Multi-Configurational Reference Perturbation Theory with a CASSCF Reference Function
Roland Lindh
Department of Chemistry – BMC, Uppsala University, SE-751 23 Uppsala, Sweden
Search for more papers by this authorIgnacio Fdez. Galván
Department of Chemistry – BMC, Uppsala University, SE-751 23 Uppsala, Sweden
Search for more papers by this authorRoland Lindh
Department of Chemistry – BMC, Uppsala University, SE-751 23 Uppsala, Sweden
Search for more papers by this authorIgnacio Fdez. Galván
Department of Chemistry – BMC, Uppsala University, SE-751 23 Uppsala, Sweden
Search for more papers by this authorLeticia González
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Austria
Search for more papers by this authorRoland Lindh
Department of Chemistry – BMC, Uppsala University, Sweden
Search for more papers by this authorSummary
The purpose of the present chapter is to give students a detailed introduction to time-independent multi-configurational reference perturbation theory (MRPT), in particular the CASPT2 method, one of the standard tools for the study of excited states of molecular systems of small to intermediate size. To achieve this, in as closed a form as possible, we believe that the chapter should begin with the very basics of Rayleigh–Schrödinger (RS) and Møller–Plesset (MP) perturbation theory (PT) before we present the MRPT. The multi-configurational version of perturbation theory has many features and flaws which are either a direct consequence of the original Rayleigh–Schrödinger formulation, or due to the choice of the zeroth order Hamiltonian. These flaws or peculiarities have to be clearly identified and understood before we proceed toward the more elaborate multi-configurational reference perturbation theories. This is then followed by a section dedicated to the most popular versions of single-state multi-configurational reference perturbation theory. Here we again present the formulation of these methods and also address the various problems they encounter. Multi-state versions of perturbation theory are today based on effective Hamiltonian approximations. Hence, these deserve their own treatment due to the fact that this approach introduces its own kind of features and problems, which need to be addressed separately. At the very end of this chapter we summarize and present an outlook on the subject of MRPT.
References
-
Schrödinger, E. (1926). Quantisierung als Eigenwertproblem.
Ann. Phys.
385
(13): 437–490.
10.1002/andp.19263851302 Google Scholar
- Strutt, B.R. and William, J. (1894). The Theory of Sound, 2e. London: MacMillan.
-
Helgaker, T., Jørgensen, P., and Olsen, J. (2000). Molecular Electronic-Structure Theory. Wiley.
10.1002/9781119019572 Google Scholar
-
Kato, T. (1995). Perturbation Theory for Linear Operators. Berlin Heidelberg: Springer.
10.1007/978-3-642-66282-9 Google Scholar
- Olsen, J., Jørgensen, P., Helgaker, T., and Christiansen, O. (2000). Divergence in Møller–Plesset theory: a simple explanation based on a two-state model. J. Chem. Phys. 112 (22): 9736–9748.
- Roos, B.O. and Andersson, K. (1995). Multiconfigurational perturbation theory with level shift – the Cr2 potential revisited. Chem. Phys. Lett. 245 (2–3): 215–223.
- Forsberg, N. and Malmqvist, P.-Å. (1997). Multiconfiguration perturbation theory with imaginary level shift. Chem. Phys. Lett. 274 (1–3): 196–204.
- Surján, P.R. and Szabados, Á. (1996). Damping of perturbation corrections in quasidegenerate situations. J. Chem. Phys. 104 (9): 3320–3324.
-
Epstein, P.S. (1926). The Stark effect from the point of view of Schroedinger's quantum theory.
Phys. Rev.
28
(4): 695–710.
10.1103/PhysRev.28.695 Google Scholar
- Nesbet, R.K. (1955). Configuration interaction in orbital theories. Proc. Math. Phys. Eng. Sci. 230 (1182): 312–321.
- McDouall, J.J.W., Peasley, K., and Robb, M.A. (1988). A simple MC SCF perturbation theory: orthogonal valence bond Møller–Plesset 2 (OVB MP2). Chem. Phys. Lett. 148 (2–3): 183–189.
- Andersson, K., Malmqvist, P.Å., Roos, B.O. et al. (1990). Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 94 (14): 5483–5488.
- Andersson, K., Malmqvist, P.-Å., and Roos, B.O. (1992). Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96 (2): 1218–1226.
- Hirao, K. (1992). Multireference Møller–Plesset method. Chem. Phys. Lett. 190 (3–4): 374–380.
