility: user movement in location-based social networks , in: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM , pp. 1082 – 1090 .
- Cranshaw , J. , Schwartz , R. , Hong , J. , Sadeh , N. , 2012 . The livehoods project: Utilizing social media to understand the dynamics of a city . ICWSM'12.
- Doll , C.N.H. , Muller , J.-P. , Morley , J.G. , 2006 . Mapping regional economic activity from night-time light satellite imagery . Ecological Economics 57 , 75 – 92 .
- Frank , M.R. , Mitchell , L. , Dodds , P.S. , Danforth , C.M. , 2013 . Happiness and the patterns of life: a study of geolocated tweets . Scientific Reports 3 , 2625 .
- Gao , H. , Barbier , G. , Goolsby , R. , 2011 . Harnessing the crowdsourcing power of social media for disaster relief . Intelligent Systems, IEEE 26 ( 3 ), 10 – 14 .
- Gao , H. , Tang , J. , Liu , H. , 2012 . Exploring social-historical ties on location-based social networks , in: Proceedings of the 6th International AAAI Conference on Weblogs and Social Media.
- Gao , Y. , Wang , S. , Padmanabhan , A. , Yin , J. , Cao , G. , 2018 . Mapping spatiotemporal patterns of events using social media: a case study of influenza trends . International Journal of Geographical Information Science 32 , 425 – 449 . doi:10.1080/13658816.2017.1406943
- Gayo-Avello , D. , Metaxas , P. , Mustafaraj , E. , 2011 . Limits of electoral predictions using twitter , in: ICWSM. Association for the Advancement of Artificial Intelligence , pp. 490 – 493 .
- Ghosh , T. , Elvidge , C.D. , Sutton , P.C. , Baugh , K.E. , Ziskin , D. , Tuttle , B.T. , 2010 . Creating a global grid of distributed fossil fuel CO 2 emissions from nighttime satellite imagery . Energies 3 , 1895 – 1913 .
- Goldblatt , R. , Stuhlmacher , M.F. , Tellman , B. , Clinton , N. , Hanson , G. , Georgescu , M. , Wang , C. , Serrano-Candela , F. , Khandelwal , A.K. , Cheng , W.H. , Balling , R.C. , 2018 . Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover . Remote Sensing of Environment 205 , 253 – 275 . doi:10.1016/j.rse.2017.11.026
- Goodchild , M.F. , Longley , P.A. , 1999 . The future of GIS and spatial analysis . Geographical information systems 1 , 567 – 580 .
- Goodchild , M.F. , 2007 . Citizens as voluntary sensors: spatial data infrastructure in the world of Web 2.0 . International Journal of Spatial Data Infrastructures Research 2 , 24 – 32 .
- Guo , D. , Chen , C. , 2014 . Detecting non-personal and spam users on geo-tagged twitter network . Transactions in GIS 18 , 370 – 384 . doi:10.1111/tgis.12101
-
Han , S.Y.
,
Tsou , M.-H.
,
Knaap , E.
,
Rey , S.
,
Cao , G.
,
2019
.
How do cities flow in an emergency? Tracing human mobility patterns during a natural disaster with big data and geospatial data science
.
Urban Science
3
(
2
),
51
. doi:10.3390/urbansci3020051
10.3390/urbansci3020051 Google Scholar
-
Hardin , A.
,
Liu , Y.
,
Cao , G.
,
Vanos , J.
,
2017
.
Intraurban variations of air temperature by weather type in the U.S. Northeast: application of dense observational networks
.
Urban Climate
24
,
747
–
762
.
