Methods of Social Sensing for Urban Studies
Yu Liu
Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China
Search for more papers by this authorSong Gao
Department of Geography, University of Wisconsin-Madison, Madison, WI, USA
Search for more papers by this authorYihong Yuan
Department of Geography, Texas State University, San Marcos, TX, USA
Search for more papers by this authorFan Zhang
Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China
Search for more papers by this authorChaogui Kang
Department of Geographic Information Engineering, Wuhan University, Wuhan, China
Search for more papers by this authorYuhao Kang
Department of Geography, University of Wisconsin-Madison, Madison, WI, USA
Search for more papers by this authorKeli Wang
Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China
Search for more papers by this authorYu Liu
Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China
Search for more papers by this authorSong Gao
Department of Geography, University of Wisconsin-Madison, Madison, WI, USA
Search for more papers by this authorYihong Yuan
Department of Geography, Texas State University, San Marcos, TX, USA
Search for more papers by this authorFan Zhang
Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China
Search for more papers by this authorChaogui Kang
Department of Geographic Information Engineering, Wuhan University, Wuhan, China
Search for more papers by this authorYuhao Kang
Department of Geography, University of Wisconsin-Madison, Madison, WI, USA
Search for more papers by this authorKeli Wang
Institute of Remote Sensing and Geographical Information Systems, School of Earth and Space Sciences, Peking University, Beijing, China
Search for more papers by this authorXiaojun Yang
Search for more papers by this authorSummary
Analyzing large volumes of big geo-data through social sensing provides new research opportunities in urban studies. Such big geo-data include mobile phone records, social media posts, vehicle trajectories, and street view images. They can be used to extract human behavior patterns and infer the geographical characteristics of cities. This chapter discusses a number of analytical methods for big geo-data in social sensing studies, such as temporal signature analysis, text analysis, and image analysis. These methods can be used for various applications such as estimating urban vibrancy, formalizing place semantics, and modeling intraurban human mobility patterns. We structure the chapter sections from a perspective of first- and second-order properties in spatial statistics .
REFERENCES
-
Abdullah , S.
,
Murnane , E. L.
,
Costa , J. M. R.
and
Choudhury , T.
(
2015
).
Collective smile: Measuring societal happiness from geolocated images
.
Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing
,
Vancouver, BC, Canada. New York, NY, USA
:
Association for Computing Machinery
.
10.1145/2675133.2675186 Google Scholar
- Adepeju , M. , Rosser , G. and Cheng , T. ( 2016 ). Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions - a crime case study . International Journal of Geographical Information Science , 30 ( 11 ): 2133 – 2154 .
-
Agnew , J. A.
(
2011
).
Space and place
. In:
Handbook of Geographical Knowledge
(eds.
J.A. Agnew
and
D.N. Livingstone
),
316
–
331
.
London, UK
:
Sage
.
10.4135/9781446201091.n24 Google Scholar
- Anselin , L. ( 1995 ). Local indicators of spatial association—LISA . Geographical Analysis , 27 ( 2 ): 93 – 115 .
- Blei , D. M. ( 2012 ). Probabilistic topic models . Communications of the ACM , 55 ( 4 ): 77 – 84 .
- Blei , D. M. , Ng , A. Y. and Jordan , M. I. ( 2003 ). Latent dirichlet allocation . Journal of Machine Learning Research , 3 ( Jan ): 993 – 1022 .
- Cairncross , F. ( 2001 ). The Death of Distance: How the Communications Revolution is Changing our Lives . Boston : Harvard Business School Press .
- Chen , Y. , Xu , J. , and Xu , M. ( 2015 ). Finding community structure in spatially constrained complex networks . International Journal of Geographical Information Science , 29 ( 6 ), 889 – 911 .
- Cresswell , T. ( 1992 ). In Place-out of Place: Geography, Ideology, and Transgression . University of Minnesota Press .
- Expert , P. , Evans , T. S. , Blondel , V. D. and Lambiotte , R. ( 2011 ). Uncovering space-independent communities in spatial networks . Proceedings of the National Academy of Sciences , 108 ( 19 ): 7663 – 7668 .
-
Fischer , M. M.
,
Reismann , M.
and
Scherngell , T.
(
2010
).
Spatial interaction and spatial autocorrelation
. In:
Perspectives on Spatial Data Analysis
(eds.
L. Anselin
and
S.J. Rey
),
61
–
79
.
Cham, Switzerland
:
Springer
.
