Another Tale from the Harsh World: How Plants Adapt to Extreme Environments
Thomas Dussarrat
Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, FONDAP Center for Genome Regulation and ANID–Millennium Science Initiative Program-Millennium Inst. for Integrative Biology (iBio), Santiago, Chile
Univ. Bordeaux, INRAE, Villenave d'Ornon, France
Search for more papers by this authorGuillaume Decros
Univ. Bordeaux, INRAE, Villenave d'Ornon, France
Search for more papers by this authorFrancisca P. Díaz
Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, FONDAP Center for Genome Regulation and ANID–Millennium Science Initiative Program-Millennium Inst. for Integrative Biology (iBio), Santiago, Chile
Search for more papers by this authorYves Gibon
Univ. Bordeaux, INRAE, Villenave d'Ornon, France
Bordeaux Metabolome, Villenave d'Ornon, France
Search for more papers by this authorClaudio Latorre
Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
Institute of Ecology and Biodiversity (IEB), Santiago, Chile
Search for more papers by this authorDominique Rolin
Univ. Bordeaux, INRAE, Villenave d'Ornon, France
Bordeaux Metabolome, Villenave d'Ornon, France
Search for more papers by this authorRodrigo A. Gutiérrez
Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, FONDAP Center for Genome Regulation and ANID–Millennium Science Initiative Program-Millennium Inst. for Integrative Biology (iBio), Santiago, Chile
Search for more papers by this authorPierre Pétriacq
Univ. Bordeaux, INRAE, Villenave d'Ornon, France
Bordeaux Metabolome, Villenave d'Ornon, France
Search for more papers by this authorThomas Dussarrat
Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, FONDAP Center for Genome Regulation and ANID–Millennium Science Initiative Program-Millennium Inst. for Integrative Biology (iBio), Santiago, Chile
Univ. Bordeaux, INRAE, Villenave d'Ornon, France
Search for more papers by this authorGuillaume Decros
Univ. Bordeaux, INRAE, Villenave d'Ornon, France
Search for more papers by this authorFrancisca P. Díaz
Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, FONDAP Center for Genome Regulation and ANID–Millennium Science Initiative Program-Millennium Inst. for Integrative Biology (iBio), Santiago, Chile
Search for more papers by this authorYves Gibon
Univ. Bordeaux, INRAE, Villenave d'Ornon, France
Bordeaux Metabolome, Villenave d'Ornon, France
Search for more papers by this authorClaudio Latorre
Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
Institute of Ecology and Biodiversity (IEB), Santiago, Chile
Search for more papers by this authorDominique Rolin
Univ. Bordeaux, INRAE, Villenave d'Ornon, France
Bordeaux Metabolome, Villenave d'Ornon, France
Search for more papers by this authorRodrigo A. Gutiérrez
Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, FONDAP Center for Genome Regulation and ANID–Millennium Science Initiative Program-Millennium Inst. for Integrative Biology (iBio), Santiago, Chile
Search for more papers by this authorPierre Pétriacq
Univ. Bordeaux, INRAE, Villenave d'Ornon, France
Bordeaux Metabolome, Villenave d'Ornon, France
Search for more papers by this authorAbstract
The environmental fluctuations of a constantly evolving world can mould a changing context, often unfavourable to sessile organisms that must adjust their resource allocation between both resistance or tolerance mechanisms and growth. Plants bear the fascinating ability to survive and thrive under extreme conditions, a capacity that has always attracted the curiosity of humans, who have discovered and improved species capable of meeting our physiological needs. In this context, plant research has produced a great wealth of knowledge on the responses of plants to a range of abiotic stresses, mostly considering model species and/or controlled conditions. However, there is still minimal comprehension of plant adaptations and acclimations to extreme environments, which cries out for future investigations. In this article, we examined the main advances in understanding the adapted traits fixed through evolution that allowed for plant resistance against abiotic stress in extreme natural ecosystems. Spatio-temporal adaptations from extremophile plant species are described from morpho-anatomical features to physiological function and metabolic pathways adjustments. Considering that metabolism is at the heart of plant adaptations, a focus is given to the study of primary and secondary metabolic adjustments as well as redox metabolism under extreme conditions. This article further casts a critical glance at the main successes in studying extreme environments and examines some of the challenges and opportunities this research offers, especially considering the possible interaction with ecology and metaphenomics.
References
- Afendi, F.M., Okada, T., Yamazaki, M. et al. (2012). KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant & Cell Physiology 53 (2): e1. doi: 10.1093/pcp/pcr165.
- Agati, G. and Tattini, M. (2010). Multiple functional roles of flavonoids in photoprotection: Letters. New Phytologist 186 (4): 786–793. doi: 10.1111/j.1469-8137.2010.03269.x.
- Akram, M.A., Wang, X., Hu, W. et al. (2020). Convergent variations in the leaf traits of desert plants. Plants 9 (8): 990. doi: 10.3390/plants9080990.
- Akula, R. and Ravishankar, G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6 (11): 1720–1731. doi: 10.4161/psb.6.11.17613.
- Alcázar, R., Altabella, T., Marco, F. et al. (2010). Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231 (6): 1237–1249. doi: 10.1007/s00425-010-1130-0.
- Allard, P.-M., Genta-Jouve, G., and Wolfender, J.-L. (2017). Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification. Current Opinion in Chemical Biology 36: 40–49. doi: 10.1016/j.cbpa.2016.12.022.
- Allbed, A. and Kumar, L. (2013). Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: a review. Advances in Remote Sensing. doi: 10.4236/ars.2013.24040.
10.4236/ars.2013.24040 Google Scholar
- Alleman, L.K. and Hester, M.W. (2011). Reproductive ecology of Black Mangrove ( Avicennia germinans) along the Louisiana coast: propagule production cycles, dispersal limitations, and establishment elevations. Estuaries and Coasts 34 (5): 1068. doi: 10.1007/s12237-011-9404-8.
- An, H., Tang, Z., Keesstra, S. et al. (2019). Impact of desertification on soil and plant nutrient stoichiometry in a desert grassland. Scientific Reports 9 (1): 9422. doi: 10.1038/s41598-019-45927-0.
- Anjum, N.A., Sofo, A., Scopa, A. et al. (2015). Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research 22 (6): 4099–4121. doi: 10.1007/s11356-014-3917-1.
- Antonovics, J., Bradshaw, A.D., and Turner, R.G. (1971). Heavy metal tolerance in plant. Advances in Ecological Research: 1–85. doi: 10.1016/S0065-2504(08)60202-0.
10.1016/S0065‐2504(08)60202‐0 Google Scholar
- Arbelet-Bonnin, D., Blasselle, C., Rose Palm, E. et al. (2020). Metabolism regulation during salt exposure in the halophyte Cakile maritima. Environmental and Experimental Botany 177: 104075. doi: 10.1016/j.envexpbot.2020.104075.
- Aschi-Smiti, S., Chaibi, W., Brouquisse, R. et al. (2003). Assessment of enzyme induction and aerenchyma formation as mechanisms for flooding tolerance in Trifolium subterraneum “Park”. Annals of Botany 91 (2): 195–204.
- Ashraf, M. and Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59 (2): 206–216. doi: 10.1016/j.envexpbot.2005.12.006.
- Awika, J.M., Piironen, V., and Bean, S. (2011). Major cereal grains production and use around the world. In: Advances in Cereal Science: Implications to Food Processing and Health Promotion (eds. J.M. Awika, V. Piironen and S. Bean), 1–13. American Chemical Society: Washington, DC. doi: 10.1021/bk-2011-1089.ch001.
10.1021/bk‐2011‐1089.ch001 Google Scholar
- Bagni, N. and Tassoni, A. (2001). Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20 (3): 301–317. doi: 10.1007/s007260170046.
- Baker, A.J.M. (1981). Accumulators and excluders -strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3 (1–4): 643–654. doi: 10.1080/01904168109362867.
- Ball, M.C. (1988). Ecophysiology of mangroves. Trees 2 (3): 129–142. doi: 10.1007/BF00196018.
