Advanced Characterizations of Oxides for Optoelectronic Applications
U. Onwukwe
College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UK
Search for more papers by this authorL. Anguilano
College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UK
Search for more papers by this authorP. Sermon
College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UK
Search for more papers by this authorU. Onwukwe
College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UK
Search for more papers by this authorL. Anguilano
College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UK
Search for more papers by this authorP. Sermon
College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UK
Search for more papers by this authorSummary
This is an essential review chapter that aims to provide information on the nature of optoelectronic materials, the genesis of the phenomenon, and the uses in various application. Some insight will be provided on the many challenges faced by popular optoelectronic materials, whether from the different manufacturing practises used to engineer the numerous devices or to their inherent efficiency in the different applications. All of these will be discussed while establishing the role of characterisation as a vital means to understand, diagnose, and correctly tune the optoelectronic performances, whether this is via altering the chemical synthesis route or through modifying the direct fabrication processes. At the end of the chapter, case studies will be provided, to exemplify the information that can be garnered from some of the characterisation techniques discussed.
References
- Abo Zeid, E.F., Darwish, A.A.A., Saddeek, Y.B., and Rashad, M. (2020). Morphological and optical properties of thin film metal oxide based phosphate glasses for optoelectronic technology. Opt Mater (Amst). Elsevier B.V., 99: 109541.
- Fernandez Barquin, L., Barandiaran, J.M., Telleria, I., and Gomez Sal, J.C. (1996). Evolution of the electrical resistivity during the crystallization of Co-Si-B glasses. Phys. Status Solidi. 155 (2): 439–450.
- Graça, M.P.F., Valente, M.A., and Ferreira da Silva, M.G. (2003). Electrical properties of lithium niobium silicate glasses. J. Non-Cryst. Solids 325 (1–3): 267–274.
-
Syam Prasad, N. and Varma, K.B.R. (2002). Nanocrystallization of SrBi2Nb2O9 from glasses in the system Li2B4O7-SrO-Bi2O3-Nb2O5
.
Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.
90 (3): 246–253.
10.1016/S0921-5107(01)00919-9 Google Scholar
-
Sweeney, S.J. and Mukherjee, J. (2017). Optoelectronic devices and materials. In: Springer Handbook of Electronic and Photonic Materials, 1–1. Springer International Publishing.
10.1007/978-3-319-48933-9_35 Google Scholar
- Callister, W.D. and Rethwisch, D.G. (2012). Material Sciences and Engineering: An Introduction, 8e. Wiley.
- Hideki Shirakawa, B., Louis, E.J., Macdiarmid, A.G.et al. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J. Chem. Soc., Chem. Commun.
- Rasmussen, S.C. (2014). The path to conductive polyacetylene . Bull. Hist. Chem.
- Le, T.-H., Kim, Y., and Yoon, H. (2017). Electrical and electrochemical properties of conducting polymers. Polymers (Basel). 9 (12): 150.
- Bakhshi, A.K. and Bhalla, G. (2004). Electrically conducting polymers: materials of the twentyfirst century . J. Sci. Ind. Res. 63: 715–728.
-
Roundhill, M.d. and Fackler, J.P. (1999). Optoelectronic Properties of Inorganic Compounds (eds. D.M. Roundhill and J.P. Fackler). Boston, MA: Springer US.
10.1007/978-1-4757-6101-6_9 Google Scholar
-
Mitin, V.V., Kochelap, V.A., Dutta, M., and Stroscio, M.A. (2019). Introduction to Optical and Optoelectronic Properties of Nanostructures, Introd to Opt Optoelectron Prop Nanostructures. Cambridge University Press.
10.1017/9781108674522 Google Scholar
- Sze, S. and Ng, K.K. (2007). Physics of Semiconductors, 3e. New Jersey: Wiley Interscience.
-
Jimenez, J. and Tomm, J.W.(eds. J. Jimenez and J.W. Tomm). Spectroscopic Analysis of Optoelectronic Semiconductors. Cham: Springer International Publishing (Springer Series in Optical Sciences), 2016.