10.1007/978-3-642-01976-0_5 Google Scholar
- Fortunato , S. ( 2010 ). Community detection in graphs . Physics Reports , 486 ( 3–5 ): 75 – 174 .
- Fu , C. , McKenzie , G. , Frias-Martinez , V. and Stewart , K. ( 2018 ). Identifying spatiotemporal urban activities through linguistic signatures . Computers, Environment and Urban Systems , 72 : 25 – 37 .
- Gao , S. ( 2015 ). Spatio-temporal analytics for exploring human mobility patterns and urban dynamics in the mobile age . Spatial Cognition and Computation , 15 ( 2 ): 86 – 114 .
- Gao , S. , Liu , Y. , Wang , Y. and Ma , X. ( 2013 ). Discovering spatial interaction communities from mobile phone d ata . Transactions in GIS , 17 ( 3 ): 463 – 481 .
- Gao , S. , Janowicz , K. and Couclelis , H. ( 2017 ). Extracting urban functional regions from points of interest and human activities on location-based social networks . Transactions in GIS , 21 ( 3 ): 446 – 467 .
- Gao , Q.-L. , Li , Q.-Q. , Zhuang , Y. , Yue , Y. , Liu , Z.-Z. , Li , S.-Q. and Sui , D. ( 2019a ). Urban commuting dynamics in response to public transit upgrades: a big data approach . PLoS One , 14 ( 10 ): e0223650 .
- Gao , Y. , Cheng , J. , Meng , H. and Liu , Y. ( 2019b ). Measuring spatio-temporal autocorrelation in time series data of collective human mobility . Geo-Spatial Information Science , 22 ( 3 ): 166 – 173 .
- Gebru , T. , Krause , J. , Wang , Y. , Chen , D. , Deng , J. , Aiden , E. L. and Fei-Fei , L. ( 2017 ). Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States . Proceedings of the National Academy of Sciences , 114 ( 50 ): 13108 – 13113 .
-
Gelfand , A. E.
,
Diggle , P.
,
Guttorp , P.
and
Fuentes , M.
(
2010
).
Handbook of Spatial Statistics
.
Boca Raton
:
CRC Press
.
10.1201/9781420072884 Google Scholar
- Getis , A. ( 1991 ). Spatial interaction and spatial autocorrelation - a cross-product approach . Environment and Planning A , 23 ( 9 ): 1269 – 1277 .
-
Gong , Y.
,
Liu , Y.
,
Lin , Y.
,
Yang , J.
,
Duan , Z.
and
Li , G.
(
2012
).
Exploring spatiotemporal characteristics of intra-urban trips using metro smartcard records
.
2012 20th International Conference on Geoinformatics
,
Hong Kong, China. Columbus, United States
:
IEEE
.
10.1109/Geoinformatics.2012.6270316 Google Scholar
- Gonzalez , M. C. , Hidalgo , C. A. and Barabasi , A.-L. ( 2008 ). Understanding individual human mobility patterns . Nature , 453 ( 7196 ): 779 – 782 .
- Grasland , C. ( 2019 ). International news flow theory revisited through a space–time interaction model: application to a sample of 320,000 international news stories published through RSS flows by 31 daily newspapers in 2015 . International Communication Gazette , 82 ( 3 ): 231 – 259 .
- Griffith , D. A. ( 2009 ). Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows . Journal of Geographical Systems , 11 ( 2 ): 117 – 140 .
- Griffith , D. A. , Fischer , M. M. and LeSage , J. ( 2017 ). The spatial autocorrelation problem in spatial interaction modelling: a comparison of two common solutions . Letters in Spatial and Resource Science , 10 ( 1 ): 75 – 86 .
- Guo , D. , Zhu , X. , Jin , H. , Gao , P. and Andris , C. ( 2012 ). Discovering spatial patterns in origin-destination mobility data . Transactions in GIS , 16 ( 3 ): 411 – 429 .
- Haynes , K. E. and Fotheringham , A. S. ( 1984 ). The Gravity Model and Spatial Interaction . Sage Publication .
-
Hofmann , T.
(
1999
).
Probabilistic latent semantic indexing
.
Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
,
Berkeley, California, USA. New York, NY, USA
:
Association for Computing Machinery
.
10.1145/312624.312649 Google Scholar
- Hu , Y. ( 2018 ). Geo-text data and data-driven geospatial semantics . Geography Compass , 12 ( 11 ): e12404 .
