Neglected Tropical Diseases, Phytochemicals, Protein Targets, and Mechanisms in Drug Discovery
Lalit R. Samant
Molecular Genetics Research Laboratory, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
Search for more papers by this authorTehseen M. Dhorajiwala
Dhorajiwala, Freelance Bioinformatician, Thane, Maharashtra, India
Search for more papers by this authorSumit T. Haldar
Freelance Bioinformatician, Thane, Maharashtra, India
Search for more papers by this authorLalit R. Samant
Molecular Genetics Research Laboratory, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
Search for more papers by this authorTehseen M. Dhorajiwala
Dhorajiwala, Freelance Bioinformatician, Thane, Maharashtra, India
Search for more papers by this authorSumit T. Haldar
Freelance Bioinformatician, Thane, Maharashtra, India
Search for more papers by this authorChukwuebuka Egbuna
Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria
Search for more papers by this authorMuhammad Akram
Government College University, Faisalabad, Pakistan
Search for more papers by this authorJonathan Chinenye Ifemeje
Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria
Search for more papers by this authorSummary
Neglected tropical diseases (NTDs) affect more than one billion people across 149 countries, mostly targeting populations who live in poverty and lack proper sanitation. NTD infections are either transmitted by vectors or are acquired by coming in direct contact with the disease-causing parasitic agents. NTDs targeted in this review article are African trypanosomiasis, Buruli ulcer, Chagas disease, Chikungunya, Dengue, Leishmaniasis, Leprosy, Lymphatic filariasis, Mycetoma, Onchocerciasis, Rabies, Scabies, and Schistosomiasis. With the growing need for efficient and cheaper drugs, which can be retrieved from natural sources and have no or fewer side effects, this chapter focuses on the identification of such phytochemicals from plant extracts against NTDs. Above mentioned NTDs are discussed independently with a list of phytochemicals active against that NTD.
References
- WHO ( 2019 ). Neglected tropical diseases . https://www.who.int/neglected_diseases/diseases/en (accessed 20 May 2021).
- Molyneux , D.H. , Hotez , P.J. , and Fenwick , A. ( 2005 ). “Rapid-impact interventions”: how a policy of integrated control for Africa's neglected tropical diseases could benefit the poor . PLoS Medicine 2 ( 11 ): 1064 – 1070 . https://doi.org/10.1371/journal.pmed.0020336 .
-
Mitra , A.K.
and
Mawson , A.R.
(
2020
).
Neglected tropical diseases: epidemiology and global burden
.
Tropical Medicine and Infectious Disease
2
(
3
):
36
.
https://doi.org/10.3390/tropicalmed2030036
.
10.3390/tropicalmed2030036 Google Scholar
- Brun , R. , Blum , J. , Chappuis , F. , and Burri , C. ( 2010 ). Reading L6- human African trypanosomiasis . Lancet 375 ( 9709 ): 148 – 159 . https://doi.org/10.1016/S0140-6736(09)60829-1 .
- WHO ( 2018 ). Trypanosomiasis, human African (sleeping sickness) . https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (accessed 20 May 2021).
- Kennedy , P.G.E. ( 2013 ). Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness) . The Lancet Neurology 12 ( 2 ): P186 – P194 . https://doi.org/10.1016/S1474-4422(12)70296-X .
- Simarro , P.P. , Jannin , J. , and Cattand , P. ( 2008 ). Eliminating human African trypanosomiasis: where do we stand and what comes next? PLoS Medicine 5 ( 2 ): e55 . https://doi.org/10.1371/journal.pmed.0050055 .
- Stich , A. , Abel , P.M. , and Krishna , S. ( 2002 ). Human African trypanosomiasis . BMJ (Clinical Research ed.) 325 ( 7357 ): 203 – 206 .