- Hirao, K. (1992). Multireference Møller–Plesset perturbation theory for high-spin open-shell systems. Chem. Phys. Lett. 196 (5): 397–403.
-
Hirao, K. (1992). Multireference Møller–Plesset perturbation treatment of potential energy curve of N2
.
Int. J. Quantum Chem.
44
(S26): 517–526.
10.1002/qua.560440847 Google Scholar
- Hirao, K. (1993). State-specific multireference Møller–Plesset perturbation treatment for singlet and triplet excited states, ionized states and electron attached states of H2O. Chem. Phys. Lett. 201 (1–4): 59–66.
- Angeli, C., Cimiraglia, R., Evangelisti, S. et al. (2001). Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 114 (23): 10252–10264.
- Angeli, C., Cimiraglia, R., and Malrieu, J.-P. (2001). n-electron valence state perturbation theory: a fast implementation of the strongly contracted variant. Chem. Phys. Lett. 350 (3–4): 297–305.
- Angeli, C., Cimiraglia, R., and Malrieu, J.-P. (2002). n-electron valence state perturbation theory: a spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 117 (20): 9138–9153.
- Lischka, H., Nachtigallová, D., Aquino, A.J.A. et al. (2018). Multireference approaches for excited states of molecules. Chem. Rev. 118 (15): 7293–7361.
- Löwdin, P.-O. (1951). A note on the quantum-mechanical perturbation theory. J. Chem. Phys. 19 (11): 1396–1401.
- Andersson, K. and Roos, B.O. (1995). Multiconfigurational second-order perturbation theory. In: Modern Electronic Structure Theory, 55–109. World Scientific Publishing Company.
- Andersson, K. (1995). Different forms of the zeroth-order Hamiltonian in second-order perturbation theory with a complete active space self-consistent field reference function. Theor. Chim. Acta 91 (1–2): 31–46.
- Malmqvist, P.Å., Pierloot, K., Shahi, A.R.M. et al. (2008). The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. J. Chem. Phys. 128 (20): 204109.
- Ma, D., Manni, G.L., Olsen, J., and Gagliardi, L. (2016). Second-order perturbation theory for generalized active space self-consistent-field wave functions. J. Chem. Theory Comput. 12 (7): 3208–3213.
- Andersson, K. and Roos, B.O. (1993). Multiconfigurational second-order perturbation theory: a test of geometries and binding energies. Int. J. Quantum Chem. 45 (6): 591–607.
- Guner, V., Khuong, K.S., Leach, A.G. et al. (2003). A standard set of pericyclic reactions of hydrocarbons for the benchmarking of computational methods: the performance of ab initio, density functional, CASSCF, CASPT2, and CBS-QB3 methods for the prediction of activation barriers, reaction energetics, and transition state geometries. Chem. A Eur. J. 107 (51): 11445–11459.
- Schreiber, M., Silva-Junior, M.R., Sauer, S.P.A., and Thiel, W. (2008). Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J. Chem. Phys. 128 (13): 134110.
- Serrano-Andrés, L. (2011). Organic spectroscopy under Björn O. Roos. Int. J. Quantum Chem. 111 (13): 3284–3290.
- Pierloot, K. (2011). Transition metals compounds: outstanding challenges for multiconfigurational methods. Int. J. Quantum Chem. 111 (13): 3291–3301.
- Gagliardi, L. (2011). The study of actinide chemistry with multiconfigurational quantum chemical methods. Int. J. Quantum Chem. 111 (13): 3302–3306.
- Budzák, i., Scalmani, G., and Jacquemin, D. (2017). Accurate excited-state geometries: a CASPT2 and coupled-cluster reference database for small molecules. J. Chem. Theory Comput. 13 (12): 6237–6252.
- Ghigo, G., Roos, B.O., and Malmqvist, P.-Å. (2004). A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem. Phys. Lett. 396 (1–3): 142–149.
- Dyall, K.G. (1995). The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function. J. Chem. Phys. 102 (12): 4909–4918.
- Aquilante, F., Autschbach, J., Carlson, R.K. et al. (2015). Molcas8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 37 (5): 506–541.
- Kepenekian, M., Robert, V., and Le Guennic, B. (2009). What zeroth-order Hamiltonian for CASPT2 adiabatic energetics of Fe(II)N6 architectures? J. Chem. Phys. 131 (11): 114702.