- Hu , Y. , Deng , C. and Zhou , Z. ( 2019 ). A semantic and sentiment analysis on online neighborhood reviews for understanding the perceptions of people toward their living environments . Annals of the American Association of Geographers , 109 ( 4 ): 1052 – 1073 .
- Hu , C. , Zhang , F. , Gong , F. , Ratti , C. and Li , X. ( 2020 ). Classification and mapping of urban canyon geometry using Google street view images and deep multitask learning . Building and Environment , 167 : 106424 .
- Huang , Q. and Wong , D. W. S. ( 2016 ). Activity patterns, socioeconomic status and urban spatial structure: what can social media data tell us? International Journal of Geographical Information Science , 30 ( 9 ), 1873 – 1898 .
- Huang , Y. , Li , J. , Wu , G. and Fei , T. ( 2020 ). Quantifying the bias in place emotion extracted from photos on social networking sites: a case study on a university campus . Cities , 102 : 102719 .
-
Janowicz , K.
,
McKenzie , G.
,
Hu , Y.
,
Zhu , R.
and
Gao , S.
(
2019
).
Using semantic signatures for social sensing in urban environments
. In:
Mobility Patterns, Big Data and Transport Analytics
(eds.
C. Antoniou
,
L. Dimitriou
and
F. Pereira
),
31
–
54
.
Amsterdam, Netherlands
:
Elsevier
.
10.1016/B978-0-12-812970-8.00003-8 Google Scholar
- Jenkins , A. , Croitoru , A. , Crooks , A. T. and Stefanidis , A. ( 2016 ). Crowdsourcing a collective sense of place . PLoS One , 11 ( 4 ): e0152932 .
- Jia , C. , Du , Y. , Wang , S. , Bai , T. and Fei , T. ( 2019 ). Measuring the vibrancy of urban neighborhoods using mobile phone data with an improved PageRank algorithm . Transactions in GIS , 23 ( 2 ): 241 – 258 .
- Jiang , S. , Ferreira , J. and Gonzalez , M. C. ( 2017 ). Activity-based human mobility patterns inferred from mobile phone data: a case study of Singapore . IEEE Transactions on Big Data , 3 ( 2 ): 208 – 219 .
- Kang , C. , Liu , Y. , Ma , X. and Wu , L. ( 2012a ). Towards estimating urban population distributions from mobile call data . Journal of Urban Technology , 19 ( 4 ): 3 – 21 .
- Kang , C. , Ma , X. , Tong , D. and Liu , Y. ( 2012b ). Intra-urban human mobility patterns: an urban morphology perspective . Physica A: Statistical Mechanics and its Applications , 391 ( 4 ): 1702 – 1717 .
-
Kang , Y.
,
Wang , J.
,
Wang , Y.
,
Angsuesser , S.
and
Fei , T.
(
2017
).
Mapping the sensitivity of the public emotion to the movement of stock market value: a case study of Manhattan
.
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
,
42
:
1213
–
1221
.
10.5194/isprs-archives-XLII-2-W7-1213-2017 Google Scholar
- Kang , Y. , Jia , Q. , Gao , S. , Zeng , X. , Wang , Y. , Angsuesser , S. , Liu , Y. , Ye , X. and Fei , T. ( 2019 ). Extracting human emotions at different places based on facial expressions and spatial clustering analysis . Transactions in GIS , 23 ( 3 ): 450 – 480 .
-
Karpathy , A.
,
Toderici , G.
,
Shetty , S.
,
Leung , T.
,
Sukthankar , R.
and
Fei-Fei , L.
(
2014
).
Large-scale video classification with convolutional neural networks
.
27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014
,
Columbus, United States
:
IEEE Computer Society
.
10.1109/CVPR.2014.223 Google Scholar
- Kerkman , K. , Martens , K. and Meurs , H. ( 2017 ). A multilevel spatial interaction model of transit flows incorporating spatial and network autocorrelation . Journal of Transport Geography , 60 : 155 – 166 .
- Kong , X. , Liu , Y. , Wang , Y. , Tong , D. and Zhang , J. ( 2017 ). Investigating public facility characteristics from a spatial interaction perspective: a case study of Beijing hospitals using taxi data . ISPRS International Journal of Geo-Information , 6 ( 2 ): 38 – 38 .
- Kwan , M.-P. ( 1998 ). Space-time and integral measures of individual accessibility: a comparative analysis using a point-based framework . Geographic Analysis , 30 ( 3 ): 191 – 216 .
- Kwan , M.-P. ( 2012 ). The uncertain geographic context problem . Annals of the Association of American Geographers , 102 ( 5 ): 958 – 968 .
