Microbiome-Driven Nutrient Fortification in Plants
The Role of Microbiota in Chemical Transformation and Nutrient Mobilization
Irina Sidorova
Lomonosov Moscow State University, Moscow, Russia
Search for more papers by this authorElena Voronina
Lomonosov Moscow State University, Moscow, Russia
Search for more papers by this authorIrina Sidorova
Lomonosov Moscow State University, Moscow, Russia
Search for more papers by this authorElena Voronina
Lomonosov Moscow State University, Moscow, Russia
Search for more papers by this authorAlok Kumar Srivastava
ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, India
Search for more papers by this authorPrem Lal Kashyap
ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, India
Search for more papers by this authorMadhumita Srivastava
Sunbeam College for Women, Varanasi, Uttar Pradesh, India
Search for more papers by this authorSummary
Symbiotic and associative interactions with beneficial microorganisms (MO) are the keystone of plant performance. The plant microbiome plays crucial roles in plant life such as nutrient fortification, defense against pathogens and pests and mediating of multiple abiotic stresses. This chapter focuses on the microbiome's role in plant nutrition facilitation. The plant-associated MO inhabiting the mycorrhizosphere and rhizosphere are the most promising group for agricultural application. Their numbers increase in the root zone, and there microbial-driven chemical transformation and nutrient mobilization are more prominent than in bulk soil. Root-associated MO are of particular importance in various compounds’ chemical transformation, are able to change the soil structure by both physical and chemical mechanisms, and to provide defense against deleterious organisms and stresses. Thus, the underground microbiome contributes largely to the plant performance and requires much attention from the position of sustainable agriculture.
References
- Agerer, R. (2001). Exploration types of ectomycorrhizae. Mycorrhiza 11: 107–114. https://doi.org/10.1007/s005720100108.
- Allen, J.W. and Shachar-Hill, Y. (2009). Sulfur transfer through an arbuscular mycorrhiza. Plant Physiology 149: 549–560. https://doi.org/10.1104/pp.108.129866.
- Amora-Lazcano, E., Vázquez, M.M., and Azcón, R. (1998). Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi. Biology and Fertility of Soils 27: 65–70. https://doi.org/10.1007/s003740050401.
- Bago, B., Azcon-Aguilar, C., and Piché, Y. (1998). Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 90 (1): 52–62.
- Barreto, T.R., da Silva, A.C.M., Soares, A.C.F., and de Souza, J.T. (2008). Population densities and genetic diversity of actinomycetes associated to the rhizosphere of Theobroma cacao . Brazilian Journal of Microbiology 39: 464–470. https://doi.org/10.1590/S1517-838220080003000010.
- Ben Farhat, M., Farhat, A., Bejar, W. et al. (2009). Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Archives of Microbiology 191: 815–824. https://doi.org/10.1007/s00203-009-0513-8.
- Bitterlich, M., Graefe, J., and Franken, P. (2017). Primary metabolism in arbuscular mycorrhizal symbiosis: carbon, nitrogen and sulfur. In: Molecular Mycorrhizal Symbiosis (ed. F. Martin), 217–238. Hoboken: Wiley Blackwell.
- Bloemberg, G.V. and Lugtenberg, B.J.J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology 4: 343–350.
- F. Buscot and A. Varma (eds.) (2005). Microorganisms in Soils: Roles in Genesis and Functions, Soil Biology, vol. 3. Heidelberg: Springer.
- Z.G. Cardon and J.L. Whitbeck (eds.) (2007). The Rhizosphere: An Ecological Perspective. Burlington: Academic Press.
- Cavagnaro, T.R., Bender, S.F., Ashgari, H.R. et al. (2015). The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends in Plant Science 20: 283–290. https://doi.org/10.1016/j.tplants.2015.03.004.
- Chen, W.-M., James, E.K., Prescott, A.R. et al. (2003). Nodulation of Mimosa spp. by the betaproteobacterium Ralstonia taiwanensis . Molecular Plant-Microbe Interactions 16: 1051–1061. https://doi.org/10.1094/MPMI.2003.16.12.1051.
-
Chotte, J.-L. (2005). Importance of microorganisms for soil aggregation. In: Microorganisms in Soils: Roles in Genesis and Functions, Soil Biology, vol. 3 (eds. F. Buscot and A. Varma), 107–119. Heidelberg: Springer.
10.1007/3-540-26609-7_5 Google Scholar
- Criquet, S., Ferre, E., Farner, A.M., and Le Petit, J. (2004). Annual dynamics of phosphatase activities in an evergreen oak litter—influence of biotic and abiotic factors. Soil Biology & Biochemistry 36: 1111–1118. https://doi.org/10.1016/j.soilbio.2004.02.021.