10.1007/BF00196018 Google Scholar
- Barrero-Sicilia, C., Silvestre, S., Haslam, R.P. et al. (2017). Lipid remodelling: unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Science 263: 194–200. doi: 10.1016/j.plantsci.2017.07.017.
- Battisti, D.S. and Naylor, R.L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323 (5911): 240–244. doi: 10.1126/science.1164363.
- Berry, J. and Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology 31 (1): 491–543. doi: 10.1146/annurev.pp.31.060180.002423.
- Bhandari, K. and Nayyar, H. (2014). Low temperature stress in plants: an overview of roles of cryoprotectants in defense. In: Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment (eds. P. Ahmad and M.R. Wani), 193–265. New York: Springer. doi: 10.1007/978-1-4614-8591-9_9.
10.1007/978‐1‐4614‐8591‐9_9 Google Scholar
- Bickford, C.P. (2016). Ecophysiology of leaf trichomes. Functional Plant Biology 43 (9): 807–814.
- Bieza, K. and Lois, R. (2001). An arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiology 126 (3): 1105–1115. doi: 10.1104/pp.126.3.1105.
- Blom, C.W.P.M., Bögemann, G.M., Laan, P. et al. (1990). Adaptations to flooding in plants from river areas. Aquatic Botany 38 (1): 29–47. doi: 10.1016/0304-3770(90)90097-5.
- Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment 40 (1): 4–10. doi: 10.1111/pce.12800.
- Boojar, M.M.A. and Tavakkoli, Z. (2011). New molybdenum-hyperaccumulator among plant species growing on molybdenum mine – a biochemical study on tolerance mechanism against metal toxicity. Journal of Plant Nutrition 34 (10): 1532–1557. doi: 10.1080/01904167.2011.585209.
- Borowitzka, M.A. (2018). The “stress” concept in microalgal biology—homeostasis, acclimation and adaptation. Journal of Applied Phycology 30 (5): 2815–2825. doi: 10.1007/s10811-018-1399-0.
- Bowne, J., Bacic, A., Tester, M. et al. (2018). Abiotic stress and metabolomics. Annual Plant Reviews Online: 61–85. American Cancer Society. doi: 10.1002/9781119312994.
10.1002/9781119312994 Google Scholar
- Brooks, M.L. (2003). Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert: nitrogen effects on alien annual plants. Journal of Applied Ecology 40 (2): 344–353. doi: 10.1046/j.1365-2664.2003.00789.x.
- Brown, J.H. (1990). Species diversity. In: Analytical Biogeography (eds. A.A. Myers and P.S. Giller), 57–89. The Netherlands: Springer. doi: 10.1007/978-94-009-0435-4_3.
10.1007/978‐94‐009‐0435‐4_3 Google Scholar
- Bundy, J.G., Davey, M.P., and Viant, M.R. (2008). Environmental metabolomics: a critical review and future perspectives. Metabolomics 5 (1): 3. doi: 10.1007/s11306-008-0152-0.
- Burt, A.J., Arnason, J.T., and García-Lara, S. (2019). Natural variation of hydroxycinnamic acid amides in maize landraces. Journal of Cereal Science 88: 145–149. doi: 10.1016/j.jcs.2019.06.002.
- Caldwell, M.M., Teramura, A.H., and Tevini, M. (1989). The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends in Ecology & Evolution 4 (12): 363–367. doi: 10.1016/0169-5347(89)90100-6.
- Caldwell, M.M., Bornman, J., Ballaré, C. et al. (2007). Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical & Photobiological Sciences 6 (3): 252–266.
- Callaway, R.M., Brooker, R.W., Choler, P. et al. (2002). Positive interactions among alpine plants increase with stress. Nature 417 (6891): 844–848. doi: 10.1038/nature00812.
- Caretto, S., Linsalata, V., Colella, G. et al. (2015). Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. International Journal of Molecular Sciences 16 (11): 26378–26394. doi: 10.3390/ijms161125967.
- Chaves, M.M., Costa, J.M., Zarrouk, O. et al. (2016). Controlling stomatal aperture in semi-arid regions—The dilemma of saving water or being cool? Plant Science 251: 54–64. doi: 10.1016/j.plantsci.2016.06.015.
- Chen, T.H.H. and Murata, N. (2002). Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology 5 (3): 250–257. doi: 10.1016/S1369-5266(02)00255-8.
- Chen, D., Shao, Q., Yin, L. et al. (2019). Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Frontiers in Plant Science 9: 1945. doi: 10.3389/fpls.2018.01945.
- Cheng, A.-X., Lou, Y.-G., Mao, Y.-B. et al. (2007). Plant terpenoids: biosynthesis and ecological functions. Journal of Integrative Plant Biology 49 (2): 179–186. doi: 10.1111/j.1744-7909.2007.00395.x.
- Chia, D.W., Yoder, T.J., Reiter, W.-D. et al. (2000). Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species. Planta 211 (5): 743–751. doi: 10.1007/s004250000345.
- Choudhury, F.K., Rivero, R.M., Blumwald, E. et al. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal 90 (5): 856–867. doi: 10.1111/tpj.13299.
- Chouhan, S., Sharma, K., Zha, J. et al. (2017). Recent advances in the recombinant biosynthesis of polyphenols. Frontiers in Microbiology 8: 2259. doi: 10.3389/fmicb.2017.02259.
- Cirak, C., Radusiene, J., Jakstas, V. et al. (2017). Altitudinal changes in secondary metabolite contents of Hypericum androsaemum and Hypericum polyphyllum. Biochemical Systematics and Ecology 70: 108–115. doi: 10.1016/j.bse.2016.11.006.
- Clancy, M.V., Zytynska, S.E., Moritz, F. et al. (2018). Metabotype variation in a field population of tansy plants influences aphid host selection: plant chemical diversity in a plant-aphid system. Plant, Cell & Environment 41 (12): 2791–2805. doi: 10.1111/pce.13407.
- Clemente-Moreno, M.J., Omranian, N., Sáez, P. et al. (2020). Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species Colobanthus quitensis. New Phytologist 225 (2): 754–768. doi: 10.1111/nph.16167.
- Cohen, D. (1966). Optimizing reproduction in a randomly varying environment. Journal of Theoretical Biology 12 (1): 119–129.
- Cowling, R.M., Esler, K.J., and Rundel, P.W. (1999). Namaqualand, South Africa – an overview of a unique winter-rainfall desert ecosystem. Plant Ecology 142 (1): 3–21. doi: 10.1023/A:1009831308074.
- Cui, G., Ji, G., Liu, S. et al. (2019). Physiological adaptations of Elymus dahuricus to high altitude on the Qinghai–Tibetan Plateau. Acta Physiologiae Plantarum 41 (7): 115. doi: 10.1007/s11738-019-2904-z.
- Cunningham, S.D., Berti, W.R., and Huang, J.W. (1995). Phytoremediation of contaminated soils. Trends in Biotechnology 13 (9): 393–397. doi: 10.1016/S0167-7799(00)88987-8.
- Cushman, J.C. and Bohnert, H.J. (2000). Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology 3 (2): 117–124. doi: 10.1016/S1369-5266(99)00052-7.
- Dai, F., Nevo, E., Wu, D. et al. (2012). Tibet is one of the centers of domestication of cultivated barley. Proceedings of the National Academy of Sciences of the United States of America 109 (42): 16969–16973. doi: 10.1073/pnas.1215265109.
- Dassanayake, M. and Larkin, J.C. (2017). Making plants break a sweat: the structure, function, and evolution of plant salt glands. Frontiers in Plant Science 8. doi: 10.3389/fpls.2017.00406.
- Davidson, A.M., Jennions, M., and Nicotra, A.B. (2011). Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis: Invasive species have higher phenotypic plasticity. Ecology Letters 14 (4): 419–431. doi: 10.1111/j.1461-0248.2011.01596.x.
- Decros, G., Baldet, P., Beauvoit, B. et al. (2019). Get the balance right: ROS homeostasis and redox signalling in fruit. Frontiers in Plant Science 10. doi: 10.3389/fpls.2019.01091.