- Adjogatse , E. , Erskine , P. , Wells , S.A. et al. ( 2018 ). Structure and function of l -threonine-3-dehydrogenase from the parasitic protozoan Trypanosoma brucei revealed by X-ray crystallography and geometric simulations . Acta Crystallographica Section D: Structural Biology 74 ( 9 ): 861 – 876 . https://doi.org/10.1107/S2059798318009208 .
- Schmidt , T.J. , Khalid , S.A. , Romanha , A.J. et al. ( 2012 ). The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases – Part I . Current Medicinal Chemistry 19 ( 14 ): 2128 – 2175 .
- Schmidt , T.J. , Khalid , S.A. , Romanha , A.J. et al. ( 2012 ). The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases – Part II . Current Medicinal Chemistry 19 ( 14 ): 2176 – 2228 .
- Hoet , S. , Opperdoes , F. , Brun , R. , and Quetin-Leclercq , J. ( 2004 ). Natural products active against African trypanosomes: a step towards new drugs . Natural Product Reports 21 : 353 – 364 . https://doi.org/10.1039/b311021b .
- Wink , M. ( 2012 ). Medicinal plants: a source of anti-parasitic secondary metabolites . Molecules 17 ( 11 ): 12771 – 12791 . https://doi.org/10.3390/molecules171112771 .
- Portaels , F. , Silva , M.T. , and Meyers , W.M. ( 2009 ). Buruli ulcer . Clinics in Dermatology 27 ( 3 ): 291 – 305 . https://doi.org/10.1016/j.clindermatol.2008.09.021 .
- Wansbrough-Jones , M. and Phillips , R. ( 2006 ). Buruli ulcer: emerging from obscurity . Lancet 367 : P1849 – P1858 . https://doi.org/10.1016/S0140-6736(06)68807-7 .
- Silva , M.T. , Portaels , F. , and Pedrosa , J. ( 2009 ). Pathogenetic mechanisms of the intracellular parasite Mycobacterium ulcerans leading to Buruli ulcer . The Lancet Infectious Diseases 9 ( 11 ): P699 – P710 . https://doi.org/10.1016/S1473-3099(09)70234-8 .
- Vickery , C.R. , Kosa , N.M. , Casavant , E.P. et al. ( 2014 ). Structure, biochemistry, and inhibition of essential 4′-phosphopantetheinyl transferases from two species of Mycobacteria . ACS Chemical Biology 9 ( 9 ): 1939 – 1944 . https://doi.org/10.1021/cb500263p .
- Johnson , P.D.R. , Stinear , T. , Small , P.L.C. et al. ( 2005 ). Buruli ulcer ( M. ulcerans infection): new insights, new hope for disease control . PLoS Medicine 2 : 0282 – 0286 . https://doi.org/10.1371/journal.pmed.0020108 .
- Bamberger , D. , Jantzer , N. , Leidner , K. et al. ( 2011 ). Fighting mycobacterial infections by antibiotics, phytochemicals and vaccines . Microbes and Infection 13 ( 7 ): 613 – 623 . https://doi.org/10.1016/j.micinf.2010.09.002 .
- Tsouh Fokou , P.V. , Nyarko , A.K. , Appiah-Opong , R. et al. ( 2015 ). Ethnopharmacological reports on anti-Buruli ulcer medicinal plants in three West African countries . Journal of Ethnopharmacology 172 : 297 – 311 . https://doi.org/10.1016/j.jep.2015.06.024 .
- Pérez-Molina , J.A. , Perez , A.M. , Norman , F.F. et al. ( 2015 ). Old and new challenges in Chagas disease . The Lancet Infectious Diseases 15 ( 11 ): P1347 – P1356 . https://doi.org/10.1016/S1473-3099(15)00243-1 .
- WHO ( 2018 ). Chagas disease (American trypanosomiasis) . https://www.who.int/chagas/home_more/en (accessed 20 May 2021).
- Rassi , A. , Rassi , A. , and Marin-Neto , J.A. ( 2010 ). Chagas disease . The Lancet 375 ( 9723 ): 1388 – 1402 . https://doi.org/10.1016/s0140-6736(10)60061-x .