-
Crowley, D.E. (2006). Microbial siderophores in the plant rhizosphere. In: Iron Nutrition in Plants and Rhizospheric Microorganisms (eds. L.L. Barton and J. Abadia), 169–198. Dordrecht: Springer
https://doi.org/10.1007/1-4020-4743-6.
10.1007/1-4020-4743-6_8 Google Scholar
-
Dawson, J.O. (2008). Ecology of actinorhizal plants. In: Nitrogen-Fixing Actinorhizal Symbioses (eds. K. Pawlowski and W.E. Newton), 199–234. Dordrecht: Springer
https://doi.org/10.1007/978-1-4020-3547-0.
10.1007/978-1-4020-3547-0_8 Google Scholar
-
S.F. Doty (ed.) (2017). Functional Importance of the Plant Microbiome: Implications for Agriculture, Forestry and Bioenergy. Cham: Springer
https://doi.org/10.1007/978-3-319-65897-1.
10.1007/978-3-319-65897-1 Google Scholar
-
Duponnois, R., Galiana, A., and Prin, Y. (2008). The mycorrhizosphere effect: a multitrophic interaction complex improves Mycorrhizal Symbiosis and plant growth. In: Mycorrhizae: Sustainable Agriculture and Forestry (eds. Z.A. Siddiqui et al.), 227–240. Dordrecht: Springer
https://doi.org/10.1007/978-1-4020-8770-7_10.
10.1007/978-1-4020-8770-7_10 Google Scholar
- Finlay, R. (1992). Uptake and translocation of nutrients by ectomycorrhizal fungal mycelia. In: Mycorrhizas in Ecosystems (eds. D.J. Read, D.H. Lewis, A.H. Fitter and I.J. Alexander), 91–97. Wallingford: Centre for Agriculture and Bioscience International.
-
Fomina, M., Burford, E.P., and Gadd, G.M. (2006). Fungal dissolution and transformation of minerals: significance for nutrient and metal mobility. In: Fungi in Biogeochemical Cycles (ed. G.M. Gadd), 236–266. New York: Cambridge University Press.
10.1017/CBO9780511550522.011 Google Scholar
- Frey-Klett, P., Chavatte, M., Clausse, M.-L. et al. (2005). Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytologist 165: 317–328. https://doi.org/10.1111/j.1469-8137.2004.01212.x.
- Galloway, J.N., Schlesinger, W., Levy II, H. et al. (1995). Nitrogen fixation: anthropogenic enhancement-environmental response. Global Biogeochemical Cycles 9: 235–252. https://doi.org/10.1029/95GB00158.
- Gibson, B.R. and Mitchell, D.T. (2004). Nutritional influences on the solubilization of metal phosphate by ericoid mycorrhizal fungi. Mycological Research 108: 947–954.
-
Giovannetti, M., Volpe, V., Salvioli, A., and Bonfante, P. (2017). Fungal and plant tools for the uptake of nutrients in arbuscular mycorrhizas: a molecular view. In: Mycorrhizal Mediation of Soils: Fertility, Structure and Carbon Storage (eds. N.C. Johnson, C. Gehring and J. Jansa), 107–128. Amsterdam: Elsevier
https://doi.org/10.1016/B978-0-12-804312-7.00007-3.
10.1016/B978-0-12-804312-7.00007-3 Google Scholar
- Graham, P.H. (2008). Ecology of the root-nodule bacteria of legumes. In: Nitrogen-Fixing Leguminous Symbioses (eds. M.J. Dilworth et al.), 23–58. Dordrecht: Springer https://doi.org/10.1007/978-1-4020-3548-7.
- Haselwandter, K. (2008). Structure and function of siderophores produced by mycorrhizal fungi. Mineralogical Magazine 72: 61–64. https://doi.org/10.1180/minmag.2008.072.1.61.
-
Hodge, A. (2017). Accessibility of inorganic and organic nutrients for Mycorrhizas. In: Mycorrhizal Mediation of Soils: Fertility, Structure and Carbon Storage (eds. N.C. Johnson et al.), 129–148. Amsterdam: Elsevier
https://doi.org/10.1016/B978-0-12-804312-7.00008-5.
10.1016/B978-0-12-804312-7.00008-5 Google Scholar
- Jacoby, R., Peukert, M., Succurro, A. et al. (2017). The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science 8: 1617. https://doi.org/10.3389/fpls.2017.01617.