- Di Ferdinando, M., Brunetti, C., Fini, A. et al. (2012). Flavonoids as antioxidants in plants under abiotic stresses. In: Abiotic Stress Responses in Plants (eds. P. Ahmad and M.N.V. Prasad), 59–179. New York: Springer. doi: 10.1007/978-1-4614-0634-1_9.
10.1007/978-1-4614-0634-1_9 Google Scholar
- Díaz, F.P., Frugone, M., Gutiérrez, R.A. et al. (2016). Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet. Scientific Reports 6: 22226. doi: 10.1038/srep22226.
- Díaz, F.P., Latorre, C., Carrasco-Puga, G. et al. (2019). Multiscale climate change impacts on plant diversity in the Atacama Desert. Global Change Biology 25 (5): 1733–1745. doi: 10.1111/gcb.14583.
- Dodd, G.L. and Donovan, L.A. (1999). Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. American Journal of Botany 86 (8): 1146–1153. doi: 10.2307/2656978.
- Dong, X. and Zhang, X. (2000). Special stomatal distribution in Sabina vulgaris in relation to its survival in a desert environment. Trees 14 (7): 369–375.
10.1007/s004680000054 Google Scholar
- Drenovsky, R.E., James, J.J., and Richards, J.H. (2010). Variation in nutrient resorption by desert shrubs. Journal of Arid Environments 74 (11): 1564–1568. doi: 10.1016/j.jaridenv.2010.05.030.
- Dürr, C., Dickie, J.B., Yang, X.-Y. et al. (2015). Ranges of critical temperature and water potential values for the germination of species worldwide: contribution to a seed trait database. Agricultural and Forest Meteorology 200: 222–232. doi: 10.1016/j.agrformet.2014.09.024.
- Edwards, A.C., Scalenghe, R., and Freppaz, M. (2007). Changes in the seasonal snow cover of alpine regions and its effect on soil processes: a review. Quaternary International 162–163: 172–181. doi: 10.1016/j.quaint.2006.10.027.
- Eggli, U. and Nyffeler, R. (2009). Living under temporarily arid conditions - succulence as an adaptive strategy. Bradleya: 13–36. British Cactus and Succulent Society. doi: 10.25223/brad.n27.2009.a10.
- ElSayed, A.I., Rafudeen, M.S., and Golldack, D. (2014). Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biology 16 (1): 1–8. doi: 10.1111/plb.12053.
- Engelhardt, B., Frőhlich, H., and Kschischo, M. (2016). Learning (from) the errors of a systems biology model. Scientific Reports 6 (1): 20772. doi: 10.1038/srep20772.
- Eshel, G., Shaked, R., Kazachkova, Y. et al. (2017). Anastatica hierochuntica, an Arabidopsis desert relative, is tolerant to multiple abiotic stresses and exhibits species-specific and common stress tolerance strategies with its halophytic relative, Eutrema (Thellungiella) salsugineum. Frontiers in Plant Science 7. doi: 10.3389/fpls.2016.01992.
- Fahad, S., Hussain, S., Matloob, A. et al. (2015). Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation 75 (2): 391–404. doi: 10.1007/s10725-014-0013-y.
- Fahn, A. (1988). Secretory tissues in vascular plants. New Phytologist 108 (3): 229–257. doi: 10.1111/j.1469-8137.1988.tb04159.x.
- Farooq, M., Hussain, M., Wahid, A. et al. (2012). Drought stress in plants: an overview. In: Plant Responses to Drought Stress (ed. R. Aroca), 1–33. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-32653-0_1.
10.1007/978-3-642-32653-0_1 Google Scholar
- Fedoroff, N.V., Battisti, D.S., Beachy, R.N. et al. (2010). Radically rethinking agriculture for the 21st century. Science (New York, N.Y.) 327 (5967): 833–834. doi: 10.1126/science.1186834.
- Fernández Marín, B., Gulías, J., Figueroa, C.M. et al. (2020). How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. The Plant Journal 101 (4): 979–1000. doi: 10.1111/tpj.14694.
- Fernandez, O., Urrutia, M., Bernillon, S. et al. (2016). Fortune telling: metabolic markers of plant performance. Metabolomics 12 (10): 158. doi: 10.1007/s11306-016-1099-1.
- Fernie, A.R., Carrari, F., and Sweetlove, L.J. (2004). Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Current Opinion in Plant Biology 7 (3): 254–261. doi: 10.1016/j.pbi.2004.03.007.
- Flowers, T.J. (1972). The effect of sodium chloride on enzyme activities from four halophyte species of chenopodiaceae. Phytochemistry 11 (6): 1881–1886. doi: 10.1016/S0031-9422(00)90147-X.
- Flowers, T.J. and Colmer, T.D. (2008). Salinity tolerance in halophytes. New Phytologist 179 (4): 945–963. doi: 10.1111/j.1469-8137.2008.02531.x.
- Flowers, T.J., Galal, H.K., and Bromham, L. (2010). Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology 37 (7): 604. doi: 10.1071/FP09269.
- Folk, R.A., Siniscalchi, C.M., and Soltis, D.E. (2020). Angiosperms at the edge: extremity, diversity, and phylogeny. Plant, Cell and Environment. doi: 10.1111/pce.13887.
- Foyer, C.H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany 154: 134–142. doi: 10.1016/j.envexpbot.2018.05.003.
- Foyer, C.H. and Noctor, G. (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiology 155 (1): 2.
- Fridley, J.D. (2017). Plant energetics and the synthesis of population and ecosystem ecology. Journal of Ecology 105 (1): 95–110. doi: 10.1111/1365-2745.12693.
- Gagneul, D., Aïnouche, A., Duhazé, C. et al. (2007). A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiology 144 (3): 1598–1611. doi: 10.1104/pp.107.099820.
- Gakière, B., Fernie, A.R., and Pétriacq, P. (2018). More to NAD+ than meets the eye: a regulator of metabolic pools and gene expression in Arabidopsis. Free Radical Biology & Medicine 122: 86–95. doi: 10.1016/j.freeradbiomed.2018.01.003.
- Galinski, E.A. (1993). Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49 (6–7): 487–496. doi: 10.1007/BF01955150.
- Gasulla, F., vom Dorp, K., Dombrink, I. et al. (2013). The role of lipid metabolism in the acquisition of desiccation tolerance in Craterostigma plantagineum: a comparative approach. The Plant Journal 75 (5): 726–741. doi: 10.1111/tpj.12241.
- Geigenberger, P. and Fernie, A.R. (2014). Metabolic control of redox and redox control of metabolism in plants. Antioxidants & Redox Signaling 21 (9): 1389–1421. doi: 10.1089/ars.2014.6018.
- Geigenberger, P., Thormählen, I., Daloso, D.M. et al. (2017). The unprecedented versatility of the plant thioredoxin system. Trends in Plant Science 22 (3): 249–262. doi: 10.1016/j.tplants.2016.12.008.
- Giarola, V., Hou, Q., and Bartels, D. (2017). Angiosperm plant desiccation tolerance: hints from transcriptomics and genome sequencing. Trends in Plant Science 22 (8): 705–717. doi: 10.1016/j.tplants.2017.05.007.
- Gibon, Y., Bessieres, M.A., and Larher, F. (1997). Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? Plant, Cell and Environment 20 (3): 329–340. doi: 10.1046/j.1365-3040.1997.d01-82.x.
- Giri, J. (2011). Glycinebetaine and abiotic stress tolerance in plants. Plant Signaling & Behavior 6 (11): 1746–1751. doi: 10.4161/psb.6.11.17801.
- Girvetz, E.H. and Zganjar, C. (2014). Dissecting indices of aridity for assessing the impacts of global climate change. Climatic Change 126 (3–4): 469–483. doi: 10.1007/s10584-014-1218-9.
- Godoy, O., Valladares, F., and Castro-Díez, P. (2011). Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity: phenotypic plasticity and invasiveness. Functional Ecology 25 (6): 1248–1259. doi: 10.1111/j.1365-2435.2011.01886.x.
- Gollan, P.J., Lima-Melo, Y., Tiwari, A. et al. (2017). Interaction between photosynthetic electron transport and chloroplast sinks triggers protection and signalling important for plant productivity. Philosophical Transactions of the Royal Society, B: Biological Sciences 372 (1730): 20160390. doi: 10.1098/rstb.2016.0390.