- Pérez-Molina , J.A. and Molina , I. ( 2018 ). Seminar Chagas disease . The Lancet 391 : 82 – 94 . https://doi.org/10.1016/S0140-6736(17)31612-4 .
- CDC ( 2015 ). Parasites – American trypanosomiasis (also known as Chagas Disease) . https://www.cdc.gov/parasites/chagas/biology.html (accessed 20 May 2021).
- Beltran-Hortelano , I. , Perez-Silanes , S. , and Galiano , S. ( 2017 ). Trypanothione reductase and superoxide dismutase as current drug targets for trypanosoma cruzi: an overview of compounds with activity against Chagas disease . Current Medicinal Chemistry 24 ( 11 ): 1066 – 1138 . https://doi.org/10.2174/0929867323666161227094049 .
- Amdekar , S. , Parashar , D. , and Alagarasu , K. ( 2017 ). Chikungunya virus-induced arthritis: role of host and viral factors in the pathogenesis . Viral Immunology 30 ( 10 ): 691 – 702 . https://doi.org/10.1089/vim.2017.0052 .
- Thiberville , S.D. , Moyen , N. , Dupuis-Maguiraga , L. et al. ( 2013 ). Chikungunya fever: epidemiology, clinical syndrome, pathogenesis, and therapy . Antiviral Research 99 ( 3 ): 345 – 370 . https://doi.org/10.1016/j.antiviral.2013.06.009 .
- Saisawang , C. , Kuadkitkan , A. , Smith , D.R. et al. ( 2017 ). Glutathionylation of chikungunya nsP2 protein affects protease activity . Biochimica et Biophysica Acta, General Subjects 1861 ( 2 ): 106 – 111 . https://doi.org/10.1016/j.bbagen.2016.10.024 .
- Rashad , A.A. , Mahalingam , S. , and Keller , P.A. ( 2014 ). Chikungunya virus: emerging targets and new opportunities for medicinal chemistry . Journal of Medicinal Chemistry 57 ( 4 ): 1147 – 1166 . https://doi.org/10.1021/jm400460d .
- Caglioti , C. , Lalle , E. , Castilletti , C. et al. ( 2013 ). Chikungunya virus infection: an overview . New Microbiologica 36 ( 3 ): 211 – 227 .
- Murali , K.S. , Sivasubramanian , S. , Vincent , S. et al. ( 2015 ). Anti-chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon . Asian Pacific Journal of Tropical Medicine 8 ( 5 ): 352 – 358 . https://doi.org/10.1016/S1995-7645(14)60343-6 .
- Gómez-Calderón , C. , Mesa-Castro , C. , Robledo , S. et al. ( 2017 ). Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections . BMC Complementary and Alternative Medicine 17 ( 1 ) https://doi.org/10.1186/s12906-017-1562-1 .
- Lani , R. , Hassandarvish , P. , Chiam , C.W. et al. ( 2015 ). Antiviral activity of silymarin against chikungunya virus . Scientific Reports 5 https://doi.org/10.1038/srep11421 .
- Corlay , N. , Delang , L. , Girard-Valenciennes , E. et al. ( 2014 ). Tigliane diterpenes from Croton mauritianus as inhibitors of chikungunya virus replication . Fitoterapia 97 : 87 – 91 . https://doi.org/10.1016/j.fitote.2014.05.015 .
- Ranjit , S. and Kissoon , N. ( 2011 ). Dengue hemorrhagic fever and shock syndromes . Pediatric Critical Care Medicine 12 ( 1 ): 90 – 100 . https://doi.org/10.1097/PCC.0b013e3181e911a7 .
- Rajapakse , S. , Rodrigo , C. , and Rajapakse , A. ( 2012 ). Treatment of dengue fever . Infection and Drug Resistance 5 : 103 – 112 .
- Kularatne , S.A.M. ( 2015 ). Dengue fever . BMJ : h4661 . https://doi.org/10.1136/bmj.h4661 .