10.1007/978-3-319-42349-4 Google Scholar
- Chopra, K.L., Major, S., and Pandya, D.K. (1983). Transparent conductors-a status review. Thin Solid Films. : 1–46.
- Yu, X., Marks, T.J., and Facchetti, A. (2016). Metal oxides for optoelectronic applications. Nat. Mater. 15 (4): 383–396.
-
Carrier, X., Royer, S., and Marceau, E. (2018). Synthesis of metal oxide catalysts. In: Met Oxides Heterog Catal, 43–103. Amsterdam: Elsevier.
10.1016/B978-0-12-811631-9.00002-8 Google Scholar
- Cauqui, M.A. and Rodríguez-Izquierdo, J.M. (1992). Application of the sol-gel methods to catalyst preparation. J. Non-Cryst. Solids (C): 147–148.
- Grasselli, R.K. and Sleight, A.W. (1991). Structure-Activity and Selectivity Relationships in Heterogeneous Catalysis: Proceedings of the ACS Symposium on Structure-Activity Relationships in Heterogeneous Catalysis, Boston, MA (22–27 April 1990), 67. Elsevier.
- Lee, D.W. and Yoo, B.R. (2014). Advanced metal oxide (supported) catalysts: synthesis and applications. J. Ind. Eng. Chem. Korean Society of Industrial Engineering Chemistry: 3947–3959.
- Minieri, L., Esposito, S., Russo, V. et al. (2017). A sol–gel ruthenium–niobium–silicon mixed-oxide Bifunctional catalyst for the hydrogenation of Levulinic acid in the aqueous phase. ChemCatChem. 9 (8): 1476–1486.
- Sui, R. and Charpentier, P. (2012). Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. Chem Rev. : 3057–3082.
- Ward, D.A. and Ko, E.I. (1995). Preparing catalytic materials by the sol-gel method. Ind. Eng. Chem. Res. 34 (2): 421–433.
- Dogan, E., Ozkazanc, E., and Ozkazanc, H. (2019). Multifunctional polyindole/nanometal-oxide composites: optoelectronic and charge transport properties. Synth. Met. 256: 116154.
- Fang, G., Li, D., Yao, B.-L. and Amor, L. (2005). Transparent conducting oxide semiconductors for transparent electrodes.
- Aliabad, R.H.A., Asadi, Y., and Ahmad, I. (2012). Quasiparticle optoelectronic properties of pure and doped indium oxide. Opt. Mater (Amst) 34 (8): 1406–1414.
- Pu, N.-W., Liu, W.-S., Cheng, H.-M. et al. (2015). Investigation of the optoelectronic properties of Ti-doped indium tin oxide thin film. Mater. (Basel). 8 (9): 6471–6481.
- Hosono, H. and Ueda, K. (2017). Transparent conductive oxides, in Springer Handbooks, 1. Springer.
- Iwata, S., Ohnishi, S., and Shigesato, Y. (1997). Study on electronic structure and optoelectronic properties of indium oxide by first-principles calculations equation of state view project defects in materials view project. Artic. Japanese J. Appl. Phys.
- Gao, J., Kempa, K., Giersig, M. et al. (2016). Physics of transparent conductors. Adv. Phys. : 553–617.
- Almeida, R.M.V.S., da Rosa, A.L., Frauenheim, T., and de Almeida, J.S. (2019). Optoelectronic properties of zinc oxide: a first-principles investigation using the Tran–Blaha modified Becke–Johnson potential. Phys Status Solidi Basic Res. 256 (4): 1800380-1–1800380-5.
- Djuriić, A.B., Ng, A.M.C., and Chen, X.Y. (2010). ZnO nanostructures for optoelectronics: material properties and device applications. Prog. Quantum Electron. : 191–259.
- Panda, D. and Tseng, T.Y. (2013). One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications. J. Mater. Sci. : 6849–6877.
- Shyju, G.J., Roy, S.D.D., and Sanjeeviraja, C. (2011). Review on indium zinc oxide films: material properties and preparation techniques. Mater. Sci. Forum 671: 21–45.