- Gruber, N. and Galloway, J.N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature 451 (7176): 293–296. doi: 10.1038/nature06592.
- Gupta, D.K., Palma, J.M., and Corpas, F.J. (2016). Redox State as a Central Regulator of Plant-Cell Stress Responses. Cham: Springer International Publishing. doi: 10.1007/978-3-319-44081-1.
10.1007/978-3-319-44081-1 Google Scholar
- Gutierrez, J.R. and Whitford, W.G. (1987). Chihuahuan desert annuals: importance of water and nitrogen. Ecology 68 (6): 2032–2045. doi: 10.2307/1939894.
- Gutterman, Y. (2000). Environmental factors and survival strategies of annual plant species in the Negev Desert, Israel. Plant Species Biology 15 (2): 113–125. doi: 10.1046/j.1442-1984.2000.00032.x.
10.1046/j.1442-1984.2000.00032.x Google Scholar
- Hamblin, A.P. (1986). The influence of soil structure on water movement, crop root growth, and water uptake. Advances in Agronomy: 95–158. Elsevier. doi: 10.1016/S0065-2113(08)60674-4.
- Hanna, A.L., Youssef, H.H., Amer, W.M. et al. (2013). Diversity of bacteria nesting the plant cover of north Sinai deserts, Egypt. Journal of Advanced Research 4 (1): 13–26. doi: 10.1016/j.jare.2011.11.003.
- Hasanuzzaman, M., Nahar, K., and Fujit, M. (2013). Extreme temperature responses, oxidative stress and antioxidant defense. In: Plants. Abiotic Stress – Plant Responses and Applications in Agriculture (ed. K. Vahdati). doi: 10.5772/54833.
10.5772/54833 Google Scholar
- Hashim, A.M., Alharbi, B.M., Abdulmajeed, A.M. et al. (2020). Oxidative stress responses of some endemic plants to high altitudes by intensifying antioxidants and secondary metabolites content. Plants 9 (7): 869. doi: 10.3390/plants9070869.
- Havaux, M. (2014). Carotenoid oxidation products as stress signals in plants. The Plant Journal 79 (4): 597–606. doi: 10.1111/tpj.12386.
- He, M. and Dijkstra, F.A. (2014). Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytologist 204 (4): 924–931. doi: 10.1111/nph.12952.
- Hennion, F., Bouchereau, A., Gauthier, C. et al. (2012). Variation in amine composition in plant species: how it integrates macroevolutionary and environmental signals. American Journal of Botany 99 (1): 36–45. doi: 10.3732/ajb.1100211.
- Hill, K.E., Guerin, G.R., Hill, R.S. et al. (2015). Temperature influences stomatal density and maximum potential water loss through stomata of Dodonaea viscosa subsp. angustissima along a latitude gradient in southern Australia. Australian Journal of Botany 62 (8): 657–665.
- Hou, Q., Ufer, G., and Bartels, D. (2016). Lipid signalling in plant responses to abiotic stress: lipid signalling in plant responses to abiotic stress. Plant, Cell & Environment 39 (5): 1029–1048. doi: 10.1111/pce.12666.
- Hu, L., Hu, T., Zhang, X. et al. (2012). Exogenous glycine betaine Ameliorates the adverse effect of salt stress on perennial ryegrass. Journal of the American Society for Horticultural Science 137 (1): 38–46. doi: 10.21273/JASHS.137.1.38.
- Igamberdiev, A.U. and Eprintsev, A.T. (2016). Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants. Frontiers in Plant Science 7. doi: 10.3389/fpls.2016.01042.
- Jaakola, L. and Hohtola, A. (2010). Effect of latitude on flavonoid biosynthesis in plants: effect of latitude on flavonoid biosynthesis. Plant, Cell and Environment. doi: 10.1111/j.1365-3040.2010.02154.x.
- James, J.J., Tiller, R.L., and Richards, J.H. (2005). Multiple resources limit plant growth and function in a saline-alkaline desert community. Journal of Ecology 93 (1): 113–126. doi: 10.1111/j.0022-0477.2004.00948.x.
- Jiang, G., Wang, Z., Shang, H. et al. (2007). Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration. Planta 225 (6): 1405–1420. doi: 10.1007/s00425-006-0449-z.
- Jin, D., Dai, Y., Sun, L. et al. (2008). Is mass-based metabolism rate proportional to surface area in plant leaves? A data re-analysis. Journal of Integrative Plant Biology 50 (6): 673–681. doi: 10.1111/j.1744-7909.2008.00674.x.
- Jones, R.G.W. and Gorham, J. (1983). Aspects of salt and drought tolerance in higher plants. In: Genetic Engineering of Plants (eds. T. Kosuge, C.P. Meredith, A. Hollaender and C.M. Wilson), 355–370. Boston, MA: Springer. doi: 10.1007/978-1-4684-4544-2_24.
10.1007/978-1-4684-4544-2_24 Google Scholar
- Jordan, P.W. and Nobel, P.S. (1979). Infrequent Establishment of Seedlings of Agave Deserti (Agavaceae) in the Northwestern Sonoran Desert. American Journal of Botany 66 (9): 1079–1084. doi: 10.1002/j.1537-2197.1979.tb06325.x.
- Kalia, R., Sareen, S., Nagpal, A. et al. (2017). ROS-induced transcription factors during oxidative stress in plants: a tabulated review. In: Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress (eds. M.I.R. Khan and N.A. Khan), 129–158. Singapore: Springer. doi: 10.1007/978-981-10-5254-5_6.
10.1007/978-981-10-5254-5_6 Google Scholar
- Karabourniotis, G., Kotsabassidis, D., and Manetas, Y. (1995). Trichome density and its protective potential against ultraviolet-B radiation damage during leaf development. Canadian Journal of Botany 73 (3): 376–383.
10.1139/b95-039 Google Scholar
- Kaur, G. and Asthir, B. (2015). Proline: a key player in plant abiotic stress tolerance. Biologia Plantarum 59 (4): 609–619. doi: 10.1007/s10535-015-0549-3.
- van Kleunen, M. and Richardson, D.M. (2007). Invasion biology and conservation biology: time to join forces to explore the links between species traits and extinction risk and invasiveness. Progress in Physical Geography: Earth and Environment 31 (4): 447–450. doi: 10.1177/0309133307081295.
- Körner, C. (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, 2e. Berlin, New York: Springer.
10.1007/978-3-642-18970-8 Google Scholar
- Körner, C. (2016). Plant adaptation to cold climates. F1000Research 5: 2769. doi: 10.12688/f1000research.9107.1.
10.12688/f1000research.9107.1 Google Scholar
- Körner, C. (2018). Concepts in empirical plant ecology. Plant Ecology and Diversity 11 (4): 405–428. doi: 10.1080/17550874.2018.1540021.
- Körner, C., Bannister, P., and Mark, A.F. (1986). Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69 (4): 577–588. doi: 10.1007/BF00410366.
- Körner, C., Neumayer, M., Menendez-Riedl, S.P. et al. (1989). Functional morphology of mountain plants Dedicated to Prof. H. Meusel, on the occasion of his 80th birthday. Flora 182 (5–6): 353–383. doi: 10.1016/S0367-2530(17)30426-7.
- Krall, J.P. and Edwards, G.E. (1992). Relationship between photosystem II activity and CO2 fixation in leaves. Physiologia Plantarum 86 (1): 180–187. doi: 10.1111/j.1399-3054.1992.tb01328.x.
- Krämer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology 61 (1): 517–534. doi: 10.1146/annurev-arplant-042809-112156.
- Kranner, I., Beckett, R.P., Wornik, S. et al. (2002). Revival of a resurrection plant correlates with its antioxidant status. The Plant Journal 31 (1): 13–24. doi: 10.1046/j.1365-313X.2002.01329.x.
- Krishnamurthy, P., Jyothi-Prakash, P.A., Qin, L. et al. (2014). Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis. Plant, Cell & Environment 37 (7): 1656–1671. doi: 10.1111/pce.12272.