- Rodenhuis-Zybert , I.A. , Wilschut , J. , and Smit , J.M. ( 2010 ). Dengue virus life cycle: viral and host factors modulating infectivity . Cellular and Molecular Life Sciences 67 : 2773 – 2786 . https://doi.org/10.1007/s00018-010-0357-z .
-
El Sahili , A.
and
Lescar , J.
(
2017
).
Dengue virus nonstructural protein 5
.
Viruses
9
(
4
):
91
.
https://doi.org/10.3390/v9040091
.
10.3390/v9040091 Google Scholar
- Dwivedi , V.D. , Tripathi , I.P. , Tripathi , R.C. et al. ( 2017 ). Genomics, proteomics, and evolution of dengue virus . Briefings in Functional Genomics 16 ( 4 ): 217 – 227 . https://doi.org/10.1093/bfgp/elw040 .
- Martina , B.E.E. , Koraka , P. , and Osterhaus , A.D.M.E. ( 2009 ). Dengue virus pathogenesis: an integrated view . Clinical Microbiology Reviews 22 ( 4 ): 564 – 581 . https://doi.org/10.1128/CMR.00035-09 .
- Carrington , L.B. and Simmons , C.P. ( 2014 ). Human to mosquito transmission of dengue viruses . Frontiers in Immunology https://doi.org/10.3389/fimmu.2014.00290 .
- Dengue Virus Net ( 2019 ). Treatment of dengue . http://www.denguevirusnet.com/treatment/8-treatment-of-dengue.html (accessed 20 May 2021).
- Moghaddam , E. , Teoh , B.T. , Sam , S.S. et al. ( 2014 ). Baicalin, a metabolite of baicalein with antiviral activity against dengue virus . Scientific Reports 4 https://doi.org/10.1038/srep05452 .
- Silva , A.R.A. , Morais , S.M. , Marques , M.M.M. et al. ( 2011 ). Antiviral activities of extracts and phenolic components of two Spondias species against dengue virus . Journal of Venomous Animals and Toxins Including Tropical Diseases 17 ( 4 ): 406 – 413 .
- Simões , L.R. , Maciel , G.M. , Brandão , G.C. et al. ( 2011 ). Antiviral activity of Distictella elongata (Vahl) Urb. (Bignoniaceae), a potentially useful source of anti-dengue drugs from the state of Minas Gerais, Brazil . Letters in Applied Microbiology 53 ( 6 ): 602 – 607 . https://doi.org/10.1111/j.1472-765X.2011.03146.x .
- WHO ( 2018 ). Leishmaniasis . https://www.who.int/leishmaniasis/en (accessed 20 May 2021).
- CDC ( 2018 ). Parasites – leishmaniasis . https://www.cdc.gov/parasites/leishmaniasis/biology.html (accessed 20 May 2021).
- Barrett , M.P. and Croft , S.L. ( 2012 ). Management of trypanosomiasis and leishmaniasis . British Medical Bulletin 104 ( 1 ): 175 – 196 . https://doi.org/10.1093/bmb/lds031 .
- Aronson , N. , Herwaldt , B.L. , Libman , M. et al. ( 2017 ). Diagnosis and treatment of leishmaniasis: clinical practice guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH)* . American Society of Tropical Medicine and Hygiene 96 ( 1 ): 24 – 45 . https://doi.org/10.4269/ajtmh.16-84256 .
- DrugBank ( 2018 ). Amphotericin B . https://www.drugbank.ca/drugs/DB00681 (accessed 20 May 2021).
- Saha , A.K. , Mukherjee , T. , and Bhaduri , A. ( 1986 ). Mechanism of action of amphotericin B on Leishmania donovani promastigotes . Molecular and Biochemical Parasitology 19 : 195 – 200 .
- DrugBank ( 2019 ). Paromomycin . https://www.drugbank.ca/drugs/DB01421 (accessed 20 May 2021).