- Nie, D., Xue, T., Zhang, Y., and Li, X. (2008). Synthesis and structure analysis of aluminum doped zinc oxide powders. Sci. China Ser. B Chem. 51 (9): 823–828.
- Stamate, E. (2019). Spatially resolved optoelectronic properties of Al-doped zinc oxide thin films deposited by radio-frequency magnetron plasma sputtering without substrate heating. Nano 10 (1): 14.
-
Akdağ, A., Budak, H.F., Yılmaz, M. et al. (2016). Structural and morphological properties of Al doped ZnO nanoparticles.
J. Phys. Conf. Ser.
707: 012020.
10.1088/1742-6596/707/1/012020 Google Scholar
- Alkahlout, A., Al Dahoudi, N., Grobelsek, I. et al. Synthesis and characterization of aluminum doped zinc oxide nanostructures via hydrothermal route. J Mater. 2014: 1–8.
- Troughton, J. and Atkinson, D. (2019). Amorphous InGaZnO and metal oxide semiconductor devices: an overview and current status. J. Mater. Chem. C. : 12388–12414.
-
N. Kimzuka and S. Yamazaki (eds.) (2016). Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO, Phys Technol Cryst Oxide Semicond CAAC-IGZO. Chichester, UK: Wiley.
10.1002/9781119247289 Google Scholar
- Assirey, E.A.R. (2019). Perovskite synthesis, properties and their related biochemical and industrial application. Saudi. Pharm. J. : 817–829.
- Ono, L.K., Juarez-Perez, E.J., and Qi, Y. (2017). Progress on Perovskite materials and solar cells with mixed cations and halide anions. ACS Appl. Mater. Interfaces 9: 30197–30246.
- Schaak, R.E. and Mallouk, T.E. (2000). Prying apart Ruddlesden-popper phases: exfoliation into sheets and nanotubes for assembly of perovskite thin films. Chem Mater. 12 (11): 3427–3434.
-
Xu, B., Yin, K.B., Lin, J. et al. (2009). Room-temperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3.
Phys. Rev. B - Condens. Matter. Mater. Phys.
79 (13): 134109-1–134109-5.
10.1103/PhysRevB.79.134109 Google Scholar
- Chen, Y., Zhang, L., Zhang, Y. et al. (2018). Large-area perovskite solar cells-a review of recent progress and issues. RSC Adv. : 10489–10508.
-
Szuromi, P. and Grocholski, B. (2017). Perovskites.
Science
80: 732–733.
10.1126/science.358.6364.732 Google Scholar
- Tan, K.W., Moore, D.T., Saliba, M. et al. (2014). Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano. 8 (5): 4730–4739.
- Zuo, C. and Ding, L. (2017). Lead-free Perovskite materials (NH4)3Sb2IxBr9−x. Angew. Chem. Int. Ed. 56 (23): 6528–6532.
-
Ou, Q., Bao, X., Zhang, Y. et al. (2019). Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications.
Nano. Mater. Sci.
1 (4): 268–287.
10.1016/j.nanoms.2019.10.004 Google Scholar
- Dakin, J. (2006). Advanced optics. In: Handbook of Optoelectronics (Two-Volume Set) (ed. A. Rogers), 212–391. CRC Press.
- Yamazaki, S. (2012). New crystalline structure yields reliable thin-film transistors. SPIE Newsroom.
-
G.-C. Yi (ed.) (2012). Semiconductor Nanostructures for Optoelectronic Devices. Berlin, Heidelberg: Springer Berlin Heidelberg (NanoScience and Technology).
10.1007/978-3-642-22480-5 Google Scholar
- Ding, Y., Gao, P.X. and Wang, Z.L. (2004). Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO. J. Am. Chem. Soc.
-
Morresi, L. (2013). Basics of molecular beam epitaxy (MBE). In: Silicon Based Thin Film Sol Cells, 81–107.
10.2174/9781608055180113010008 Google Scholar
- Herman, M.A., Richter, W., and Sitter, H. (2004). Liquid Phase Epitaxy, 63–80. Berlin, Heidelberg: Springer.