10.1016/j.uclim.2017.09.001 Google Scholar
- Hecht , B. , Stephens , M. , 2014 . A tale of cities: urban biases in volunteered geographic information , Proceedings of the 8th International AAAI Conference on Weblogs and Social Media. pp. 197 – 205 . papers3://publication/uuid/B13C63A5-B3B8-4619-9558-86BCAFE5E2CA
- Hu , Y. , Wang , R.-Q. , 2020 . Understanding the removal of precise geotagging in tweets . Nature Human Behaviour , 4 ( 12 ), 1219 – 1221 . doi:10.1038/s41562-020-00949-x
- Ilieva , R.T. , McPhearson , T. , 2018 . Social-media data for urban sustainability . Nature Sustainability , 1 , 553 – 565 . doi:10.1038/s41893-018-0153-6
- Jamali , M. , Nejat , A. , Ghosh , S. , Jin , F. , Cao , G. , 2019 . Social media data and post-disaster recovery . International Journal of Information Management , 44 , 25 – 37 . doi:10.1016/J.IJINFOMGT.2018.09.005
- Jamali , M. , Nejat , A. , Moradi , S. , Ghosh , S. , Cao , G. , Jin , F. , 2020 . Social media data and housing recovery following extreme natural hazards . International Journal of Disaster Risk Reduction , 51 , 101788 . doi:10.1016/j.ijdrr.2020.101788
- Jankowski , P. , Andrienko , N. , Andrienko , G. , Kisilevich , S. , 2010 . Discovering landmark preferences and movement patterns from photo postings . Transactions in GIS , 14 , 833 – 852 .
- Janowicz , K. , Gao , S. , McKenzie , G. , Hu , Y. , Bhaduri , B. , 2019 . GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond . International Journal of Geographical Information Science , 34 , 625 – 636 . doi:10.1080/13658816.2019.1684500
- Jiang , Y. , Li , Z. , Ye , X. , 2018 . Understanding demographic and socioeconomic biases of geotagged Twitter users at the county level . Cartography and Geographic Information Science , 46 ( 3 ), 228 – 242 . doi:10.1080/15230406.2018.1434834
- Li , L. , Goodchild , M.F. , 2012 . Constructing places from spatial footprints , in: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information. ACM , pp. 15 – 21 .
- Li , X. , Chen , X. , Zhao , Y. , Xu , J. , Chen , F. , Li , H. , 2013 . Automatic intercalibration of night-time light imagery using robust regression . Remote Sensing Letters , 4 , 45 – 54 .
- Li , X. , Li , D. , 2014 . Can night-time light images play a role in evaluating the Syrian Crisis? International Journal of Remote Sensing , 35 , 6648 – 6661 . doi:10.1080/01431161.2014.971469
- Li , X. , Zhang , R. , Huang , C. , Li , D. , 2015 . Detecting 2014 Northern Iraq Insurgency using night-time light imagery . International Journal of Remote Sensing , 36 , 3446 – 3458 . doi:10.1080/01431161.2015.1059968
-
Li , X.
,
Zhao , L.
,
Li , D.
,
Xu , H.
,
2018
.
Mapping urban extent using Luojia 1-01 nighttime light imagery
.
Sensors (Basel, Switzerland)
,
18
(
11
),
3665
. doi:10.3390/s18113665
10.3390/s18113665 Google Scholar
- Liu , Y. , Liu , X. , Gao , S. , Gong , L. , Kang , C. , Zhi , Y. , Chi , G. , Shi , L. , 2015 . Social sensing: a new approach to understanding our socioeconomic environments . Annals of the Association of American Geographers , 105 , 512 – 530 . doi:10.1080/00045608.2015.1018773
- Liu , Y. , Delahunty , T. , Zhao , N. , Cao , G. , 2016 . These lit areas are undeveloped: delimiting China's urban extents from thresholded nighttime light imagery . International Journal of Applied Earth Observation and Geoinformation , 50 , 39 – 50 .
- Liu , Y. , Cao , G. , Zhao , N. , Mulligan , K. , Ye , X. , 2018 . Improve ground-level PM 2.5 concentration mapping using a random forests-based geostatistical approach . Environmental Pollution , 235 , 272 – 282 .
