Chapter 1
Applications of Microorganisms in Agriculture for Nutrients Availability
Fehmida Fasim,
Bushra Uziar,
Fehmida Fasim
Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Australia
Search for more papers by this authorBushra Uziar
Department of Bioinformatics and Biotechnology, Islamabad Capital Territory, International Islamic University, Islamabad
Search for more papers by this authorFehmida Fasim,
Bushra Uziar,
Fehmida Fasim
Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Australia
Search for more papers by this authorBushra Uziar
Department of Bioinformatics and Biotechnology, Islamabad Capital Territory, International Islamic University, Islamabad
Search for more papers by this authorBook Editor(s):Nazia Jamil,
Prasun Kumar,
Rida Batool,
Nazia Jamil
Search for more papers by this authorPrasun Kumar
Search for more papers by this authorRida Batool
Search for more papers by this authorFirst published: 27 November 2019
Abstract
This chapter contains sections titled:
- Introduction
- Biofertilizers
- Rhizosphere
- Plant Growth Promoting Bacteria
- Microbial Mechanisms of Phosphate Solubilization
- Bacterial and Fungi Coinoculation
- Conclusion
References
- Cassman, K.G., Döbermann, A.D., Walters, D.T., Yang, H., Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour., 28, 315, 2005.
- Kirchmann, H., Katterer, T., Bergstrom, L., Borjesson, G., Bolinder, M.A., Flaws and criteria for design and evaluation of comparative organic and conventional cropping systems. Field Crops Res., 186, 99, 2016.
- Pimentel, D., Green revolution agriculture and chemical hazards. Sci. Total Environ., 188, S86, 1996.
- Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S., Agricultural sustainability and intensive production practices. Nature, 418, 671, 2002.
- Mamaril, C.P., Castillo, M.B., Sebastian, L.S., Facts and myths about organic fertilizers, Philippine Rice Research Institute (PhilRice), Muñoz, Nueva Ecija, Philippines, 2009.
- Timsina, J., Can organic materials supply enough nutrients to achieve food security? J. Agric. For. Univ., 2, 9, 2018.
- Vlek, P.L.G. and Vielhauer, K., Nutrient management strategies in stressed environments, in: Stressed ecosystems and sustainable agriculture, S.M. Virmani, J.C. Katyal, H. Eswaran, I.P. Abrol (Eds.), pp. 203–229, Oxford and IBH Publishing Co., New Delhi, India, 1994.
- Abdul Halim, N.B., Effects of using enhanced biofertilizer containing N-fixer bacteria on patchouli growth. Thesis. Faculty of Chemical and Natural Resources Engineering University Malaysia Pahang, 145, 2009.
- Walker, T.S., Bais, H.P., Grotewold, E., Vivanco, J.M., Root exudation and rhizosphere biology. Plant Physiol., 132, 44, 2003.
- Kloepper, J.W., Zablotowick, R.M., Tipping, E.M., Lifshitz, R., Plant growth promotion mediated by bacterial rhizosphere colonizers, in: The Rhizosphere and Plant Growth, D.L. Keister and P.B. Cregan (Eds.), pp. 315–326, Kluwer Academic Publishers, Dordrecht, Netherlands, 1991.
- Dakora, F.D. and Phillips, D.A., Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil, 245, 35, 2002.
- Kang, B.G., Kim, W.T., Yun, H.S., Chang, S.C., Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol. Rep., 4, 179, 2010.
- Nardi, S., Concheri, G., Pizzeghello, D., Sturaro, A., Rella, R., Parvoli, G., Soil organic matter mobilization by root exudates. Chemosphere, 5, 653, 2000.
- Compant, S., Mitter, B., Colli-Mull, J.G., Gangl, H., Sessitsch, A., Endophytes of grape vine flowers, berries, and seeds: Identification of cultivable bacteria, comparison with other plant parts and visualization of niches of colonization. Microb. Ecol., 62, 188–197, 2011.