- Zobel, J.P., Nogueira, J.J., and González, L. (2017). The IPEA dilemma in CASPT2. Chem. Sci. 8 (2): 1482–1499.
- Vela, S., Fumanal, M., Ribas-Ariño, J., and Robert, V. (2015). On the zeroth-order Hamiltonian for CASPT2 calculations of spin crossover compounds. J. Comput. Chem. 37 (10): 947–953.
- Daku Lawson, L.M., Aquilante, F., Robinson, T.W., and Hauser, A. (2012). Accurate spin-state energetics of transition metal complexes. 1. CCSD(T), CASPT2, and DFT study of [M(NCH)6]2+ (M = Fe, Co). J. Chem. Theory Comput. 8 (11): 4216–4231.
- Angeli, C. and Cimiraglia, R. (2014). Some useful odds and ends from the n-electron valence state perturbation theory. Chem. A Eur. J. 118 (33): 6435–6439.
- Angeli, C., Borini, S., and Cimiraglia, R. (2004). An application of second-order n-electron valence state perturbation theory to the calculation of excited states. Theor. Chem. Acc. 111 (2–6): 352–357.
- Schapiro, I., Sivalingam, K., and Neese, F. (2013). Assessment of n-electron valence state perturbation theory for vertical excitation energies. J. Chem. Theory Comput. 9 (8): 3567–3580.
- Aquilante, F., Malmqvist, P.-Å., Pedersen, T.B. et al. (2008). Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): application to the spin-state energetics of CoIII(diiminato)(NPh). J. Chem. Theory Comput. 4 (5): 694–702.
- Boström, J., Delcey, M.G., Aquilante, F. et al. (2010). Calibration of Cholesky auxiliary basis sets for multiconfigurational perturbation theory calculations of excitation energies. J. Chem. Theory Comput. 6 (3): 747–754.
- Aquilante, F., Todorova, T.K., Gagliardi, L. et al. (2009). Systematic truncation of the virtual space in multiconfigurational perturbation theory. J. Chem. Phys. 131 (3): 034113.
- Segarra-Martí, J., Garavelli, M., and Aquilante, F. (2015). Multiconfigurational second-order perturbation theory with frozen natural orbitals extended to the treatment of photochemical problems. J. Chem. Theory Comput. 11 (8): 3772–3784.
- Pulay, P. (1983). Localizability of dynamic electron correlation. Chem. Phys. Lett. 100 (2): 151–154.
- Fink, R. and Staemmler, V. (1993). A multi-configuration reference CEPA method based on pair natural orbitals. Theor. Chim. Acta 87 (1–2): 129–145.
- Menezes, F., Kats, D., and Werner, H.-J. (2016). Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2). J. Chem. Phys. 145 (12): 124115.
- Guo, Y., Sivalingam, K., Valeev, E.F., and Neese, F. (2016). SparseMaps–A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital n-electron valence perturbation theory. J. Chem. Phys. 144 (9): 094111.
- Kurashige, Y. and Yanai, T. (2011). Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer. J. Chem. Phys. 135 (9): 094104.
- Liu, F., Kurashige, Y., Yanai, T., and Morokuma, K. (2013). Multireference ab initio density matrix renormalization group (DMRG)-CASSCF and DMRG-CASPT2 study on the photochromic ring opening of spiropyran. J. Chem. Theory Comput. 9 (10): 4462–4469.
- Kurashige, Y. (2013). Multireference electron correlation methods with density matrix renormalisation group reference functions. Mol. Phys. 112 (11): 1485–1494.
- Wouters, S., Van Speybroeck, V., and Van Neck, D. (2016). DMRG-CASPT2 study of the longitudinal static second hyperpolarizability of all-trans polyenes. J. Chem. Phys. 145 (5): 054120.
- Nakatani, N. and Guo, S. (2017). Density matrix renormalization group (DMRG) method as a common tool for large active-space CASSCF/CASPT2 calculations. J. Chem. Phys. 146 (9): 094102.
- Guo, S., Watson, M.A., Hu, W. et al. (2016). n-electron valence state perturbation theory based on a density matrix renormalization group reference function, with applications to the chromium dimer and a trimer model of poly(p-phenylenevinylene). J. Chem. Theory Comput. 12 (4): 1583–1591.