- LeCun , Y. , Bengio , Y. and Hinton , G. ( 2015 ). Deep learning . Nature , 521 ( 7553 ): 436 – 444 .
- Levenson , R. W. , Ekman , P. and Friesen , W. V. ( 1990 ). Voluntary facial action generates emotion-specific autonomic nervous system activity . Psychophysiology , 27 ( 4 ): 363 – 384 .
- Li , L. , Goodchild , M. F. and Xu , B. ( 2013 ). Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr . Cartography and Geographic Information Science , 40 ( 2 ): 61 – 77 .
- Li , M. , Kwan , M.-P. , Wang , F. and Wang , J. ( 2018 ). Using points-of-interest data to estimate commuting patterns in central Shanghai, China . Journal of Transport Geography , 72 : 201 – 210 .
- Li , M. , Gao , S. , Lu , F. and Zhang , H. ( 2019a ). Reconstruction of human movement trajectories from large-scale low-frequency mobile phone data . Computers, Environment and Urban Systems , 77 : 101346 .
- Li , Y. , Fei , T. and Zhang , F. ( 2019b ). A regionalization method for clustering and partitioning based on trajectories from NLP perspective . International Journal of Geographical Information Science , 33 ( 12 ): 2385 – 2405 .
- Li , Y. , Fei , T. , Huang , Y. , Li , J. , Li , X. , Zhang , F. , Kang , Y. and Wu , G. ( 2021 ). Emotional habitat: mapping the global geographic distribution of human emotion with physical environmental factors using a species distribution model . International Journal of Geographical Information Science 35 ( 2 ): 227 – 249 .
- Liu , Y. , Kang , C. , Gao , S. , Xiao , Y. and Tian , Y. ( 2012a ). Understanding intra-urban trip patterns from taxi trajectory data . Journal of Geographical Systems , 14 ( 4 ): 463 – 483 .
- Liu , Y. , Wang , F. , Xiao , Y. and Gao , S. ( 2012b ). Urban land uses and traffic ‘source-sink areas’: evidence from GPS-enabled taxi data in Shanghai . Landscape and Urban Planning , 106 ( 1 ): 73 – 87 .
- Liu , Y. , Sui , Z. , Kang , C. and Gao , Y. ( 2014a ). Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data . PLoS One , 9 ( 1 ): e86026 .
- Liu , Y. , Wang , F. H. , Kang , C. G. , Gao , Y. and Lu , Y. M. ( 2014b ). Analyzing relatedness by toponym cooccurrences on web pages . Transactions in GIS , 18 ( 1 ): 89 – 107 .
- Liu , X. , Gong , L. , Gong , Y. and Liu , Y. ( 2015a ). Revealing travel patterns and city structure with taxi trip data . Journal of Transport Geography , 43 : 78 – 90 .
- Liu , Y. , Liu , X. , Gao , S. , Gong , L. , Kang , C. , Zhi , Y. , Chi , G. and Shi , L. ( 2015b ). Social sensing: a new approach to understanding our socioeconomic environments . Annals of the Association of American Geographers , 105 ( 3 ): 512 – 530 .
- Liu , X. , Kang , C. , Gong , L. and Liu , Y. ( 2016 ). Incorporating spatial interaction patterns in classifying and understanding urban land use . International Journal of Geographical Information Science , 30 ( 2 ): 334 – 350 .
- Liu , K. , Gao , S. and Lu , F. ( 2019 ). Identifying spatial interaction patterns of vehicle movements on urban road networks by topic modelling . Computers, Environment and Urban Systems , 74 : 50 – 61 .
- Long , J. A. and Nelson , T. A. ( 2013 ). A review of quantitative methods for movement data . International Journal of Geographical Information Science , 27 ( 2 ): 292 – 318 .
- Long , Y. and Thill , J.-C. ( 2015 ). Combining smart card data and household travel survey to analyze jobs--housing relationships in Beijing . Computers, Environment and Urban Systems , 53 : 19 – 35 .
- Long , Y. , Zhang , Y. and Cui , C. ( 2012 ). Identifying commuting pattern of Beijing using bus smart card data . Acta Geographica Sinica , 67 ( 10 ): 1339 – 1352 .
- Louail , T. , Lenormand , M. , Cantu Ros , O. G. , Picornell , M. , Herranz , R. , Frias-Martinez , E. , Ramasco , J. J. and Barthelemy , M. ( 2014 ). From mobile phone data to the spatial structure of cities . Scientific Reports , 4 : 5276 .