- Liu , Y. , Goudreau , S. , Oiamo , T. , Rainham , D. , Hatzopoulou , M. , Chen , H. , Davies , H. , Tremblay , M. , Johnson , J. , Bockstael , A. , Leroux , T. , Smargiassi , A. , 2020 . Comparison of land use regression and random forests models on estimating noise levels in five Canadian cities . Environmental Pollution , 256 , 113367 . doi:10.1016/j.envpol.2019.113367
- Longley , P.A. , Adnan , M. , Lansley , G. , 2015 . The geotemporal demographics of twitter usage . Environment and Planning A , 47 , 465 – 484 . doi:10.1068/a130122p
- Longley , P.A. , Adnan , M. , 2016 . Geo-temporal {Twitter} demographics . International Journal of Geographical Information Science , 30 , 369 – 389 .
- Luo , F. , Cao , G. , Mulligan , K. , Li , X. , 2016 . Explore spatiotemporal and demographic characteristics of human mobility via Twitter: a case study of Chicago . Applied Geography , 70 , 11 – 25 . doi:10.1016/j.apgeog.2016.03.001
- Malik , M.M. , Lamba , H. , Nakos , C. , Pfeffer , J. , 2015 . Population bias in geotagged tweets . 9th International AAAI Conference on Weblogs and Social Media. vol. 1, pp. 18 – 27 .
- Mennis , J. , 2003 . Generating surface models of population using dasymetric mapping . Professional Geographer , 55 ( 1 ), 31 – 42 . doi:10.1111/0033-0124.10042
- Mislove , A. , Lehmann , S. , Ahn , Y.-Y. , Onnela , J.-P. , Rosenquist , J.N. , 2011 . Understanding the demographics of Twitter users . Artificial Intelligence , 11 , 554 – 557 .
- Nordhaus , W. , Chen , X. , 2015 . A sharper image? Estimates of the precision of nighttime lights as a proxy for economic statistics . Journal of Economic Geography , 15 , 217 – 246 . doi:10.1093/jeg/lbu010
- N.R.C ., 1998 . People and Pixels: Linking Remote Sensing and Social Science . The National Academies Press , Washington, DC . doi:10.17226/5963
- O'Connor , B. , Balasubramanyan , R. , 2010 . From tweets to polls: linking text sentiment to public opinion time series , in: Proceedings of the 4th International AAAI Conference on Weblogs and Social Media.
- Padmanabhan , A. , Wang , S. , Cao , G. , Hwang , M. , Zhang , Z. , Gao , Y. , Soltani , K. , Liu , Y. , 2014 . FluMapper: a cyberGIS application for interactive analysis of massive location-based social media . Concurrency and Computation: Practice and Experience , 26 , 2253 – 2265 .
- van der Putten , P. , Kok , J.N. , Gupta , A. , 2002 . Data fusion through statistical matching . SSRN Electronic Journal . doi:10.2139/ssrn.297501
- Román , M.O. , Wang , Z. , Sun , Q. , Kalb , V. , Miller , S.D. , Molthan , A. , Schultz , L. , Bell , J. , Stokes , E.C. , Pandey , B. , Seto , K.C. , Hall , D. , Oda , T. , Wolfe , R.E. , Lin , G. , Golpayegani , N. , Devadiga , S. , Davidson , C. , Sarkar , S. , Praderas , C. , Schmaltz , J. , Boller , R. , Stevens , J. , Ramos González , O.M. , Padilla , E. , Alonso , J. , Detrés , Y. , Armstrong , R. , Miranda , I. , Conte , Y. , Marrero , N. , MacManus , K. , Esch , T. , Masuoka , E.J. , 2018 . NASA's Black Marble nighttime lights product suite . Remote Sensing of Environment , 210 , 113 – 143 . doi:10.1016/j.rse.2018.03.017
- Sadilek , A. , Kautz , H. , Bigham , J.P. , 2012 . Finding your friends and following them to where you are , in: Proceedings of the 5th ACM International Conference on Web Search and Data Mining. ACM , pp. 723 – 732 .