- Marschner, H., Mineral Nutrition of Higher Plants, Academic Press, London, 1995.
- Dessaux, Y., Hinsinger, P., Lemanceau, P., Rhizosphere: So many achievements and even more challenges. Plant Soil, 321, 1, 2009.
- Barea, J.M., Pozo, M.J., Azcon, R., Aguilar, C.A., Microbial co-operation in the rhizosphere. J. Exp. Bot., 56, 1761, 2005.
- Kloepper, J.W. and Schroth, M.N., Plant growth promoting rhizobacteria on radishes, in: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, pp. 879–882, 1978.
- Kloepper, J.W., Rodriguez, R.U., Ubana, G.W., Zehnder, J.F., Murphy, E., Sikora, C.F., Plant root bacterial interactions in biological control of soil borne diseases and potential extension to systemic and foliar diseases. Australas. Plant Pathol., 28, 21, 1999.
- Gray, E.J. and Smith, D.L., Intracellular and extracellular PGPR: Commonalities and distinctions in the plant bacterium signalling processes. Soil Biol. Biochem., 37, 395, 2005.
- Hurek, T., Hurek, B.R., van Montagu, M., Kellenberger, E., Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J. Bacteriol., 176, 1913, 1994.
- Bell, C.R., Dickie, G.A., Harvey, W.L.G., Chan, J.W.Y.F., Endophytic bacteria in grapewine. Can. J. Microbiol., 41, 46, 1995.
- Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C., Barka, E.A., Endophytic colonization of Vitis vinifera L. by a plant growth promoting rhizobacterium Burkholderia sp. Strain PsJN. Appl. Environ. Microbiol., 71, 1685, 2005.
- Kloepper, J.W., Schippers, B., Bakker, P.A.H.M., Proposed elimination of the term endorhizsphere. Phytopathology, 82, 726, 1992.
- Hallman, J., Hallman, A.Q., Mahafee, W.F., Kloepper, J.W., Bacterial endophytes in agricultural crops. Can. J. Microbiol., 43, 895, 1997.
- Holguin, G. and Glick, B.R., Expression of the ACC deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense . Microb. Ecol., 41, 281, 2001.
- Tairo, E.V. and Ndakidemi, P.A., Possible benefits of Rhizobial inoculation and phosphorus supplementation on nutrition, growth and economic sustainability in grain legumes. Am. J. Res. Commun., 1, 12, 532, 2013.
- Hoffman, B.M., Dean, D.R., Seefeldt, L.C., Climbing nitrogenase: Toward a mechanism of enzymatic nitrogen fixation. Acc. Chem. Res., 42, 609, 2009.
- B.E. Smith, R.L. Richards, W.E. Newton (Eds.), Catalysts for nitrogen fixation: Nitrogenases, relevant chemical models and commercial processes, vol. 1, p. 340, Springer Science and Business Media, Heidelberg, Germany, 2013.
- Ahemad, M. and Khan, M.S., Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J. Saudi. Soc. Agric. Sci., 11, 63, 2012.
- Bhattacharyya, P.N. and Jha, D.K., Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World. J. Microbiol. Biotechnol., 28, 1327, 2012.
- Allito, B.B., Nana, E.M., Alemneh, A.A., Rhizobia strain and legume genome interaction effects on nitrogen fixation and yield of grain legume: A review. Mol. Soil Biol., 6, 1, 2015.
-
Verma, J.P., Yadav, J., Tiwari, K.N., Lavakush, S.V., Impact of plant growth promoting rhizobacteria on crop production. Int. J. Agric. Res., 5, 954, 2010.
10.3923/ijar.2010.954.983 Google Scholar
- Seefeldt, L.C., Hoffman, B.M., Dean, D.R., Mechanism of Modependent nitrogenase. Annu. Rev. Biochem., 78, 701, 2009.