- Luo , W. and MacEachren , A. M. ( 2014 ). Geo-social visual analytics . Journal of Spatial Information Science , 2014 ( 8 ): 27 – 66 .
- Ma , R. , Wang , W. , Zhang , F. , Shim , K. and Ratti , C. ( 2019 ). Typeface reveals spatial economic patterns . Scientific Reports , 9 ( 1 ): 15946 .
- Marti , P. , Serrano-Estrada , L. and Nolasco-Cirugeda , A. ( 2017 ). Using locative social media and urban cartographies to identify and locate successful urban plazas . Cities , 64 : 66 – 78 .
- McKenzie , G. and Janowicz , K. ( 2015 ). Where is also about time: a location-distortion model to improve reverse geocoding using behavior-driven temporal semantic signatures . Computers, Environment and Urban Systems , 54 : 1 – 13 .
- McKenzie , G. , Janowicz , K. , Gao , S. and Gong , L. ( 2015a ). How where is when? On the regional variability and resolution of geosocial temporal signatures for points of interest . Computers, Environment and Urban Systems , 54 : 336 – 346 .
-
McKenzie , G.
,
Janowicz , K.
,
Gao , S.
,
Yang , J.-A.
and
Hu , Y.
(
2015b
).
POI pulse: a multi-granular, semantic signature-based information observatory for the interactive visualization of big geosocial data
.
Cartographica: The International Journal for Geographic Information and Geovisualization
,
50
(
2
):
71
–
85
.
10.3138/cart.50.2.2662 Google Scholar
- Mitchell , L. , Frank , M. R. , Harris , K. D. , Dodds , P. S. and Danforth , C. M. ( 2013 ). The geography of happiness: connecting twitter sentiment and expression, demographics, and objective characteristics of place . PloS One , 8 ( 5 ): e64417 .
- O'Kelly , M. E. , Song , W. and Shen , G. Q. ( 1995 ). New estimates of gravitational attraction by linear-programming . Geographical Analysis , 27 ( 4 ): 271 – 285 .
- Papadakis , E. , Gao , S. and Baryannis , G. ( 2019 ). Combining design patterns and topic modeling to discover regions that support particular functionality . ISPRS International Journal of Geo-Information , 8 ( 9 ): 385 – 385 .
- Papadimitriou , C. H. , Raghavan , P. , Tamaki , H. , Vempala , S. and Vempala , S. ( 2000 ). Latent semantic indexing: a probabilistic analysis . Journal of Computer and System Sciences , 61 ( 2 ): 217 – 235 .
- Pei , T. , Sobolevsky , S. , Ratti , C. , Shaw , S.-L. , Li , T. and Zhou , C. ( 2014 ). A new insight into land use classification based on aggregated mobile phone data . International Journal of Geographical Information Science , 28 ( 9 ): 1988 – 2007 .
- Peng , H. , Du , Y. , Liu , Z. , Yi , J. , Kang , Y. and Fei , T. ( 2019 ). Uncovering patterns of ties among regions within metropolitan areas using data from mobile phones and online mass media . GeoJournal , 84 ( 3 ): 685 – 701 .
- Radil , S. M. , Flint , C. and Tita , G. E. ( 2010 ). Spatializing social networks: using social network analysis to investigate geographies of gang rivalry, territoriality, and violence in Los Angeles . Annals of the Association of American Geographers , 100 ( 2 ): 307 – 326 .
- Ratti , C. , Sobolevsky , S. , Calabrese , F. , Andris , C. , Reades , J. , Martino , M. , Claxton , R. and Strogatz , S. H. ( 2010 ). Redrawing the map of Great Britain from a network of human interactions . PloS One , 5 ( 12 ): e14248 .
-
Ren , M.
,
Lin , Y.
,
Jin , M.
,
Duan , Z.
,
Gong , Y.
and
Liu , Y.
(
2020
).
Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records
.
Transportation
,
47
(
7
):
1607
–
1629
.
10.1007/s11116-019-09977-7 Google Scholar
- Schneider , C. M. , Belik , V. , Couronné , T. , Smoreda , Z. and González , M. C. ( 2013 ). Unravelling daily human mobility motifs . Journal of the Royal Society , 10 ( 84 ): 20130246 .
- Shaw , S.-L. and Yu , H. ( 2009 ). A GIS-based time-geographic approach of studying individual activities and interactions in a hybrid physical–virtual space . Journal of Transport Geography , 17 ( 2 ): 141 – 149 .