- Sadilek , A. , Krumm , J. , 2012 . Far out: predicting long-term human mobility , in: Proceedings of the 26th AAAI Conference on Artificial Intelligence. pp. 814 – 820 .
- Salathé , M. , Bengtsson , L. , Bodnar , T.J. , Brewer , D.D. , Brownstein , J.S. , Buckee , C. , Campbell , E.M. , Cattuto , C. , Khandelwal , S. , Mabry , P.L. , Vespignani , A. , 2012 . Digital epidemiology . PLoS Computational Biology , 8 , e1002616 . doi:10.1371/journal.pcbi.1002616
- Salathé , M. , Freifeld , C.C. , Mekaru , S.R. , Tomasulo , A.F. , Brownstein , J.S. , 2013 . Influenza A (H7N9) and the importance of digital epidemiology . New England Journal of Medicine , 369 , 401 – 404 . doi:10.1056/NEJMp1307752
- Shi , K. , Chen , Y. , Yu , B. , Xu , T. , Chen , Z. , Liu , R. , Li , L. , Wu , J. , 2016a . Modeling spatiotemporal CO 2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis . Applied Energy , 168 , 523 – 533 . doi:10.1016/J.APENERGY.2015.11.055
- Shi , K. , Chen , Y. , Yu , B. , Xu , T. , Yang , C. , Li , L. , Huang , C. , Chen , Z. , Liu , R. , Wu , J. , 2016b . Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data . Applied Energy , 184 , 450 – 463 . doi:10.1016/j.apenergy.2016.10.032
- Signorini , A. , Segre , A.M. , Polgreen , P.M. , 2011 . The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic . PLoS One , 6 , e19467 .
- Sutton , P. , Roberts , D. , Elvidge , C. , Meij , H. , 1997 . A comparison of nighttime satellite imagery and population density for the continental United States . Photogrammetric Engineering and Remote Sensing , 63 , 1303 – 1313 .
- The New York City Council , 2012 . A Local Law to amend the administrative code of the city of New York, in relation to publishing open data .
- The US Bureau of Economic Analysis (BEA) , 2020 . Regional Data: GDP & Personal Income .
- The U.S. Energy Information Administration (EIA) , 2020 . Electricity: Detailed State Data .
-
Thrower , N.J.W.
,
1970
.
Annals map supplement number twelve: land use in the southwestern United States-From Gemini and Apollo Imagery
.
Annals of the Association of American Geographers
,
60
,
208
–
209
. doi:10.1111/j.1467-8306.1970.tb00714.x
10.1111/j.1467-8306.1970.tb00714.x Google Scholar
- Tsou , M.-H. , Zhang , H. , Jung , C.-T. , 2008 . Identifying Data Noises, User Biases, and System Errors in Geo-tagged Twitter Messages (Tweets) . arXiv preprint arXiv:1712.02433.
- Tsou , M.-H. , Leitner , M. , 2013 . Visualization of social media: seeing a mirage or a message? Cartography and Geographic Information Science , 40 , 55 – 60 .
- Wang , D. , Szymanski , B.K. , Abdelzaher , T. , Ji , H. , Kaplan , L. , 2019 . The age of social sensing . Computer , 52 , 36 – 45 . doi:10.1109/MC.2018.2890173
- Wang , S. , 2010 . A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis . Annals of the Association of American Geographers , 100 , 535 – 557 .
- Wu , L. , Zhi , Y. , Sui , Z. , Liu , Y. , 2014 . Intra-urban human mobility and activity transition: evidence from social media check-in data . PLoS One , 9 , e97010 .
- Yang , Z. , Nguyen , L.H. , Stuve , J. , Cao , G. , Jin , F. , 2017 . Harvey flooding rescue in social media , in: Proceedings of the IEEE International Conference on Big Data. IEEE , pp. 2111 – 2119 .