- James, E.K. (2000). Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research 65: 197–209. https://doi.org/10.1016/S0378-4290(99)00087-8.
-
Jansa, J., Finlay, R., Wallander, H. et al. (2011). Role of mycorrhizal symbioses in phosphorus cycling. In: Phosphorus in Action. Biological Processes in Soil Phosphorus Cycling, Soil Biology, vol. 26 (eds. E.K. Bünemann et al.), 137–168. Heidelberg: Springer
https://doi.org/10.1007/978-3-642-15271-9_6.
10.1007/978-3-642-15271-9_6 Google Scholar
- Jenkinson, D.S. (1990). The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society, B: Biological Sciences 329: 361–368. https://doi.org/10.1098/rstb.1990.0177.
-
Jones, D.L. and Oburger, E. (2011). Solubilization of phosphorus by soil microorganisms. In: Phosphorus in Action. Biological Processes in Soil Phosphorus Cycling, Soil Biology, vol. 26 (eds. E.K. Bünemann et al.), 169–198. Heidelberg: Springer
https://doi.org/10.1007/978-3-642-15271-9_7.
10.1007/978-3-642-15271-9_7 Google Scholar
- Jongmans, A.G., Van Breemen, N., Lundström, U.S. et al. (1997). Rock-eating fungi. Nature 389: 682–683. https://doi.org/10.1038/39493.
-
P.L. Kashyap, A.K. Srivastava, S.P. Tiwari, and S. Kumar (eds.) (2018). Microbes for Climate Resilient Agriculture. Hoboken, NJ: Wiley Blackwell.
10.1002/9781119276050 Google Scholar
-
Kaur, G. and Reddy, M.S. (2017). Role of phosphate-solubilizing fungi in sustainable agriculture. In: Developments in Fungal Biology and Applied Mycology (eds. T. Satyanarayana et al.), 391–412. Singapore: Springer
https://doi.org/10.1007/978-981-10-4768-8_20.
10.1007/978-981-10-4768-8_20 Google Scholar
- Kertesz, M.A. and Mirleau, P. (2004). The role of soil microbes in plant sulphur nutrition. Journal of Experimental Botany 55: 1939–1945. https://doi.org/10.1093/jxb/erh176.
- Khan, M.S., Zaidi, A., and Wani, P.A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agronomy for Sustainable Development 27: 29–43. https://doi.org/10.1051/agro:2006011.
- Koele, N., Turpault, M.-P., Hildebrand, E.E. et al. (2009). Interactions between mycorrhizal fungi and mycorrhizosphere bacteria during mineral weathering: budget analysis and bacterial quantification. Soil Biology & Biochemistry 41: 1935–1942. https://doi.org/10.1016/j.soilbio.2009.06.017.
-
Lehmann, A., Leifheit, E.F., and Rillig, M.C. (2017). Mycorrhizas and soil aggregation. In: Mycorrhizal Mediation of Soils: Fertility, Structure and Carbon Storage (eds. N.C. Johnson et al.), 241–262. Amsterdam: Elsevier
https://doi.org/10.1016/B978-0-12-804312-7.00014-0.
10.1016/B978-0-12-804312-7.00014-0 Google Scholar
- Li, C.-Y., Massicotte, H.B., and Moore, L.V.H. (1992). Nitrogen-fixing Bacillus sp. associated with Douglas-fir tuberculate ectomycorrhizae. Plant and Soil 140: 35–40. https://doi.org/10.1007/BF00012804.
- Li, R.-X., Cai, F., Pang, G. et al. (2015). Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10 (6): e0130081. https://doi.org/10.1371/journal.pone.0130081.
- Martino, E., Perotto, S., Parsons, R., and Gadd, G.M. (2003). Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology & Biochemistry 35: 133–141. https://doi.org/10.1016/S0038-0717(02)00247-X.
- McGill, W.B. and Cole, C.V. (1981). Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26: 267–268. https://doi.org/10.1016/0016-7061(81)90024-0.
-
McNeill, A. and Unkovich, M. (2007). The nitrogen cycle in terrestrial ecosystems. In: Nutrient Cycling in Terrestrial Ecosystems, Soil Biology, vol. 10 (eds. P. Marschner et al.), 37–64. Heidelberg: Springer
https://doi.org/10.1007/978-3-540-68027-7_2.
10.1007/978-3-540-68027-7_2 Google Scholar
- Meena, V.S., Maurya, B.R., and Verma, J.P. (2014). Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiological Research 169: 337–347. https://doi.org/10.1016/j.micres.2013.09.003.