- Kroymann, J. (2011). Natural diversity and adaptation in plant secondary metabolism. Current Opinion in Plant Biology 14 (3): 246–251. doi: 10.1016/j.pbi.2011.03.021.
- Kumari, M., Joshi, R., and Kumar, R. (2020). Metabolic signatures provide novel insights to Picrorhiza kurroa adaptation along the altitude in Himalayan region. Metabolomics 16 (7): 77. doi: 10.1007/s11306-020-01698-8.
- Kuprian, E., Tuong, T.D., Pfaller, K. et al. (2016). Persistent supercooling of reproductive shoots is enabled by structural ice barriers being active despite an intact xylem connection. PLoS One 11 (9). doi: 10.1371/journal.pone.0163160.
- Lambers, H., Brundrett, M.C., Raven, J.A. et al. (2011). Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant and Soil 348 (1–2): 7–27. doi: 10.1007/s11104-011-0977-6.
- Lambers, H., Ahmedi, I., Berkowitz, O. et al. (2013). Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot. Conservation Physiology 1 (1): cot010. doi: 10.1093/conphys/cot010.
- Larcher, W., Kainmüller, C., and Wagner, J. (2010). Survival types of high mountain plants under extreme temperatures. Flora – Morphology, Distribution, Functional Ecology of Plants 205 (1): 3–18. doi: 10.1016/j.flora.2008.12.005.
10.1016/j.flora.2008.12.005 Google Scholar
- Latorre, C., González, A.L., Quade, J. et al. (2011). Establishment and formation of fog-dependent Tillandsia landbeckii dunes in the Atacama desert: evidence from radiocarbon and stable isotopes. Journal of Geophysical Research: Biogeosciences 116 (G3). doi: 10.1029/2010jg001521.
- Le Gall, H., Philippe, F., Domon, J.-M. et al. (2015). Cell wall metabolism in response to abiotic stress. Plants 4 (1): 112–166. doi: 10.3390/plants4010112.
- León-Sobrino, C., Ramond, J.-B., Maggs-Kölling, G. et al. (2019). Nutrient acquisition, rather than stress response over Diel cycles, drives microbial transcription in a hyper-arid Namib desert soil. Frontiers in Microbiology 10: 1054. doi: 10.3389/fmicb.2019.01054.
- Levin, N.E., Cerling, T.E., Passey, B.H. et al. (2006). A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences 103 (30): 11201–11205. doi: 10.1073/pnas.0604719103.
- Levitt, J. (1980). Responses of plants to environmental stress. In: Volume 1: Chilling, Freezing, and High Temperature Stresses, 2e, 3–19. Academic Press. doi: 10.1016/B978-0-12-445501-6.50006-3.
10.1016/B978-0-12-445501-6.50006-3 Google Scholar
- Li, F.-R., Peng, S.-L., Chen, B.-M. et al. (2010). A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecologica 36 (1): 1–9. doi: 10.1016/j.actao.2009.09.002.
- Li, X., Yang, Y., Ma, L. et al. (2014). Comparative proteomics analyses of Kobresia pygmaea adaptation to environment along an elevational gradient on the Central Tibetan Plateau. PLoS One 9 (6): e98410. doi: 10.1371/journal.pone.0098410.
- Li, C., Zheng, Z., Peng, Y. et al. (2019). Precipitation and nitrogen addition enhance biomass allocation to aboveground in an alpine steppe. Ecology and Evolution 9 (21): 12193–12201. doi: 10.1002/ece3.5706.
- Li, Y., Kong, D., Fu, Y. et al. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry 148: 80–89. doi: 10.1016/j.plaphy.2020.01.006.
- Lin, Y.-F. and Aarts, M.G.M. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cellular and Molecular Life Sciences 69 (19): 3187–3206. doi: 10.1007/s00018-012-1089-z.
- Liu, M.Z., Jiang, G.M., Li, Y.G. et al. (2003). Leaf osmotic potentials of 104 plant species in relation to habitats and plant functional types in Hunshandak Sandland, Inner Mongolia, China. Trees 17 (6): 554–560. doi: 10.1007/s00468-003-0277-8.
- Loescher, W.H. and Everard, J.D. (2000). Regulation of sugar alcohol biosynthesis. In: Photosynthesis (eds. R.C. Leegood, T.D. Sharkey and S. Caemmerer), 275–299. Dordrecht, Netherlands: Springer. doi: 10.1007/0-306-48137-5_12.
10.1007/0-306-48137-5_12 Google Scholar
- Long, S.P., Marshall-Colon, A., and Zhu, X.-G. (2015). Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161 (1): 56–66. doi: 10.1016/j.cell.2015.03.019.
- López-Fernández, O., Domínguez, R., Pateiro, M. et al. (2020). Determination of polyphenols using liquid chromatography–tandem mass spectrometry technique (LC–MS/MS): a review. Antioxidants 9 (6): 479. doi: 10.3390/antiox9060479.
- López-Lozano, N.E., Eguiarte, L.E., Bonilla-Rosso, G. et al. (2012). Bacterial communities and the nitrogen cycle in the gypsum soils of Cuatro Ciénegas Basin, Coahuila: a Mars analogue. Astrobiology 12 (7): 699–709. doi: 10.1089/ast.2012.0840.
- Loreti, E., van Veen, H., and Perata, P. (2016). Plant responses to flooding stress. Current Opinion in Plant Biology 33: 64–71. doi: 10.1016/j.pbi.2016.06.005.
- Lü, X.-T., Freschet, G.T., Flynn, D.F.B. et al. (2012). Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland: fertility-nutrient resorption coupling. Journal of Ecology 100 (1): 144–150. doi: 10.1111/j.1365-2745.2011.01881.x.
- Lugan, R., Niogret, M.-F., Leport, L. et al. (2010). Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. The Plant Journal: For Cell and Molecular Biology 64 (2): 215–229. doi: 10.1111/j.1365-313X.2010.04323.x.
- Ma, W., Shi, P., Li, W. et al. (2010). Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. Science China Life Sciences 53 (9): 1142–1151. doi: 10.1007/s11427-010-4054-9.
- Ma, L., Sun, X., Kong, X. et al. (2015). Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau. Journal of Proteomics 112: 63–82. doi: 10.1016/j.jprot.2014.08.009.
- Martin, C.E. and von Willert, D.J. (2000). Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib desert in southern Africa. Plant Biology 2 (2): 229–242. doi: 10.1055/s-2000-9163.
- Martins, L., Trujillo-Hernandez, J.A., and Reichheld, J.-P. (2018). Thiol based redox signaling in plant nucleus. Frontiers in Plant Science 9. doi: 10.3389/fpls.2018.00705.
- Matthews, J.S. and Lawson, T. (2018). Climate change and stomatal physiology. Annual Plant Reviews Online: 713–752.
- Mazliak, P. (1977). Glyco- and phospholipids of biomembranes in higher plants. In: Lipids and Lipid Polymers in Higher Plants (eds. M. Tevini and H.K. Lichtenthaler), 48–74. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-66632-2_3.
10.1007/978-3-642-66632-2_3 Google Scholar
- Merino, N., Aronson, H.S., Bojanova, D.P. et al. (2019). Living at the extremes: extremophiles and the limits of life in a planetary context. Frontiers in Microbiology 10: 780. doi: 10.3389/fmicb.2019.00780.
- Mhlongo, M.I., Piater, L.A., Madala, N.E. et al. (2018). The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Frontiers in Plant Science 9. doi: 10.3389/fpls.2018.00112.
- Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A. et al. (2012). Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated Berry species. Journal of Food Science 77 (10): C1064–C1070. doi: 10.1111/j.1750-3841.2012.02896.x.
- Mishra, A.K. and Singh, V.P. (2010). A review of drought concepts. Journal of Hydrology 391 (1): 202–216. doi: 10.1016/j.jhydrol.2010.07.012.
- Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science 11 (1): 15–19. doi: 10.1016/j.tplants.2005.11.002.
- Mittler, R. (2017). ROS are good. Trends in Plant Science 22 (1): 11–19. doi: 10.1016/j.tplants.2016.08.002.