- Burns, R.C. and Hardy, R.W., Nitrogen fixation in bacteria and higher plants, vol. 21, p. 192, Springer Science & Business Media, Heidelberg, Germany, 2012.
- Black, M., Moolhuijzen, P., Chapman, B., Barrero, R., Howieson, J., Hungria, M., Bellgard, M., The genetics of symbiotic nitrogen fixation: Comparative genomics of 14 Rhizobia strains by resolution of protein clusters. Genes, 3, 138, 2012.
-
Ahemad, M. and Kibret, M., Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud. Uni. Sci., 26, 1, 2014.
10.1016/j.jksus.2013.05.001 Google Scholar
- Shamseldin, A., The role of different genes involved in symbiotic nitrogen fixation—Review. Glob. J. Biotechnol. Biochem., 8, 84, 2013.
- Coppola, D., Giordano, D., Tinajero-Trejo, M., di Prisco, G., Ascenzi, P., Poole, R.K., Verde, C., Antarctic bacterial haemoglobin and its role in the protection against nitrogen reactive species. BBA-Proteins Proteom., 1834, 1923, 2013.
-
Glick, B.R., Plant growth promoting bacteria: Mechanisms and applications. Scientifica, 2012, 15, 2012.
10.6064/2012/963401 Google Scholar
-
Glick, B.R., Resource acquisition, in: Beneficial plant-bacterial interactions, pp. 29–63, Springer International Publishing, Heidelberg, Germany, 2015.
10.1007/978-3-319-13921-0_2 Google Scholar
- Abeles, F.B., Morgan, P.W., Saltveit, M.E., Jr., Ethylene in plant biology, Academic Press, Inc., San Diego, Elsevier, Amsterdam, 2012.
- Vijayan, R., Palaniappan, P., Tongmin, S.A., Padmanaban, E., Natesan, M., Rhizobitoxine enhances nodulation by inhibiting ethylene synthesis of Bradyrhizobium elkanii from lespedeza species: Validation by homology modeling and molecular docking study. World. J. Pharm. Pharm. Sci., 2, 4079, 2013.
- Nascimento, F.X., Brígido, C., Glick, B.R., Oliveira, S., ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant. FEMS Microbiol. Lett., 336, 26, 2012.
- Zahir, Z.A., Zafar-ul-Hye, M., Sajjad, S., Naveed, M., Comparative effectiveness of Pseudomonas and Serratia sp. containing ACCdeaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol. Fertil. Soils, 47, 457, 2011.
- Glick, B.R., Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res., 169, 30, 2014.
- Gourion, B., Berrabah, F., Ratet, P., Stacey, G., Rhizobium–legume symbioses: The crucial role of plant immunity. Trends. Plant. Sci., 20, 186, 2015.
- Youssef, M.M. and Eissa, M.F., Biofertilizers and their role in management of plant parasitic nematodes. A review. J. Biotechnol. Pharma. Res., 5, 1, 2014.
-
Mehnaz, S., Azospirillum: A biofertilizer for every crop, in: Plant microbe's symbiosis: Applied facets, pp. 297–314, Springer, New Delhi, India, 2015.
10.1007/978-81-322-2068-8_15 Google Scholar
- Mishra, D.J., Singh, R., Mishra, U.K., Kumar, S.S., Role of bio-fertilizer in organic agriculture: A review. Res. J. Recent. Sci., 2, 39, 2013.
- Mishra, P. and Dash, D., Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience. J. Sustain. Dev., 11, 41, 2014.
- Moraditochaee, M., Azarpour, E., Bozorgi, H.R., Study effects of biofertilizers, nitrogen fertilizer and farmyard manure on yield and physiochemical properties of soil in lentil farming. Int. J. Biosci., 4, 41, 2014.
- Mathivanan, R., Umavathi, S., Ramasamy, P.K., Thangam, Y., Influence of vermicompost on the activity of the plant growth regulators in the leaves of the Indian butter bean plant, Dolichos lab labL. Int. J. Adv. Res. Biol. Sci., 2, 84, 2015.