- Mickan, B. (2017). Mechanisms for alleviation of plant water stress involving arbuscular mycorrhizas. In: Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration, Soil Biology, vol. 41 (eds. M. Zakaria et al.), 225–239. Heidelberg: Springer https://doi.org/10.1007/978-3-662-45370-4_14.
- Pena, R. (2017). Nitrogen acquisition in ectomycorrhizal symbiosis. In: Molecular Mycorrhizal Symbiosis (ed. F. Martin), 179–196. Hoboken: Wiley Blackwell.
- Philippot, L., Raaijmakers, J.M., Lemanceau, P., and van der Putten, W.H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology 11: 789–799. https://doi.org/10.1038/nrmicro3109.
- Raaijmakers, J.M., Paulitz, T.C., Steinberg, C. et al. (2009). The rhizosphere: a playground and battlefield for soil borne pathogens and beneficial microorganisms. Plant and Soil 321: 341–361. https://doi.org/10.1007/s11104-008-9568-6.
-
A.N. Rai, B. Bergman, and U. Rasmussen (eds.) (2002). Cyanobacteria in Symbiosis. Dordrecht: Kluwer Academic Publishers
https://doi.org/10.1007/0-306-48005-0.
10.1007/0-306-48005-0 Google Scholar
- Read, D.J., Leake, J.R., and Perez-Moreno, J. (2004). Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany 82: 1243–1263. https://doi.org/10.1139/b04-123.
- Richardson, A.E. and Simpson, R.J. (2011). Soil microorganisms mediating phosphorus availability. Plant Physiology 156: 989–996. https://doi.org/10.1104/pp.111.175448.
- Richardson, A.E., Barea, J.-M., McNeill, A.M., and Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil 321: 305–339. https://doi.org/10.1007/s11104-009-9895-2.
- Rillig, M.C. and Mummey, D.L. (2006). Mycorrhizas and soil structure. New Phytologist 171: 41–53. https://doi.org/10.1111/j.1469-8137.2006.01750.x.
- Rineau, F., Shah, F., Smits, M.M. et al. (2013). Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME Journal (10): 2010–2022. https://doi.org/10.1038/ismej.2013.91.
- Römheld, V. and Kirkby, E.A. (2010). Research on potassium in agriculture: needs and prospects. Plant and Soil 335: 155–180. https://doi.org/10.1007/s11104-010-0520-1.
-
Rosenstock, N.P. (2009). Can ectomycorrhizal weathering activity respond to host nutrient demands?
Fungal Biology Reviews
23: 107–114. https://doi.org/10.1016/j.fbr.2009.11.003.
10.1016/j.fbr.2009.11.003 Google Scholar
- Rosling, A., Lindahl, B.D., Taylor, A.F.S., and Finlay, R.D. (2004). Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiology Ecology 47: 31–37. https://doi.org/10.1016/S0168-6496(03)00222-8.
- Saito, K. and Ezawa, T. (2017). Phosphorus metabolism and transport in arbuscular mycorrhizal symbiosis. In: Molecular Mycorrhizal Symbiosis (ed. F. Martin), 197–216. Hoboken: Wiley Blackwell.
- Santi, C., Bogusz, D., and Franche, C. (2013). Biological nitrogen fixation in non-legume plants. Annals of Botany 111: 743–767. https://doi.org/10.1093/aob/mct048.
- Sidorova, I.I., Alexandrova, A.V., and Voronina, E.Y. (2014). Inorganic phosphate solubilising bacteria isolated from agaricomycete hyphosphere. In: Biogenic-Abiogenic Interactions in Natural and Anthropogenic Systems. V International Symposium, 112–113. Saint-Petersburg: VVM Publishing Ltd. https://doi.org/10.13140/RG.2.1.2963.3040.
-
Sindhu, S.S., Parmar, P., and Phour, M. (2014a). Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: Geomicrobiology and Biogeochemistry, Soil Biology, vol. 39 (eds. N. Parmar and A. Singh), 175–198. Heidelberg: Springer
https://doi.org/10.1007/978-3-642-41837-2_10.
10.1007/978-3-642-41837-2_10 Google Scholar
-
Sindhu, S.S., Phour, M., Choudhary, S.R., and Chaudhary, D. (2014b). Phosphorus cycling: prospects of using rhizosphere microorganisms for improving phosphorus nutrition of plants. In: Geomicrobiology and Biogeochemistry, Soil Biology, vol. 39 (eds. N. Parmar and A. Singh), 199–237. Heidelberg: Springer
https://doi.org/10.1007/978-3-642-41837-2_11.