- Moellering, E.R., Muthan, B., and Benning, C. (2010). Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330 (6001): 226–228. doi: 10.1126/science.1191803.
- Moing, A. (2000). Sugar alcohols as carbohydrate reserves in some higher plants. Developments in Crop Science. Elsevier 26: 337–358. doi: 10.1016/S0378-519X(00)80017.
10.1016/S0378-519X(00)80017 Google Scholar
- Monschein, M., Jaindl, K., Buzimkić, S. et al. (2015). Content of phenolic compounds in wild populations of Epilobium angustifolium growing at different altitudes. Pharmaceutical Biology 53 (11): 1576–1582. doi: 10.3109/13880209.2014.993039.
- Moon, G., Clough, B., Peterson, C. et al. (1986). Apoplastic and symplastic pathways in Avicennia marina (Forsk.) Vierh. roots revealed by fluorescent tracer dyes. Functional Plant Biology 13 (5): 637–648.
- Munns, R. (2002). Comparative physiology of salt and water stress: comparative physiology of salt and water stress. Plant, Cell & Environment 25 (2): 239–250. doi: 10.1046/j.0016-8025.2001.00808.x.
- Nagajyoti, P.C., Lee, K.D., and Sreekanth, T.V.M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8 (3): 199–216. doi: 10.1007/s10311-010-0297-8.
- Nagler, M., Nägele, T., Gilli, C. et al. (2018). Eco-metabolomics and metabolic modeling: making the leap from model systems in the lab to native populations in the field. Frontiers in Plant Science 9: 1556. doi: 10.3389/fpls.2018.01556.
- Najjaa, H., Abdelkarim, B.A., Doria, E. et al. (2020). Phenolic composition of some Tunisian medicinal plants associated with anti-proliferative effect on human breast cancer MCF-7 cells. The EuroBiotech Journal 4 (2): 104–112. doi: 10.2478/ebtj-2020-0012.
- Nakabayashi, R. and Saito, K. (2015). Integrated metabolomics for abiotic stress responses in plants. Current Opinion in Plant Biology 24: 10–16. doi: 10.1016/j.pbi.2015.01.003.
- Neuner, G. and Hacker, J. (2012). Ice formation and propagation in alpine plants. In: Plants in Alpine Regions: Cell Physiology of Adaption and Survival Strategies (ed. C. Lütz), 163–174. Springer: Vienna. doi: 10.1007/978-3-7091-0136-0_12.
10.1007/978-3-7091-0136-0_12 Google Scholar
- Nevo, E. (2001). Evolution of genome-phenome diversity under environmental stress. Proceedings of the National Academy of Sciences 98 (11): 6233–6240. doi: 10.1073/pnas.101109298.
- Nicotra, A.B., Atkin, O.K., Bonser, S.P. et al. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15 (12): 684–692. doi: 10.1016/j.tplants.2010.09.008.
- Noctor, G., Reichheld, J.-P., and Foyer, C.H. (2018). ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology 80: 3–12. doi: 10.1016/j.semcdb.2017.07.013.
- Noy-Meir, I. (1973). Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics 4 (1): 25–51. doi: 10.1146/annurev.es.04.110173.000325.
10.1146/annurev.es.04.110173.000325 Google Scholar
- Öncel, I., Yurdakulol, E., Keleş, Y. et al. (2004). Role of antioxidant defense system and biochemical adaptation on stress tolerance of high mountain and steppe plants. Acta Oecologica 26 (3): 211–218. doi: 10.1016/j.actao.2004.04.004.
- Pandey, S., Fartyal, D., Agarwal, A. et al. (2017). Abiotic stress tolerance in plants: Myriad roles of ascorbate peroxidase. Frontiers in Plant Science 8. doi: 10.3389/fpls.2017.00581.
- Parida, A.K., Panda, A., and Rangani, J. (2018). Metabolomics-guided elucidation of abiotic stress tolerance mechanisms in plants. In: Plant Metabolites and Regulation Under Environmental Stress (eds. P. Ahmad, M.A. Ahanger, V. Singh, et al.), 89–131. Elsevier. doi: 10.1016/B978-0-12-812689-9.00005-4.
10.1016/B978-0-12-812689-9.00005-4 Google Scholar
- Pearce, R.S. (2001). Plant freezing and damage. Annals of Botany 87 (4): 417–424. doi: 10.1006/anbo.2000.1352.
- Peng, J.-S., Guan, Y.-H., Lin, X.-J. et al. (2020). Comparative understanding of metal hyperaccumulation in plants: a mini-review. Environmental Geochemistry and Health. doi: 10.1007/s10653-020-00533-2.
- Peppe, D.J., Royer, D.L., Cariglino, B. et al. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist 190 (3): 724–739. doi: 10.1111/j.1469-8137.2010.03615.x.
- Pérez-Noyola, F.J., Flores, J., Yáñez-Espinosa, L. et al. (2020). Complete vivipary behavior detected in the epiphytic Tillandsia recurvata L.(Ball moss) in the Chihuahuan Desert in two continuous years. Journal of Arid Environments 174: 103993.
- Peters, K., Worrich, A., Weinhold, A. et al. (2018). Current challenges in plant eco-metabolomics. International Journal of Molecular Sciences 19 (5): 1385. doi: 10.3390/ijms19051385.
- Piacentini, R.D., Cede, A., and Bárcena, H. (2003). Extreme solar total and UV irradiances due to cloud effect measured near the summer solstice at the high-altitude desertic plateau Puna of Atacama (Argentina). Journal of Atmospheric and Solar-Terrestrial Physics 65 (6): 727–731. doi: 10.1016/S1364-6826(03)00084-1.
- Pollard, A.J., Reeves, R.D., and Baker, A.J.M. (2014). Facultative hyperaccumulation of heavy metals and metalloids. Plant Science 217–218: 8–17. doi: 10.1016/j.plantsci.2013.11.011.
- Poorter, H., Niinemets, Ü., Walter, A. et al. (2010). A method to construct dose–response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. Journal of Experimental Botany 61 (8): 2043–2055. doi: 10.1093/jxb/erp358.
- Poorter, H., Niklas, K.J., Reich, P.B. et al. (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control: Tansley review. New Phytologist 193 (1): 30–50. doi: 10.1111/j.1469-8137.2011.03952.x.
- Poorter, H., Jagodzinski, A.M., Ruiz-Peinado, R. et al. (2015). How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist 208 (3): 736–749. doi: 10.1111/nph.13571.
- Poorter, H., Niinemets, Ü., Ntagkas, N. et al. (2019). A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist 223 (3): 1073–1105. doi: 10.1111/nph.15754.
- Preece, C., Livarda, A., Christin, P. et al. (2017). How did the domestication of Fertile Crescent grain crops increase their yields? Functional Ecology 31 (2): 387–397. doi: 10.1111/1365-2435.12760.
- Purnobasuki, H. (2011). Structure of lenticels on the pneumatophores of Avicennia marina: as aerating device deliver oxygen in mangrove's root. Jurnal BIOTA XVI 2: 309–315.
- Pyankov, V.I., Kondratchuk, A.V., and Shipley, B. (1999). Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytologist 143 (1): 131–142. doi: 10.1046/j.1469-8137.1999.00435.x.
- Qu, A.-L., Ding, Y.-F., Jiang, Q. et al. (2013). Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications 432 (2): 203–207. doi: 10.1016/j.bbrc.2013.01.104.
- Quartacci, M.F. (2002). Plasma membrane lipids in the resurrection plant Ramonda serbica following dehydration and rehydration. Journal of Experimental Botany 53 (378): 2159–2166. doi: 10.1093/jxb/erf076.
- Ramadan, A., Sabir, J.S.M., Alakilli, S.Y.M. et al. (2014). Metabolomic response of Calotropis procera growing in the desert to changes in water availability. PLoS One 9 (2). doi: 10.1371/journal.pone.0087895.
- Ramond, J.-B., Woodborne, S., Hall, G. et al. (2018). Namib Desert primary productivity is driven by cryptic microbial community N-fixation. Scientific Reports 8 (1): 6921. doi: 10.1038/s41598-018-25078-4.