- Knecht, S., Hedegård, E.D., Keller, S. et al. (2016). New approaches for ab initio calculations of molecules with strong electron correlation. CHIMIA Int. J. Chem. 70 (4): 244–251.
- Freitag, L., Knecht, S., Angeli, C., and Reiher, M. (2017). Multireference perturbation theory with Cholesky decomposition for the density matrix renormalization group. J. Chem. Theory Comput. 13 (2): 451–459.
- Zgid, D., Ghosh, D., Neuscamman, E., and Chan, G.K.-L. (2009). A study of cumulant approximations to n-electron valence multireference perturbation theory. J. Chem. Phys. 130 (19): 194107.
- Sharma, S. and Chan, G.K.-L. (2014). Communication: a flexible multi-reference perturbation theory by minimizing the Hylleraas functional with matrix product states. J. Chem. Phys. 141 (11): 111101.
- Sharma, S., Jeanmairet, G., and Alavi, A. (2016). Quasi-degenerate perturbation theory using matrix product states. J. Chem. Phys. 144 (3): 034103.
- Sokolov, A.Y. and Chan, G.K.-L. (2016). A time-dependent formulation of multi-reference perturbation theory. J. Chem. Phys. 144 (6): 064102.
- Roemelt, M., Guo, S., and Chan, G.K.-L. (2016). A projected approximation to strongly contracted n-electron valence perturbation theory for DMRG wave functions. J. Chem. Phys. 144 (20): 204113.
- Phung, Q.M., Wouters, S., and Pierloot, K. (2016). Cumulant approximated second-order perturbation theory based on the density matrix renormalization group for transition metal complexes: a benchmark study. J. Chem. Theory Comput. 12 (9): 4352–4361.
- Sokolov, A.Y., Guo, S., Ronca, E., and Chan, G.K.-L. (2017). Time-dependent n-electron valence perturbation theory with matrix product state reference wave functions for large active spaces and basis sets: applications to the chromium dimer and all-trans polyenes. J. Chem. Phys. 146 (24): 244102.
- Lindh, R. and Roos, B.O. (1989). A theoretical study of the diffuseness of the v(1 b 1u ) state of planar ethylene. Int. J. Quantum Chem. 35 (6): 813–825.
- Lindgren, I. (1974). The Rayleigh–Schrodinger perturbation and the linked-diagram theorem for a multi-configurational model space. J. Phys. B: At. Mol. Phys. 7 (18): 2441–2470.
-
Lindgren, I. (1978). A coupled-cluster approach to the many-body perturbation theory for open-shell systems.
Int. J. Quantum Chem.
14
(S12): 33–58.
10.1002/qua.560140804 Google Scholar
- Pittner, J. (2003). Continuous transition between Brillouin–Wigner and Rayleigh–Schrödinger perturbation theory, generalized Bloch equation, and Hilbert space multireference coupled cluster. J. Chem. Phys. 118 (24): 10876–10889.
- Nakano, H. (1993). Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. J. Chem. Phys. 99 (10): 7983–7992.
- Nakano, H., Uchiyama, R., and Hirao, K. (2002). Quasi-degenerate perturbation theory with general multiconfiguration self-consistent field reference functions. J. Comput. Chem. 23 (12): 1166–1175.
- Angeli, C., Borini, S., Cestari, M., and Cimiraglia, R. (2004). A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach. J. Chem. Phys. 121 (9): 4043–4049.
- Finley, J., Malmqvist, P.-Å., and Björn, O. (1998). Roos, and Luis Serrano-Andrés. The multi-state CASPT2 method. Chem. Phys. Lett. 288 (2–4): 299–306.
- Zaitsevskii, A. and Malrieu, J.-P. (1995). Multi-partitioning quasidegenerate perturbation theory. A new approach to multireference Møller–Plesset perturbation theory. Chem. Phys. Lett. 233 (5–6): 597–604.
- Serrano-Andrés, L., Merchán, M., and Lindh, R. (2005). Computation of conical intersections by using perturbation techniques. J. Chem. Phys. 122 (10): 104107.
- Granovsky, A.A. (2011). Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory. J. Chem. Phys. 134 (21): 214113.
- Shiozaki, T., Győrffy, W., Celani, P., and Werner, H.-J. (2011). Communication: extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. J. Chem. Phys. 135 (8): 081106.
- Andersson, K. (1992). Multiconfigurational perturbation theory. PhD thesis. Lund University, Lund, Sweden. https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-21628.