- Dobereiner, J., Day, J.M., Dart, P.J., Nitrogenase activity and oxygen sensitivity of the Paspalum notatum-Azotobacter paspali association. Microbiol., 71, 103, 1972.
- Babalola, O.O., Beneficial bacteria of agricultural importance. Biotechnol. Lett., 32, 1559, 2010.
-
Martin, X.M., Sumathi, C.S., Kannan, V.R., Influence of agrochemicals and Azotobacter sp. application on soil fertility in relation to maize growth under nursery conditions. Euroasia. J. Biosci., 5, 19, 2011.
10.5053/ejobios.2011.5.0.3 Google Scholar
-
Wani, S.A., Chand, S., Ali, T., Potential use of Azotobacter chroococcum in crop production: An overview. Curr. Agric. Res., 1, 35, 2013.
10.12944/CARJ.1.1.04 Google Scholar
- Mazid, M. and Khan, T.A., Future of bio-fertilizers in Indian agriculture: An overview. Int. J. Agric. Food. Res., 3, 10, 2015.
- Rovira, A.D., Interactions between plant roots and soil microorganisms. Annu. Rev. Microbiol., 19, 241, 1965.
- Feng, K., Lu, H.M., Sheng, H.J., Wang, X.L., Mao, J., Effect of organic ligands on biological availability of inorganic phosphorus in soils. Pedosphere, 14, 85, 2004.
- Noel, T.C., Sheng, C., Yost, C.K., Pharis, R.P., Hynes, M.F., Rhizobium leguminosarum as a plant growth promoting rhizobacterium: Direct growth promotion of canola and lettuce. Can. J. Microbiol., 42, 279, 1996.
- Antoun, H., Beauchamp, C.J., Goussard, N., Chabot, R., Lalande, R., Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant Soil, 204, 57, 1998.
- Chabot, R., Beauchamp, C.J., Kloepper, J.W., Antoun, H., Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of P solubilizing Rhizobium leguminosarum biovar phaseoli . Soil Biol. Biochem., 30, 1615, 1998.
- Kim, K.Y., Jordan, D., McDonald, G.A., Effect of phosphate solubilizing bacteria and vesicular–arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol. Fertil. Soils, 26, 79, 1998.
- Pal, S.S., Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil, 198, 169, 1998.
- Cattelan, A.J., Hartel, P.G., Fuhrmann, J.J., Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J., 63, 670, 1999.
- Jacoud, C., Job, D., Wadoux, P., Bally, R., Initiation of root growth stimulation by Azospirillum lipoferum CRT1 during maize seed germination. Can. J. Microbiol., 45, 339, 1999.
- de Freitas, J.R., Banerjee, M.R., Germida, J.J., Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fertil. Soils, 24, 358, 1997.
- Rodríguez, H. and Fraga, R., Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv., 17, 319, 1999.
- Seshachala, U. and Tallapragada, P., Phosphate solubilizers from the rhizosphere of Piper nigrum L. in Karnataka, India. Chil. J. Agr. Res., 72, 397, 2012.
- Zhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X. et al., Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol. Res., 169, 76, 2014.
- Goldstein, A.H., Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria, in: Phosphate in Microorganisms: Cellular and Molecular Biology, A. Torriani-Gorini, E. Yagil, S. Silver (Eds.), ASM Press, pp. 197–203, Washington, DC, 1994.
- Asea, P.E.A., Kucey, R.M.N., Stewart, J.W.B., Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem., 20, 459–464, 1988.
- Illmer, P. and Schinner, F., Solubilization of inorganic calcium phosphate solubilization mechanisms. Soil Biol. Biochem., 27, 257, 1995.
- Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., Gobi, T.A., Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus, 2, 587, 2013.