- Rascio, N. and Rocca, N.L. (2005). Resurrection plants: the puzzle of surviving extreme vegetative desiccation. Critical Reviews in Plant Sciences 24 (3): 209–225. doi: 10.1080/07352680591008583.
- Reich, P.B., Walters, M.B., and Ellsworth, D.S. (1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs 62 (3): 365–392. doi: 10.2307/2937116.
- Ren, M., Zhang, Z., Wang, X. et al. (2018). Diversity and contributions to nitrogen cycling and carbon fixation of soil salinity shaped microbial communities in Tarim basin. Frontiers in Microbiology 9: 431. doi: 10.3389/fmicb.2018.00431.
- Richards, C.L., Bossdorf, O., Muth, N.Z. et al. (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters 9 (8): 981–993. doi: 10.1111/j.1461-0248.2006.00950.x.
- Riehl, S., Benz, M., Conard, N.J. et al. (2012). Plant use in three Pre-Pottery Neolithic sites of the northern and eastern Fertile Crescent: a preliminary report. Vegetation History and Archaeobotany 21 (2): 95–106. doi: 10.1007/s00334-011-0318-y.
- Roch, L., Prigent, S., Klose, H. et al. (2020). Biomass composition explains fruit relative growth rate and discriminates climacteric from non-climacteric species. Journal of Experimental Botany: eraa302. doi: 10.1093/jxb/eraa302.
- Rothschild, L.J. and Mancinelli, R.L. (2001). Life in extreme environments. Nature 409: 1092–1101. doi: 10.1038/35059215.
- Rundel, P.W., Palma, B., Dillon, M. et al. (1997). Tillandsia landbeckii in the coastal Atacama desert of northern Chile. Revista Chilena de Historia Natural 70: 341–349.
- Saha, J., Brauer, E.K., Sengupta, A. et al. (2015). Polyamines as redox homeostasis regulators during salt stress in plants. Frontiers in Environmental Science 3. doi: 10.3389/fenvs.2015.00021.
- Saha, B., Borovskii, G., and Panda, S.K. (2016). Alternative oxidase and plant stress tolerance. Plant Signaling & Behavior 11 (12): e1256530. doi: 10.1080/15592324.2016.1256530.
- Sanchez, D.H., Pieckenstain, F.L., Escaray, F. et al. (2011). Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant, Cell & Environment 34 (4): 605–617. doi: 10.1111/j.1365-3040.2010.02266.x.
- Sardans, J. and Peñuelas, J. (2005). Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biology and Biochemistry 37 (3): 455–461. doi: 10.1016/j.soilbio.2004.08.004.
- Sardans, J., Gargallo-Garriga, A., Urban, O. et al. (2020). Ecometabolomics for a better understanding of plant responses and acclimation to abiotic factors linked to global change. Metabolites 10 (6): 239. doi: 10.3390/metabo10060239.
- Schertl, P. and Braun, H.-P. (2014). Respiratory electron transfer pathways in plant mitochondria. Frontiers in Plant Science 5. doi: 10.3389/fpls.2014.00163.
- Schimel, J.P. (2018). Life in dry soils: effects of drought on soil microbial communities and processes. Annual Review of Ecology, Evolution, and Systematics 49 (1): 409–432. doi: 10.1146/annurev-ecolsys-110617-062614.
- Scholander, P.F., van Dam, L., and Scholander, S.I. (1955). Gas exchange in the roots of mangroves. American Journal of Botany 42 (1): 92–98. doi: 10.2307/2438597.
- Schulz, E., Tohge, T., Zuther, E. et al. (2016). Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Scientific Reports 6 (1): 34027. doi: 10.1038/srep34027.
- Schulze, E.-D., Hall, A.E., Lange, O.L. et al. (1980). Long-term effects of drought on wild and cultivated plants in the Negev desert: I. Maximal rates of net photosynthesis. Oecologia 45 (1): 11–18. doi: 10.1007/BF00346700.
- Schuster, A.-C., Burghardt, M., Alfarhan, A. et al. (2016). Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures. AoB Plants 8: plw027. doi: 10.1093/aobpla/plw027.
- Seemann, J.R., Downton, W.J.S., and Berry, J.A. (1986). Temperature and leaf osmotic potential as factors in the acclimation of photosynthesis to high temperature in desert plants. Plant Physiology 80 (4): 926–930. doi: 10.1104/pp.80.4.926.
- Selye, H. (1950). Stress and the general adaptation syndrome. British Medical Journal 1 (4667): 1383–1392.
- Sevilla, F., Jiménez, A., and Lázaro, J.J. (2015). What do the plant mitochondrial antioxidant and redox systems have to say under salinity, drought, and extreme temperature? In: Reactive Oxygen Species and Oxidative Damage in Plants Under Stress (eds. D.K. Gupta, J.M. Palma and F.J. Corpas), 23–55. Springer International Publishing. doi: 10.1007/978-3-319-20421-5_2.
10.1007/978-3-319-20421-5_2 Google Scholar
- Shabala, L., Mackay, A., Tian, Y. et al. (2012). Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiologia Plantarum 146 (1): 26–38. doi: 10.1111/j.1399-3054.2012.01599.x.
- Shahid, S.A., Zaman, M., and Heng, L. (2018). Soil salinity: historical perspectives and a world overview of the problem. In: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques (eds. M. Zaman, S.A. Shahid and L. Heng), 43–53. Springer International Publishing. doi: 10.1007/978-3-319-96190-3_2.
10.1007/978-3-319-96190-3_2 Google Scholar
- Shanker, A., Cervantes, C., Lozatavera, H. et al. (2005). Chromium toxicity in plants. Environment International 31 (5): 739–753. doi: 10.1016/j.envint.2005.02.003.
- Sharma, A., Shahzad, B., Kumar, V. et al. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9 (7): 285. doi: 10.3390/biom9070285.
- Sharma, B., Arora, S., Sahoo, D. et al. (2020). Comparative fatty acid profiling of Indian seabuckthorn showed altitudinal gradient dependent species-specific variations. Physiology and Molecular Biology of Plants 26 (1): 41–49. doi: 10.1007/s12298-019-00720-1.
- Singh, H.P., Mahajan, P., Kaur, S. et al. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters 11 (3): 229–254. doi: 10.1007/s10311-013-0407-5.
- Singh, M., Kumar, J., Singh, S. et al. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and BioTechnology 14 (3): 407–426. doi: 10.1007/s11157-015-9372-8.
- Singh, S., Parihar, P., Singh, R. et al. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science 6. doi: 10.3389/fpls.2015.01143.
- Slama, I., Abdelly, C., Bouchereau, A. et al. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany 115 (3): 433–447. doi: 10.1093/aob/mcu239.
- Smirnoff, N. and Arnaud, D. (2019). Hydrogen peroxide metabolism and functions in plants. New Phytologist 221 (3): 1197–1214. doi: 10.1111/nph.15488.
- Stapleton, A.E. and Walbot, V. (1994). Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiology 105 (3): 881–889. doi: 10.1104/pp.105.3.881.
- Streb, P., Tel-Or, E., and Feierabend, J. (1997). Light stress effects and antioxidative protection in two desert plants. Functional Ecology 11 (4): 416–424. doi: 10.1046/j.1365-2435.1997.00105.x.
- Strimbeck, G.R., Schaberg, P.G., Fossdal, C.G. et al. (2015). Extreme low temperature tolerance in woody plants. Frontiers in Plant Science 6. doi: 10.3389/fpls.2015.00884.
- Stushnoff, C., Seufferheld, M.J., and Creegan, T. (1997). Oligosaccharides as endogenous cryoprotectants in woody plants. In: Plant Cold Hardiness (eds. P.H. Li and T.H.H. Chen), 301–309. Boston, MA: Springer. doi: 10.1007/978-1-4899-0277-1_27.
10.1007/978-1-4899-0277-1_27 Google Scholar
- Sun, J. and Wang, H. (2016). Soil nitrogen and carbon determine the trade-off of the above- and below-ground biomass across alpine grasslands, Tibetan Plateau. Ecological Indicators 60: 1070–1076. doi: 10.1016/j.ecolind.2015.08.038.