- Yu , B. , Tang , M. , Wu , Q. , Yang , C. , Deng , S. , Shi , K. , Peng , C. , Wu , J. , Chen , Z. , 2018 . Urban built-up area extraction from log-transformed NPP-VIIRS nighttime light composite data . IEEE Geoscience and Remote Sensing Letters , 15 , 1279 – 1283 . doi:10.1109/LGRS.2018.2830797
-
Zhang , J.
,
Goodchild , M.F.
,
Shaw , S.-L.
,
2002
.
Uncertainty in Geographical Information
.
CRC Press
. doi:10.1111/j.1467-8306.2003.09304014_8.x
10.4324/9780203471326 Google Scholar
- Zhao , N. , Ghosh , T. , Samson , E.L. , 2012 . Mapping spatio-temporal changes of Chinese electric power consumption using night-time imagery . International Journal of Remote Sensing , 33 , 6304 – 6320 .
- Zhao , N. , Hsu , F.-C. , Cao , G. , Samson , E.L. , 2017a . Improving accuracy of economic estimations with VIIRS DNB image products . International Journal of Remote Sensing , 38 , 5899 – 5918 .
- Zhao , N. , Liu , Y. , Cao , G. , Samson , E.L. , Zhang , J. , 2017b . Forecasting China's GDP at the pixel level using nighttime lights time series and population images . GIScience & Remote Sensing , 54 , 407 – 425 .
- Zhao , N. , Cao , G. , Zhang , W. , Samson , E.L. , 2018 . Tweets or nighttime lights: comparison for preeminence in estimating socioeconomic factors . ISPRS Journal of Photogrammetry and Remote Sensing 146 , 1 – 10 . doi:10.1016/j.isprsjprs.2018.08.018
- Zhao , M. , Zhou , Y. , Li , X. , Cao , W. , He , C. , Yu , B. , Li , X. , Elvidge , C.D. , Cheng , W. , Zhou , C. , 2019a . Applications of satellite remote sensing of nighttime light observations: advances, challenges, and perspectives . Remote Sensing 11 , 1 – 37 . doi:10.3390/rs11171971
- Zhao , N. , Zhang , W. , Liu , Y. , Samson , E.L. , Chen , Y. , Cao , G. , 2019b . Improving nighttime light imagery with location-based social media data . IEEE Transactions on Geoscience and Remote Sensing , 57 ( 4 ), 2161 – 2172 . doi:10.1109/TGRS.2018.2871788
- Zhao , N. , Liu , Y. , Hsu , F.C. , Samson , E.L. , Letu , H. , Liang , D. , Cao , G. , 2020 . Time series analysis of VIIRS-DNB nighttime lights imagery for change detection in urban areas: a case study of devastation in Puerto Rico from hurricanes Irma and Maria . Applied Geography , 120 , 102222 . doi:10.1016/j.apgeog.2020.102222
- Zheng , Q. , Weng , Q. , Huang , L. , Wang , K. , Deng , J. , Jiang , R. , Ye , Z. , Gan , M. , 2018 . A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B . Remote Sensing of Environment. , 215 , 300 – 312 . doi:10.1016/j.rse.2018.06.016
- Zhu , Z. , Wulder , M.A. , Roy , D.P. , Woodcock , C.E. , Hansen , M.C. , Radeloff , V.C. , Healey , S.P. , Schaaf , C. , Hostert , P. , Strobl , P. , Pekel , J.F. , Lymburner , L. , Pahlevan , N. , Scambos , T.A. , 2019a . Benefits of the free and open Landsat data policy . Remote Sensing of Environment , 224 , 382 – 385 . doi:10.1016/j.rse.2019.02.016
- Zhu , Z. , Zhou , Y. , Seto , K.C. , Stokes , E.C. , Deng , C. , Pickett , S.T.A. , Taubenböck , H. , 2019b . Understanding an urbanizing planet: strategic directions for remote sensing . Remote Sensing of Environment , 228 , 164 – 182 . doi:10.1016/j.rse.2019.04.020