-
Shen , G.
(
2004
).
Reverse-fitting the gravity model to inter-city airline passenger flows by an algebraic simplification
.
Journal of Transport Geography
,
12
(
3
):
219
–
234
.
10.1016/j.jtrangeo.2003.12.006 Google Scholar
-
Shi , L.
,
Chi , G.
,
Liu , X.
and
Liu , Y.
(
2015
).
Human mobility patterns in different communities: a mobile phone data-based social network approach
.
Annals of GIS
,
21
(
1
):
15
–
26
.
10.1080/19475683.2014.992372 Google Scholar
- Silva , I. M. P. and Moreira , A. J. C. ( 2012 ). Evaluation of bluetooth technology as a sensor of urban mobility . 7th Iberian Conference on Information Systems and Technologies (CISTI 2012) , Madrid, Spain. Columbus, United States : IEEE .
- Simini , F. , Gonzalez , M. C. , Maritan , A. and Barabasi , A.-L. ( 2012 ). A universal model for mobility and migration patterns . Nature , 484 ( 7392 ): 96 – 100 .
- Song , C. , Qu , Z. , Blumm , N. and Barabási , A.-L. ( 2010 ). Limits of predictability in human mobility . Science , 327 ( 5968 ): 1018 – 1021 .
- Steiger , E. , Resch , B. and Zipf , A. ( 2016 ). Exploration of spatiotemporal and semantic clusters of Twitter data using unsupervised neural networks . International Journal of Geographical Information Science , 30 ( 9 ): 1694 – 1716 .
-
Stouffer , S. A.
(
1940
).
Intervening opportunities: a theory relating to mobility and distance
.
American Sociological Review
,
5
(
6
):
845
–
867
.
10.2307/2084520 Google Scholar
- Sui , D. and Goodchild , M. ( 2011 ). The convergence of GIS and social media: challenges for GIScience . International Journal of Geographical Information Science , 25 ( 11 ): 1737 – 1748 .
- Tao , H. , Wang , K. , Zhuo , L. and Li , X. ( 2019 ). Re-examining urban region and inferring regional function based on spatial temporal interaction . International Journal of Digital Earth , 12 ( 3 ): 293 – 310 .
- Tobler , W. ( 1970 ). A computer movie simulating urban growth in the Detroit region . Economic Geography , 46 : 234 – 240 .
- Tu , W. , Cao , J. , Yue , Y. , Shaw , S. L. , Zhou , M. , Wang , Z. , …, and Li , Q. ( 2017 ). Coupling mobile phone and social media data: a new approach to understanding urban functions and diurnal patterns . International Journal of Geographical Information Science , 31 ( 12 ), 2331 – 2358 .
- Tu , W. , Zhu , T. , Xia , J. , Zhou , Y. , Yani Lai , J. J. , and Li , Q. ( 2019 ). Portraying the spatial dynamics of urban vibrancy using multisource urban big data . Computers, Environment and Urban Systems , 80 , 101428 .
-
Wang , Y.
,
Kang , C.
,
Bettencourt , L. M.
,
Liu , Y.
and
Andris , C.
(
2015
).
Linked activity spaces: embedding social networks in urban space
. In:
Computational Approaches for Urban Environments
(eds.
M. Helbich
,
J.J. Arsanjani
and
M. Leitner
),
313
–
336
.
Cham
:
Springer
.
10.1007/978-3-319-11469-9_13 Google Scholar
- Westerlund , J. and Wilhelmsson , F. ( 2011 ). Estimating the gravity model without gravity using panel data . Applied Economics , 43 ( 6 ): 641 – 649 .
- Xu , Y. , Shaw , S.-L. , Zhao , Z. , Yin , L. , Fang , Z. and Li , Q. ( 2015 ). Understanding aggregate human mobility patterns using passive mobile phone location data: a home-based approach . Transportation , 42 ( 4 ): 625 – 646 .
- Xu , Y. , Shaw , S.-L. , Zhao , Z. , Yin , L. , Lu , F. , Chen , J. , Fang , Z. and Li , Q. ( 2016 ). Another tale of two cities: understanding human activity space using actively tracked cellphone location data . Annals of the American Association of Geographers , 106 ( 2 ): 489 – 502 .
-
Yan , B.
,
Janowicz , K.
,
Mai , G.
and
Gao , S.
(
2017
).
From IDTL to Place2Vec: reasoning about place type similarity and relatedness by learning embeddings from augmented spatial contexts
.
Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
,
Redondo Beach, CA, USA. New York, NY, USA
:
Association for Computing Machinery
.
10.1145/3139958.3140054 Google Scholar
- Yan , B. , Janowicz , K. , Mai , G. and Zhu , R. ( 2018 ). xNet+SC: Classifying places based on images by incorporating spatial contexts . Leibniz International Proceedings in Informatics (LIPIcs). 10th International Conference on Geographic Information Science (GIScience 2018) , Dagstuhl, Germany : Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik .
- Yang , W. and Mu , L. ( 2015 ). GIS analysis of depression among Twitter users . Applied Geography , 60 : 217 – 223 .
- Yang , Y. and Zhang , H. ( 2019 ). Spatial-temporal forecasting of tourism demand . Annals of Tourism Research , 75 : 106 – 119 .
- Yang , W. , Mu , L. and Shen , Y. ( 2015 ). Effect of climate and seasonality on depressed mood among twitter users . Applied Geography , 63 : 184 – 191 .
- Yang , J.-A. , Tsou , M.-H. , Janowicz , K. , Clarke , K. C. and Jankowski , P. ( 2019 ). Reshaping the urban hierarchy: patterns of information diffusion on social media . Geo-spatial Information Science , 22 ( 3 ): 149 – 165 .
- Yao , Y. , Li , X. , Liu , X. , Liu , P. , Liang , Z. , Zhang , J. and Mai , K. ( 2017 ). Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model . International Journal of Geographical Information Science , 31 ( 4 ): 825 – 848 .
- Yao , Y. , Liang , Z. T. , Yuan , Z. H. , Liu , P. H. , Bie , Y. P. , Zhang , J. B. , Wang , R. Y. , Wang , J. L. and Guan , Q. F. ( 2019 ). A human-machine adversarial scoring framework for urban perception assessment using street-view images . International Journal of Geographical Information Science , 33 ( 12 ): 2363 – 2384 .
-
Ye , M.
,
Janowicz , K.
,
Mülligann , C.
and
Lee , W.-C
. (
2011
).
What you are is when you are: the temporal dimension of feature types in location-based social networks
.
Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
,
Chicago, Illinois. New York, NY, USA
:
Association for Computing Machinery
.
10.1145/2093973.2093989 Google Scholar
- Ye , X. , Huang , Q. and Li , W. ( 2016 ). Integrating big social data, computing and modeling for spatial social science . Cartography and Geographic Information Science , 43 ( 5 ): 377 – 378 .
- Yin , J. , Soliman , A. , Yin , D. and Wang , S. ( 2017 ). Depicting urban boundaries from a mobility network of spatial interactions: a case study of Great Britain with geo-located Twitter data . International Journal of Geographical Information Science , 31 ( 7 ): 1293 – 1313 .
-
Yuan , Y.
(
2017
).
Exploring the spatial decay effect in mass media and location-based social media: a case study of China
. In:
Advances in Geocomputation: Geocomputation 2015--The 13th International Conference
(eds.
D.A. Griffith
,
Y. Chun
and
D.J. Dean
),
133
–
142
.
Cham, Switzerland
:
Springer
.
10.1007/978-3-319-22786-3_13 Google Scholar
- Yuan , Y. , Raubal , M. and Liu , Y. ( 2012a ). Correlating mobile phone usage and travel behavior–a case study of Harbin, China . Computers, Environment and Urban Systems , 36 ( 2 ): 118 – 130 .
-
Yuan , J.
,
Zheng , Y.
and
Xie , X.
(
2012b
).
Discovering regions of different functions in a city using human mobility and POIs
.
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Beijing, China. New York, NY, USA
:
Association for Computing Machinery
.
10.1145/2339530.2339561 Google Scholar
- Yuan , Y. , Liu , Y. and Wei , G. ( 2017 ). Exploring inter-country connection in mass media: a case study of China . Computers, Environment and Urban Systems , 62 : 86 – 96 .
- Yuan , Y. , Lu , Y. , Chow , T. E. , Ye , C. , Alyaqout , A. and Liu , Y. ( 2020 ). The missing parts from social media–enabled smart cities: who, where, when, and what? Annals of the American Association of Geographers , 110 ( 2 ): 462 – 475 .
- Yue , Y. , Lan , T. , Yeh , A. G. O. and Li , Q.-Q. ( 2014 ). Zooming into individuals to understand the collective: a review of trajectory-based travel behaviour studies . Travel Behaviour and Society , 1 ( 2 ): 69 – 78 .