- Goldstein, A.H., Bioprocessing of rock phosphate ore: Essential technical considerations for the development of a successful commercial technology, in: Proceedings of the 4th International Fertilizer Association Technical Conference, IFA, Paris, 2000.
- Rodríguez, H., Rossolini, G.M., Gonzalez, T., Li, J., Glick, B.R., Isolation of a gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity. Curr. Microbiol., 40, 362, 2000.
- Kim, K.Y., McDonald, G.A., Jordan, D., Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol. Fertil. Soils, 24, 347, 1997.
- Browne, P., Rice, O., Miller, S.H., Burke, J., Dowling, D.N., Morrissey, J.P. et al., Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Appl. Soil Ecol., 43, 131, 2009.
- Zhu, F., Qu, L., Hong, X., Sun, X., Isolation and characterization of a phosphate solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of yellow sea of China. Evid. Based Complementary Altern. Med., 2011, 1–6, 2011.
- Alghazali, R., Muhammad, K., Al-gzawl, S.H.M., Some observations on P solubilization by aerobic microorganisms isolated d from sediments of Al Khair River Baghdad (Iraq). J. Biol. Sci. Res., 47, 157, 1986.
- Peix, A., Mateos, P.F., Rodríguez-Barrueco, C., Martínez-Molina, E., Velázquez, E., Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biol. Biochem., 33, 1927, 2001.
- Halvorson, H.O., Keynan, A., Kornberg, H.L., Utilization of calcium phosphates for microbial growth at alkaline pH. Soil Biol. Biochem., 22, 887, 1990.
- Dighton, J. and Boddy, L., Role of fungi in nitrogen, phosphorus and sulfur cycling in temperate forest ecosystems, in: Nitrogen, Phosphorus and Sulfur Utilization by Fungi, L. Boddy, R. Marchant, D. Read (Eds.), pp. 269–298, Cambridge University Press, Cambridge, 1989.
- Nannipieri, P., Giagnoni, L., Landi, L., Renella, G., Role of phosphatase enzymes in soil, in: Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Soil Biology, E. Bunemann, A. Oberson, E. Frossard (Eds.), pp. 215–243, Springer, Berlin, 2001.
- Jorquera, M.A., Crowley, D.E., Marschner, P., Greiner, R., Fernandez, M.T., Romero, D. et al., Identification of b-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus sp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol. Ecol., 75, 163, 2011.
- Richardson, A.E. and Simpson, R.J., Soil microorganisms mediating phosphorus availability. Plant Physiol., 156, 989, 2011.
- Medina, A., Roldán, A., Azcón, R., The effectiveness of arbuscular-mycorrhizalfungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. J. Environ. Manage., 912, 547, 2010.
- Leifheit, E., Veresoglou, S., Lehmann, A., Morris, E.K., Rillig, M., Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation ameta-analysis. Plant Soil, 374, 523, 2014.
- Nguyen, N. and Bruns, T., The microbiome of pinus muricata ectomycorrhizae: Community assemblages, fungal species effects, and burkholderia as important bacteria in multi partnered symbioses. Microb. Ecol., 69, 4, 1–8, 2015.
- Owen, D., Williams, A.P., Griffith, G.W., Withers, P.J.A., Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl. Soil Ecol., 86, 41, 2015.
- van der Heijden, M.G., Bardgett, R.D., Van Straalen, N.M., The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett., 11, 296, 2008.
- Mortimer, P., Pérez-Fernández, M., Valentine, A., The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol. Biochem., 40, 1019, 2008.
- Degens, B.P., Macro-aggregation of soils by biological bonding and binding mechanisms and the factors affecting these: A review. Soil. Res., 35, 3, 431–460, 1997.
- Gupta, V.V.S.R. and Germida, J.J., Soil aggregation: Influence on microbial biomass and implications for biological processes. Soil Biol. Biochem., 803, 2015, 2015.
- Rillig, M.C., Wright, S.F., Eviner, V.T., The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant Soil, 238, 325, 2002.