- Chawla , B. , Jhingran , A. , Panigrahi , A. et al. ( 2011 ). Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin – susceptible – resistant Leishmania donovani . PLoS One 6 ( 10 ) https://doi.org/10.1371/journal.pone.0026660 .
- Ogungbe , I.V. , Erwin , W.R. , and Setzer , W.N. ( 2014 ). Antileishmanial phytochemical phenolics: molecular docking to potential protein targets . Journal of Molecular Graphics and Modelling 48 : 105 – 117 . https://doi.org/10.1016/j.jmgm.2013.12.010 .
- Mishra , B.B. , Singh , R.K. , Srivastava , A. et al. ( 2009 ). Fighting against leishmaniasis: search of alkaloids as future true potential anti-leishmanial agents . Mini-Reviews in Medicinal Chemistry 9 ( 1 ): 107 – 123 .
- WHO ( 2019 ). Leprosy . https://www.who.int/news-room/fact-sheets/detail/leprosy (accessed 20 May 2021).
-
Bhat , R.M.
and
Prakash , C.
(
2012
).
Leprosy: an overview of pathophysiology
.
Interdisciplinary Perspectives on Infectious Diseases
2012
:
1
–
6
.
https://doi.org/10.1155/2012/181089
.
10.1155/2012/181089 Google Scholar
- Lastória , J.C. and de Abreu , M.A.M.M. ( 2014 ). Leprosy: review of the epidemiological, clinical, and etiopathogenic aspects – Part 1 . Anais Brasileiros de Dermatologia 89 ( 2 ): 205 – 218 . https://doi.org/10.1590/abd1806-4841.20142450 .
- Anusuya , S. and Natarajan , J. ( 2013 ). The eradication of leprosy: molecular modeling techniques for novel drug discovery . Expert Opinion on Drug Discovery 8 ( 10 ): 1239 – 1251 . https://doi.org/10.1517/17460441.2013.826188 .
- Talhari , C. , Talhari , S. , and Penna , G.O. ( 2015 ). Clinical aspects of leprosy . Clinics in Dermatology 33 ( 1 ): 26 – 37 . https://doi.org/10.1016/j.clindermatol.2014.07.002 .
- Leprosy, Chapter: 5. Pathogenesis , 10 – 22 . http://nlep.nic.in/pdf/Ch%205%20Pathogenesis.pdf
- CDC (n.d.). Hansen's disease (leprosy) diagnosis and treatment . https://www.cdc.gov/leprosy/treatment/index.html (accessed 20 May 2021).
- Ghosh , G. ( 2017 ). Traditional use of plants against leprosy in India: a review of the recent literature . Journal of Innovations in Pharmaceutical and Biological Sciences 4 ( 4 ): 55 – 64 .
- Sahoo , M.R. , Dhanabal , S.P. , Jadhav , A.N. et al. ( 2014 ). Hydnocarpus: an ethnopharmacological, phytochemical and pharmacological review . Journal of Ethnopharmacology 154 ( 1 ): 17 – 25 . https://doi.org/10.1016/j.jep.2014.03.029 .
- WHO ( 2018 ). Lymphatic filariasis . https://www.who.int/lymphatic_filariasis/en (accessed 20 May 2021).
- CDC ( 2018 ). Parasites – lymphatic filariasis . https://www.cdc.gov/parasites/lymphaticfilariasis/biology_w_bancrofti.html (accessed 20 May 2021).
- Thomsen , E.K. , Sanuku , N. , Baea , M. et al. ( 2016 ). Efficacy, safety, and pharmacokinetics of coadministered diethylcarbamazine, albendazole, and ivermectin for treatment of bancroftian filariasis . Clinical Infectious Diseases 62 ( 3 ): 334 – 341 . https://doi.org/10.1093/cid/civ882 .
- DrugBank ( 2018 ). Albendazole . https://www.drugbank.ca/drugs/DB00518 (accessed 20 May 2021).