-
S. Kasap and P. Capper (eds.) (2017). Springer Handbook of Electronic and Photonic Materials, Springer Handb Electron Photonic Mater. Cham: Springer International Publishing.
10.1007/978-3-319-48933-9 Google Scholar
- Ohara, S., Mousavand, T., Sasaki, T. et al. (2008). Continuous production of fine zinc oxide nanorods by hydrothermal synthesis in supercritical water. J. Mater. Sci. : 2393–2396.
-
Feng, S.H. and Li, G.H. (2017). Hydrothermal and Solvothermal syntheses.
Mod. Inorg. Synth. Chem. Second Ed.
: 73–104.
10.1016/B978-0-444-63591-4.00004-5 Google Scholar
- Ching, S., Hughes, S.M., Gray, T.P., and Welch, E.J. (2004). Manganese oxide thin films prepared by nonaqueous sol-gel processing: preferential formation of birnessite. Microporous Mesoporous Mater. 76 (1–3): 41–49.
- Kuiry, S.C., Patil, S.D., Deshpande, S., and Seal, S. (2005). Spontaneous self-assembly of cerium oxide nanoparticles to nanorods through supraaggregate formation. J. Phys. Chem. B 109 (15): 6936–6939.
- Chang, H. and Wu, H. (2013). Graphene-based Nanomaterials: synthesis, properties, and optical and optoelectronic applications. Adv. Funct. Mater. 23 (16): 1984–1997.
- Meng, Y., Lan, C., Li, F. et al. (2019). Direct vapor-liquid-solid synthesis of all-inorganic perovskite nanowires for high-performance electronics and optoelectronics. ACS Nano. 13 (5): 6060–6070.
- Jia, C., Zhang, X., Chen, Y. et al. (2008). Liquid phase epitaxial growth and optical property of flower-like ZnO nanosheets on zinc foil. Appl. Surf. Sci. 254 (8): 2331–2335.
- Könenkamp, R., Boedecker, K., Lux-Steiner, M.C. et al. (2000). Appl. Phys. Lett. 77: 2575.
- Nikam, A.V., Prasad, B.L.V., and Kulkarni, A.A. (2018). Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm 20 (35): 5091–5107.
- Zhang, D.F., Sun, L.D., Yin, J.L., and Yan, C.H. (2003). Low-temperature fabrication of highly crystalline SnO2 nanorods. Adv. Mater. 15 (12): 1022–1025.
- Richter, J. and Ruck, M. (2020). Synthesis and dissolution of metal oxides in ionic liquids and deep eutectic solvents. Molecules.
- Li, Y., Yang, X.-Y., Feng, Y. et al. (2012). One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: synthesis, characterizations, properties and applications. Crit. Rev. Solid State Mater. Sci. 37 (1): 1–74.
- Arami, H., Mazloumi, M., Khalifehzadeh, R., and Sadrnezhaad, S.K. (2007). Sonochemical preparation of TiO2 nanoparticles. Mater. Lett. 61 (23–24): 4559–4561.
-
Valverde Aguilar, G. (2019). Introductory chapter: a brief semblance of the sol-gel method in research. In: Sol-Gel Method - Des Synth New Mater with Interes Phys Chem Biol Prop. IntechOpen.
10.5772/intechopen.82487 Google Scholar
- Jaffer Al-Timimi, I.A., Onwukwe, U.K., Worsley, M.P., and Sermon, P.A. (2016). Biomimetic TiO2 Formation from Interfacial Sol-Gel Chemistry Leading to New Photocatalysts (eds. N. Kobayashi, F. Ouchen and I. Rau), 99280E.
- Pemartin-Biernath, K., Vela-González, A., Moreno-Trejo, M. et al. (2016). Synthesis of mixed Cu/Ce oxide nanoparticles by the oil-in-water microemulsion reaction method. Mater. (Basel). 9 (6): 480.