- Zhai , W. , Bai , X. , Shi , Y. , Han , Y. , Peng , Z.-R. and Gu , C. ( 2019 ). Beyond Word2vec: an approach for urban functional region extraction and identification by combining Place2vec and POIs . Computers, Environment and Urban Systems , 74 : 1 – 12 .
- Zhang , K. S. , Sun , D. , Shen , S. W. and Zhu , Y. ( 2017 ). Analyzing spatiotemporal congestion pattern on urban roads based on taxi GPS data . Journal of Transport and Land Use , 10 ( 1 ): 675 – 694 .
- Zhang , F. , Hu , M. , Che , W. , Lin , H. and Fang , C. ( 2018a ). Framework for virtual cognitive experiment in virtual geographic environments . ISPRS International Journal of Geo-Information , 7 ( 1 ): 36 – 36 .
- Zhang , F. , Zhang , D. , Liu , Y. and Lin , H. ( 2018b ). Representing place locales using scene elements . Computers, Environment and Urban Systems , 71 : 153 – 164 .
- Zhang , F. , Zhou , B. , Liu , L. , Liu , Y. , Fung , H. H. , Lin , H. and Ratti , C. ( 2018c ). Measuring human perceptions of a large-scale urban region using machine learning . Landscape and Urban Planning , 180 : 148 – 160 .
- Zhang , F. , Wu , L. , Zhu , D. and Liu , Y. ( 2019a ). Social sensing from street-level imagery: a case study in learning spatio-temporal urban mobility patterns . ISPRS Journal of Photogrammetry and Remote Sensing , 153 : 48 – 58 .
- Zhang , F. , Zhou , B. , Ratti , C. and Liu , Y. ( 2019b ). Discovering place-informative scenes and objects using social media photos . Royal Society Open Science , 6 ( 3 ): 181375 .
- Zhang , Y. , Li , Q. , Tu , W. , Mai , K. , Yao , Y. and Chen , Y. ( 2019c ). Functional urban land use recognition integrating multi-source geospatial data and cross-correlations . Computers, Environment and Urban Systems , 78 : 101374 – 101374 .
- Zhang , F. , Zu , J. , Hu , M. , Zhu , D. , Kang , Y. , Gao , S. , Zhang , Y. and Huang , Z. ( 2020 ). Uncovering inconspicuous places using social media check-ins and street view images . Computers, Environment and Urban Systems , 81 : 101478 .
- Zhao , Z. , Shaw , S.-L. , Xu , Y. , Lu , F. , Chen , J. and Yin , L. ( 2016 ). Understanding the bias of call detail records in human mobility research . International Journal of Geographical Information Science , 30 ( 9 ): 1738 – 1762 .
-
Zhao , H.
,
Shi , J.
,
Qi , X.
,
Wang , X.
and
Jia , J.
(
2017
).
Pyramid scene parsing network
.
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
,
Honolulu, United States. Columbus, United States
:
IEEE
.
10.1109/CVPR.2017.660 Google Scholar
- Zheng , S. , Wang , J. , Sun , C. , Zhang , X. and Kahn , M. E. ( 2019 ). Air pollution lowers Chinese urbanites’ expressed happiness on social media . Nature Human Behaviour , 3 ( 3 ): 237 – 243 .
-
Zhou , B.
,
Zhao , H.
,
Puig , X.
,
Fidler , S.
,
Barriuso , A.
and
Torralba , A.
(
2017
).
Scene parsing through ADE20K dataset
.
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
,
Honolulu, United States. Columbus, United States
:
IEEE
.
10.1109/CVPR.2017.544 Google Scholar
- Zhu , D. , Wang , N. , Wu , L. and Liu , Y. ( 2017 ). Street as a big geo-data assembly and analysis unit in urban studies: a case study using Beijing taxi data . Applied Geography , 86 : 152 – 164 .
- Zhu , D. , Zhang , F. , Wang , S. , Wang , Y. , Cheng , X. , Huang , Z. and Liu , Y. ( 2020 ). Understanding place characteristics in geographic contexts through graph convolutional neural networks . Annals of the American Association of Geographers , 110 ( 2 ): 408 – 420 .
- Zhuo , L. , Shi , Q. , Zhang , C. , Li , Q. and Tao , H. ( 2019 ). Identifying building functions from the spatiotemporal population density and the interactions of people among buildings . ISPRS International Journal of Geo-Information , 8 ( 6 ): 247 – 247 .