- Sharma , O.P. , Pan , A. , Hoti , S.L. et al. ( 2012 ). Modeling, docking, simulation, and inhibitory activity of the benzimidazole analogue against β-tubulin protein from Brugia malayi for treating lymphatic filariasis . Medicinal Chemistry Research 21 : 2415 – 2427 . https://doi.org/10.1007/s00044-011-9763-5 .
- Choi , T. , Cho , J.H. , Ahnn , J. , and Song , H. ( 2018 ). Novel findings of anti-filarial drug target and structure-based virtual screening for drug discovery . International Journal of Molecular Sciences 19 ( 11 ): 3579 . https://doi.org/10.3390/ijms19113579 .
- Sashidhara , K.V. , Singh , S.P. , Misra , S. et al. ( 2012 ). Galactolipids from Bauhinia racemosa as a new class of anti filarial agents against the human lymphatic filarial parasite, Brugia malayi . European Journal of Medicinal Chemistry 50 : 230 – 235 . https://doi.org/10.1016/j.ejmech.2012.01.057 .
- Kalani , K. , Kushwaha , V. , Verma , R. et al. ( 2013 ). Glycyrrhetinic acid and its analogs: a new class of antifilarial agents . Bioorganic & Medicinal Chemistry Letters 23 ( 9 ): 2566 – 2570 . https://doi.org/10.1016/j.bmcl.2013.02.115 .
- Ranjini , G. , Selvakumari , E. , and Gopal , V. ( 2013 ). Perception of natural antifilarial drugs . International Research Journal of Pharmacy 4 ( 1 ): 27 – 30 .
- WHO ( 2018 ). Mycetoma . https://www.who.int/buruli/mycetoma/en (accessed 20 May 2021).
- Relhan , V. , Mahajan , K. , Agarwal , P. , and Garg , V.K. ( 2017 ). Mycetoma: an update . Indian Journal of Dermatology 62 ( 4 ): 332 – 340 . https://doi.org/10.4103/ijd.IJD_476_16 .
- Welsh , O. , Al-Abdely , H.M. , Salinas-Carmona , M.C. , and Fahal , A.H. ( 2014 ). Mycetoma medical therapy . PLoS Neglected Tropical Diseases 8 ( 10 ) https://doi.org/10.1371/journal.pntd.0003218 .
- DrugBank ( 2018 ). Itraconazole . https://www.drugbank.ca/drugs/DB01167 (accessed 20 May 2021).
- DrugBank ( 2019 ). Amikacin . https://www.drugbank.ca/drugs/DB00479 (accessed 20 May 2021).
- DrugBank ( 2019 ). Gentamicin . https://www.drugbank.ca/drugs/DB00798 (accessed 20 May 2021).
- DrugBank ( 2018 ). Netilmicin . https://www.drugbank.ca/drugs/DB00955 (accessed 20 May 2021).
- DrugBank ( 2019 ). Streptomycin . https://www.drugbank.ca/drugs/DB01082 (accessed 20 May 2021).
- DrugBank ( 2019 ). Tobramycin . https://www.drugbank.ca/drugs/DB00684 (accessed 20 May 2021).
- DrugBank ( 2019 ). Rifampicin . https://www.drugbank.ca/drugs/DB01045 (accessed 20 May 2021).
- DrugBank ( 2019 ). Meropenem . https://www.drugbank.ca/drugs/DB00760 (accessed 20 May 2021).
- Elfadil , H. , Fahal , A. , Kloezen , W. et al. ( 2015 ). The in vitro antifungal activity of Sudanese medicinal plants against Madurella mycetomatis , the eumycetoma major causative agent . PLoS Neglected Tropical Diseases 9 ( 3 ) https://doi.org/10.1371/journal.pntd.0003488 .
- WHO ( 2018 ). Onchocerciasis . https://www.who.int/onchocerciasis/en (accessed 20 May 2021).
- CDC ( 2013 ). Parasites – Onchocerciasis (also known as river blindness) . https://www.cdc.gov/parasites/onchocerciasis/biology.html (accessed 20 May 2021).