- Paschalidou, P. and Theocharis, C.R. (2019). Surface properties of ceria synthesised using triton-X based reverse microemulsions. RSC Adv. 9 (12): 7025–7031.
- Perrière, J. (1987). Rutherford backscattering spectrometry . Vacuum. 9: 429–432.
- Van Ijzendoorn, L.J., De Voigt, M.J.A., and Niemantsverdriet, J.W. (1993). Materials analysis with Rutherford backscattering spectrometry; application to catalysts . Kinet. Catal. Lett. 50: 131–137.
- Chu, W.K., Mayer, J.W., Nicolet, M.A. et al. (1973). Principles and applications of ion beam techniques for the analysis of solids and thin films. Thin Solid Films 17 (1): 1–41.
- Fasasi, A.Y., Ngom, B.D., Kana-Kana, J.B. et al. (2009). Synthesis and characterisation of Gd-doped BaTiO3 thin films prepared by laser ablation for optoelectronic applications. J. Phys. Chem. Solids 70 (10): 1322–1329.
- Nistor, M., Perrière, J., Hebert, C., and Seiler, W. (2010). Nanocomposite indium tin oxide thin films: formation induced by a large oxygen deficiency and properties. J. Phys. Condens. Matter 22 (4): 045006.
- Passlack, M., Schubert, E.F., Hobson, W.S. et al. (1995). Ga2O3 films for electronic and optoelectronic applications. J. Appl. Phys. 77: 686.
-
Leng, Y. (2013). Materials Characterisation: Introduction to Microscopic and Spectroscopic Methods, 2e. Weinham: Weiley-VCH.
10.1002/9783527670772 Google Scholar
- Akshay, V.R., Arun, B., Mandal, G., and Vasundhara, M. (2019). Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO2 nanocrystals derived by a sol-gel method. Phys. Chem. Chem. Phys. 21 (24): 12991–13004.
-
Atta, N.F., Galal, A., and El-Ads, E.H. (2016). Perovskite nanomaterials – synthesis, characterization, and applications. In: Perovskite Mater - Synth Characterisation, Prop Appl. InTech.
10.5772/61280 Google Scholar
- Friedrich, D.M. (1982). Two-photon molecular spectroscopy . J. Chem. Educ. 59: 472–481.
- Ma, L., Brow, R.K., and Choudhury, A. (2020). Structural study of Na2O–FeO–Fe2O3–P2O5 glasses by Raman and Mössbauer spectroscopy. J. Non. Cryst. Solids. 402: 64–73.
- Le Saoût, G., Simon, P., Fayon, F. et al. (2002). Raman and infrared study of (PbO)x(P2O5)(1− x) glasses. J. Raman Spectrosc. 33 (9): 740–746. https://doi.org/10.1002/jrs.911.
- Dev, S., Sharma, V., Singh, A. et al. (2019). Raman spectroscopic study of ZnO/NiO nanocomposites based on spatial correlation model. 9: 26956–26960.
- Ali, K., Khan, S.A., and Jafri, M.Z.M. (2014). Structural and optical properties of ITO/TiO2 anti-reflective films for solar cell applications. Nanoscale Res. Lett. 9 (1): 1–6.
-
Sharma, S.K., Verma, D.S., Khan, L.U. et al. (2018). Handbook of Materials Characterization. Springer International Publishing.
10.1007/978-3-319-92955-2 Google Scholar
- Ka̧tcki, J., Ratajczak, J., Phillipp, F. et al. (2003). Electron microscopy study of advanced heterostructures for optoelectronics. Mater. Chem. Phys. : 244–248.
- Rossetti, I., Bonelli, B., Ramis, G. et al. (2018). New insights into the role of the synthesis procedure on the performance of co-based catalysts for ethanol steam reforming. Top. Catal. 61 (15–17): 1734–1745.
- Gómez, E., Labarta, A., Llorente, A., and Vallés, E. (2001). Electrodeposited cobalt+copper thin films on ITO substrata. J. Electroanal. Chem. 517 (1–2): 63–68.