10.1007/978-3-642-41837-2_11 Google Scholar
- Singh, H. and Reddy, M.S. (2012). Improvement of wheat and maize crops by inoculating Aspergillus spp. in alkaline soil fertilized with rock phosphate. Archives of Agronomy and Soil Science 58: 535–546. https://doi.org/10.1080/03650340.2010.532125.
- Smith, S.E. and Read, D.J. (2008). Mycorrhizal Symbiosis, 3e. New York: Academic Press.
- Sprent, J.I. (2001). Nodulation in Legumes. London: Royal Botanic Gardens, Kew.
- Sprent, J.I. and James, E.K. (2007). Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiology 144: 575–581. https://doi.org/10.1104/pp.107.096156.
-
Summerbell, R.C. (2005). From Lamarckian fertilizers to fungal castles: recapturing the pre-1985 literature on endophytic and saprotrophic fungi associated with ectomycorrhizal root systems. Studies in Mycology
53: 191–256.
10.3114/sim.53.1.191 Google Scholar
-
Sverdrup, H. (2009). Chemical weathering of soil minerals and the role of biological processes. Fungal Biology Reviews
23: 94–100. https://doi.org/10.1016/j.fbr.2009.12.001.
10.1016/j.fbr.2009.12.001 Google Scholar
- Thirkell, T.J., Cameron, D.D., and Hodge, A. (2016). Resolving the “nitrogen paradox” of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth. Plant, Cell and Environment 39: 1683–1690. https://doi.org/10.1111/pce.12667.
-
Timonen, S. and Marschner, P. (2006). Mycorrhizosphere concept. In: Microbial Activity in the Rhizosphere, Soil Biology, vol. 7 (eds. K.G. Mukerji et al.), 155–172. Heidelberg: Springer.
10.1007/3-540-29420-1_9 Google Scholar
- Trappe, J.M. (2005). A.B. Frank and mycorrhizae: the challenge to evolutionary and ecologic theory. Mycorrhiza 15: 277–281. https://doi.org/10.1007/s00572-004-0330-5.
- Tunlid, A., Floudas, D., Koide, R., and Rineau, F. (2017). Soil organic matter decomposition mechanisms in ectomycorrhizal fungi. In: Molecular Mycorrhizal Symbiosis (ed. F. Martin), 257–275. Hoboken: Wiley Blackwell.
- Turner, T.R., James, E.K., and Poole, P.S. (2013). The plant microbiome. Genome Biology 14: 209. https://doi.org/10.1186/gb-2013-14-6-209.
- Uroz, S. and Frey-Klett, P. (2011). Linking diversity to function: highlight on the mineral weathering bacteria. Central European Journal of Biology 6: 817–820. https://doi.org/10.2478/s11535-011-0053-5.
- Uroz, S., Calvaruso, C., Turpault, M.-P., and Frey-Klett, P. (2009). Mineral weathering by bacteria: ecology, actors and mechanisms. Trends in Microbiology 17: 378–387. https://doi.org/10.1016/j.tim.2009.05.004.
- Vansuyt, G., Robin, A., Briat, J.F. et al. (2007). Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana . Molecular Plant-Microbe Interactions 20: 441–447. https://doi.org/10.1094/MPMI-20-4-0441.
- Vazquez, P., Holguin, G., Puente, M.E. et al. (2000). Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils 30: 460–468. https://doi.org/10.1007/s003740050024.
-
Voronina, E. and Sidorova, I. (2017). Rhizosphere, mycorrhizosphere and hyphosphere as unique niches for soil-inhabiting bacteria and micromycetes. In: Advances in PGPR Research (eds. H.B. Singh et al.), 165–186. Boston: Centre for Agriculture and Bioscience International
https://doi.org/10.1079/9781786390325.0165.
10.1079/9781786390325.0165 Google Scholar
- Wakelin, S.A., Warren, R.A., Harvey, P.R., and Ryder, M.H. (2004). Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biology and Fertility of Soils 40: 36–43. https://doi.org/10.1007/s00374-004-0750-6.
- Whitelaw, M.A. (1999). Growth promotion of plants inoculated with phosphate-solubilizing fungi. Advances in Agronomy 69: 99–151. https://doi.org/10.1016/S0065-2113(08)60948-7.
- Winkelmann, G. (2007). Ecology of siderophores with special reference to the fungi. Biology of Metals 20: 379–392. https://doi.org/10.1007/s10534-006-9076-1.
- Winkelmann, G. (2017). A search for glomuferrin: a potential siderophore of arbuscular mycorrhizal fungi of the genus Glomus . Biology of Metals 30: 559–564. https://doi.org/10.1007/s10534-017-0026-x.