- Hoerauf , A. , Mand , S. , Volkmann , L. et al. ( 2003 ). Doxycycline in the treatment of human onchocerciasis: kinetics of Wolbachia endobacteria reduction and of inhibition of embryogenesis in female Onchocerca worms . Microbes and Infection 5 : 261 – 273 .
- DrugBank ( 2019 ). Ivermectin . https://www.drugbank.ca/drugs/DB00602 (accessed 20 May 2021).
- SMPDB ( 2018 ). Doxycycline action pathway . http://smpdb.ca/view/SMP0000291?highlight[compounds][]=DB00254&highlight[proteins][]=DB00254 (accessed 20 May 2021).
- DrugBank ( 2019 ). Doxycycline . https://www.drugbank.ca/drugs/DB00254 (accessed 20 May 2021).
- Gloeckner , C. , Garner , A.L. , Mersha , F. et al. ( 2009 ). Repositioning of an existing drug for the neglected tropical disease Onchocerciasis . PNAS 107 ( 8 ): 3424 – 3429 . https://doi.org/10.1073/pnas.0915125107 .
- Metuge , J.A. , Smith , B.B. , James , A.M. et al. ( 2014 ). Anti-onchocerca metabolites from Cyperus articulatus : isolation, in vitro activity, and in silico “drug-likeness.” . Natural Products and Bioprospecting 4 : 243 – 249 . https://doi.org/10.1007/s13659-014-0023-5 .
- Nigg , A.J. and Walker , P.L. ( 2009 ). Overview, prevention, and treatment of rabies . Pharmacotherapy 29 ( 10 ): 1182 – 1195 . https://doi.org/10.1592/phco.29.10.1182 .
- Yousaf , M.Z. , Qasim , M. , Zia , S. et al. ( 2012 ). Rabies molecular virology, diagnosis, prevention, and treatment . Virology Journal 9 : 50 . https://doi.org/10.1186/1743-422X-9-5022348291 .
- Zhu , S. and Guo , C. ( 2016 ). Rabies control and treatment: from prophylaxis to strategies with curative potential . Viruses 8 ( 11 ): 279 . https://doi.org/10.3390/v8110279 .
- UniProt (n.d.). UniProtKB – P03524 (GLYCO_RABVE) Glycoprotein . https://www.uniprot.org/uniprot/P03524#function (accessed 20 May 2021).
- Rupprecht , C.E. ( 1996 . Chapter 61. https://www.ncbi.nlm.nih.gov/books/NBK8618 ). Rhabdoviruses: rabies virus . In: Medical Microbiology , 4e (ed. S. Baron ). Galveston, TX : University of Texas Medical Branch at Galveston (accessed 20 May 2021).
- Koury , R. and Warrington , S.J. ( 2019 ). Rabies [Updated 18 November 2018]. In: StatPearls [Internet]. Treasure Island, FL : StatPearls Publishing https://www.ncbi.nlm.nih.gov/books/NBK448076 (accessed 20 May 2021).
-
Meresa , A.
,
Moges , H.
,
Tadele , A.
et al. (
2017
).
Medicinal plants used for the management of rabies in Ethiopia – a review
.
Medicinal Chemistry
7
(
2
):
795
–
806
.
https://doi.org/10.4172/2161-0444.1000431
.
10.4172/2161-0444.1000431 Google Scholar
- Yahia , E.M. ( 2018 ). Onion (page 1152), Fruit and Vegetable Phytochemicals , 2e . Mexico : Wiley Blackwell .
- WHO ( 2018 ). Scabies . https://www.who.int/lymphatic_filariasis/epidemiology/scabies/en (accessed 20 May 2021).
- CDC . ( 2010 ). Parasites-Scabies . https://www.cdc.gov/parasites/scabies/biology.html (accessed 20 May 2021).