- Goebbert, C., Bisht, H., Al-Dahoudi, N. et al. (2000). Wet chemical deposition of crystalline, redispersable ATO and ITO nanoparticles. J. Sol-Gel Sci. Technol. 19 (1–3): 201–204.
- Naghavi, N., Marcel, C., Dupont, L. et al. (2000). Structural and physical characterisation of transparent conducting pulsed laser deposited In2O3-ZnO thin films. J. Mater. Chem. 10 (10): 2315–2319.
- Diplas, S., Ulyashin, A., Maknys, K. et al. (2007). On the processing-structure-property relationship of ITO layers deposited on crystalline and amorphous Si. Thin Solid Films. 515 (24 SPEC): 8539–8543.
- Giusti, G. (2011). Deposition and characterisation of functional ITO thin films.
- Fernando, J.F.S., Zhang, C., Firestein, K.L., and Golberg, D. (2017). Optical and optoelectronic property analysis of Nanomaterials inside transmission electron microscope. Small 13 (45): 1701564.
- Romanov, I., Komarov, F., Milchanin, O. et al. (2019). Structural evolution and photoluminescence of SiO2 layers with Sn nanoclusters formed by ion implantation. J. Nanomater.
-
Ohno, Y., Yonenega, I., and Take, S. (2011). In-situ analysis of optoelectronic properties of semiconductor nanostructures and defects in transmission electron microscopes. In: Optoelectron Devices Properties. InTech.
10.5772/14813 Google Scholar
- Hilpert, U., Schreiber, J., Worschech, L. et al. (2000). Optical characterization of isolated Se(g)-type misfit dislocations and their influence on strain relief in thin ZnSe films . J. Phys. Condens. Matter. 12: 10169–10174.
- den Engelsen, D., Fern, G.R., Harris, P.G. et al. (2017). New developments in Cathodoluminescence spectroscopy for the study of luminescent materials. Mater. (Basel). 10 (3): 312.
- Nakaji, D., Grillo, V., Yamamoto, N., and Mukai, T. (2005). Contrast analysis of dislocation images in TEM–cathodoluminescence technique. J. Electron Microsc. 54 (3): 223–230.
- Fern, G.R., Silver, J., Ireland, T.G. et al. (2016). 34-4: simultaneous scanning transmission electron microscopy, Cathodoluminescence imaging and EELS of quantum dot in rods. SID Symp. Dig. Tech. Pap. 47 (1): 436–439.
-
Longo, P., Stowe, D., Twesten, R., and Howkins, A. (2015). Combined EELS and Cathodoluminescence analysis in a STEM microscope of GaN/InGaN quantum wells for LED applications.
Microsc. Microanal.
21 (S3): 1259–1260.
10.1017/S1431927615007084 Google Scholar
- Villa, I., Lauria, A., Moretti, F. et al. (2018). Radio-luminescence spectral features and fast emission in hafnium dioxide nanocrystals. Phys. Chem. Chem. Phys. (23): 15907–15915.
- Ismail, A., Al-Abdullah, J., Shweikani, R., and Jerby, B. (2017). Radioluminescence in ZnO: effect of chemical modification . J. Optoelectron. Adv. Mater.
- Choi, S., Berhane, A.M., Gentle, A. et al. (2015). Electroluminescence from localized defects in zinc oxide: toward electrically driven single photon sources at room temperature. ACS Appl. Mater. Interfaces .
- Huang, M., Wang, S., Zhang, Y. et al. (2019). Intense red electroluminescence from ZnO: Sm3+/Tb3+ LED by efficient energy transfer from Tb3+ to Sm3+ . J. Lumin. 205: 243–247.
- Li, S.Y., Wang, J., Li, Y. et al. (2014). Photoluminescent properties of anodic aluminum oxide films formed in a mixture of malonic and sulfuric acid. Superlattice. Microst. 75: 294–302.
- Dufour, B., Rannou, P., Fedorko, P. et al. (2001). Effect of plasticizing dopants on spectroscopic properties, supramolecular structure, and electrical transport in metallic polyaniline. Chem. Mater. 13 (11): 4032–4040.