- Laing , R. , Gillan , V. , and Devaney , E. ( 2017 ). Ivermectin – old drug, new tricks? Trends in Parasitology 33 : P463 – P472 . https://doi.org/10.1016/j.pt.2017.02.004 .
- DrugBank ( 2019 ). Permethrin . https://www.drugbank.ca/drugs/DB04930 (accessed 20 May 2021).
- DrugBank ( 2018 ). Malathion . https://www.drugbank.ca/drugs/DB00772 (accessed 20 May 2021).
- DrugBank ( 2019 ). Benzyl benzoate . https://www.drugbank.ca/drugs/DB00676 (accessed 20 May 2021).
- DrugBank ( 2019 ). Sulfur . https://www.drugbank.ca/drugs/DB09353 (accessed 20 May 2021).
-
Van Puyvelde , L.
,
Heyndrickx , G.
,
Brioen , P.
et al. (
1990
).
Development of an anti-scabies drug from the roots of neorautanenia mitis
.
Planta Medica
56
(
6
):
643
.
https://doi.org/10.1055/s-2006-961289
.
10.1055/s-2006-961289 Google Scholar
- Walton , S.F. , Mckinnon , M. , Pizzutto , S. et al. ( 2004 ). Acaricidal activity of Melaleuca alternifolia (tea tree) oil: In vitro sensitivity of Sarcoptes scabiei var hominis to terpinen-4-ol . Archives of Dermatology 140 : 563 – 566 .
- Fang , F. , Candy , K. , Melloul , E. et al. ( 2016 ). In vitro activity of ten essential oils against Sarcoptes scabiei . Parasites & Vectors 9 : 594 . https://doi.org/10.1186/s13071-016-1889-3 .
- WHO ( 2018 ). Schistosomiasis . https://www.who.int/en/news-room/fact-sheets/detail/schistosomiasis (accessed 20 May 2021)
- CDC ( 2018 ). Parasites – Schistosomiasis . https://www.cdc.gov/parasites/schistosomiasis/biology.html (accessed 20 May 2021)
- Gryseels , B. , Polman , K. , Clerinx , J. , and Kestens , L. ( 2006 ). Human schistosomiasis . Lancet 368 ( 9541 ): 1106 – 1118 . https://doi.org/10.1016/S0140-6736(06)69440-3 .
- Vale , N. , Gouveia , M.J. , Rinaldi , G. et al. ( 2017 ). Praziquantel for schistosomiasis: single-drug metabolism revisited, mode of action, and resistance . Antimicrobial Agents and Chemotherapy 61 ( 5 ): e02582-16 . https://doi.org/10.1128/AAC.02582-16 .
- Doenhoff , M.J. , Cioli , D. , and Utzinger , J. ( 2008 ). Praziquantel: mechanisms of action, resistance, and new derivatives for schistosomiasis . Current Opinion in Infectious Diseases 21 ( 6 ): 659 – 667 . https://doi.org/10.1097/QCO.0b013e328318978f .
- Ali , S.A. , El-regal , N.S. , and Saeed , S.M. ( 2015 ). Antischistosomal activity of two active constituents isolated from the leaves of Egyptian medicinal plants . Infectious Diseases: Research and Treatment : 5 – 16 . https://doi.org/10.4137/IDRT.S24342 .
-
Ghareeb , M.A.
,
Habib , M.R.
,
Mossalem , H.S.
, and
Abdel-Aziz , M.S.
(
2018
).
Phytochemical analysis of
Eucalyptus camaldulensis
leaves extracts and testing its antimicrobial and schistosomicidal activities
.
Bulletin of the National Research Centre
42
(
1
):
16
.
https://doi.org/10.1186/s42269-018-0017-2
.
10.1186/s42269-018-0017-2 Google Scholar
- De Moraes , J. ( 2008 ). Antischistosomal natural compounds: present challenges for new drug screens . In: Current Topics in Tropical Medicine (ed. A.J. Rodriguez-Morales ), 333 – 358 . Intech Open .