- Sundberg, M.D. (1986). A comparison of stomatal distribution and length in succulent and non-succulent desert plants. Phytomorphology 36 (1–2): 53–66.
- Suzuki, N., Rivero, R.M., Shulaev, V. et al. (2014). Abiotic and biotic stress combinations. New Phytologist 203 (1): 32–43. doi: 10.1111/nph.12797.
- Sweetlove, L.J., Beard, K.F.M., Nunes-Nesi, A. et al. (2010). Not just a circle: flux modes in the plant TCA cycle. Trends in Plant Science 15 (8): 462–470. doi: 10.1016/j.tplants.2010.05.006.
- Szabados, L. and Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science 15 (2): 89–97. doi: 10.1016/j.tplants.2009.11.009.
- Talbi, S., Romero-Puertas, M.C., Hernández, A. et al. (2015). Drought tolerance in a Saharian plant Oudneya africana: role of antioxidant defences. Environmental and Experimental Botany 111: 114–126. doi: 10.1016/j.envexpbot.2014.11.004.
- Tapia-Torres, Y., Rodríguez-Torres, M.D., Elser, J.J. et al. (2016). How to live with phosphorus scarcity in soil and sediment: lessons from bacteria. Applied and Environmental Microbiology 82 (15): 4652–4662. doi: 10.1128/AEM.00160-16.
- Tetali, S.D. (2019). Terpenes and isoprenoids: a wealth of compounds for global use. Planta 249 (1): 1–8. doi: 10.1007/s00425-018-3056-x.
- Tholl, D. (2015). Biosynthesis and biological functions of terpenoids in plants. In: Biotechnology of Isoprenoids (eds. J. Schrader and J. Bohlmann), 63–106. Springer International Publishing. doi: 10.1007/10_2014_295.
10.1007/10_2014_295 Google Scholar
- Tipirdamaz, R., Gagneul, D., Duhazé, C. et al. (2006). Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environmental and Experimental Botany 57 (1): 139–153. doi: 10.1016/j.envexpbot.2005.05.007.
- Tomlinson, P.B. and Cox, P.A. (2000). Systematic and functional anatomy of seedlings in mangrove Rhizophoraceae: vivipary explained? Botanical Journal of the Linnean Society, Oxford Academic 134 (1–2): 215–231. doi: 10.1111/j.1095-8339.2000.tb02352.x.
- Tóth, G., Hermann, T., Da Silva, M.R. et al. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International 88: 299–309. doi: 10.1016/j.envint.2015.12.017.
- Tshabuse, F., Farrant, J.M., Humbert, L. et al. (2018). Glycerolipid analysis during desiccation and recovery of the resurrection plant Xerophyta humilis (Bak) Dur and Schinz. Plant, Cell & Environment 41 (3): 533–547. doi: 10.1111/pce.13063.
- Tugizimana, F., Mhlongo, M.I., Piater, L.A. et al. (2018). Metabolomics in plant priming research: the way forward? International Journal of Molecular Sciences 19 (6): 1759. doi: 10.3390/ijms19061759.
- Tůmová, L., Tarkowská, D., Řehořová, K. et al. (2018). Drought-tolerant and drought-sensitive genotypes of maize (Zea mays L.) differ in contents of endogenous brassinosteroids and their drought-induced changes. PLoS One 13 (5): e0197870. doi: 10.1371/journal.pone.0197870.
- Turner, N.C. (2018). Turgor maintenance by osmotic adjustment: 40 years of progress. Journal of Experimental Botany 69 (13): 3223–3233. doi: 10.1093/jxb/ery181.
- Upchurch, R.G. (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters 30 (6): 967–977. doi: 10.1007/s10529-008-9639-z.
- Vance, C.P. (2001). Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiology 127 (2): 390–397. doi: 10.1104/pp.010331.
- Verbruggen, N., Hermans, C., and Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants: Tansley review. New Phytologist 181 (4): 759–776. doi: 10.1111/j.1469-8137.2008.02748.x.
- Verdaguer, D., Jansen, M.A.K., Llorens, L. et al. (2017). UV-A radiation effects on higher plants: exploring the known unknown. Plant Science 255: 72–81. doi: 10.1016/j.plantsci.2016.11.014.
- Vidiella, P.E., Armesto, J.J., and Gutiérrez, J.R. (1999). Vegetation changes and sequential flowering after rain in the southern Atacama desert. Journal of Arid Environments 43 (4): 449–458. doi: 10.1006/jare.1999.0565.
- Von Willert, D., Brinckmann, E., Scheitler, B. et al. (1985). Availability of water controls Crassulacean acid metabolism in succulents of the Richtersveld (Namib desert, South Africa). Planta 164 (1): 44–55.
- Wahid, A., Gelani, S., Ashraf, M. et al. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany 61 (3): 199–223. doi: 10.1016/j.envexpbot.2007.05.011.
- Wang, Y., An, Y., Yu, J. et al. (2016). Different responses of photosystem II and antioxidants to drought stress in two contrasting populations of Sour jujube from the Loess Plateau, China. Ecological Research 31 (6): 761–775. doi: 10.1007/s11284-016-1384-5.
- Wang, L., Wang, L., He, W. et al. (2017). Nutrient resorption or accumulation of desert plants with contrasting sodium regulation strategies. Scientific Reports 7 (1): 17035. doi: 10.1038/s41598-017-17368-0.
- Way, D.A. and Oren, R. (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology 30 (6): 669–688. doi: 10.1093/treephys/tpq015.
- Whiting, S.N., Reeves, R.D., Richards, D. et al. (2004). Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restoration Ecology 12 (1): 106–116. doi: 10.1111/j.1061-2971.2004.00367.x.
- Wildi, B. and Lutz, C. (1996). Antioxidant composition of selected high alpine plant species from different altitudes. Plant, Cell and Environment 19 (2): 138–146. doi: 10.1111/j.1365-3040.1996.tb00235.x.
- Williamson, C.E., Zepp, R.G., Lucas, R.M. et al. (2014). Solar ultraviolet radiation in a changing climate. Nature Climate Change 4 (6): 434–441. doi: 10.1038/nclimate2225.
- Wisniewski, M. and Fuller, M. (1999). Ice nucleation and deep supercooling in plants: new insights using infrared thermography. In: Cold-Adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology (eds. R. Margesin and F. Schinner), 105–118. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-662-06285-2_6.
- Wright, I.J., Reich, P.B., Westoby, M. et al. (2004). The worldwide leaf economics spectrum. Nature 428 (6985): 821–827. doi: 10.1038/nature02403.
- Wright, I.J., Dong, N., Maire, V. et al. (2017). Global climatic drivers of leaf size. Science 357 (6354): 917–921.
- Xia, J. and Wan, S. (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist 179 (2): 428–439. doi: 10.1111/j.1469-8137.2008.02488.x.
- Xiong, F.S., Mueller, E.C., and Day, T.A. (2000). Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes. American Journal of Botany 87 (5): 700–710. doi: 10.2307/2656856.
- Xu, G.-Q., Li, Y., and Xu, H. (2011). Seasonal variation in plant hydraulic traits of two co-occurring desert shrubs, Tamarix ramosissima and Haloxylon ammodendron, with different rooting patterns. Ecological Research 26 (6): 1071–1080. doi: 10.1007/s11284-011-0858-8.
- Yamori, W., Noguchi, K., Hikosaka, K. et al. (2009). Cold-tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species. Plant and Cell Physiology 50 (2): 203–215. doi: 10.1093/pcp/pcn189.
- Yobi, A., Wone, B.W.M., Xu, W. et al. (2012). Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait: comparative metabolomics of desiccation tolerance. The Plant Journal 72 (6): 983–999. doi: 10.1111/tpj.12008.
- Yobi, A., Wone, B.W.M., Xu, W. et al. (2013). Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Molecular Plant 6 (2): 369–385. doi: 10.1093/mp/sss155.
- Young, A. and Lowe, G. (2018). Carotenoids—antioxidant properties. Antioxidants 7 (2): 28. doi: 10.3390/antiox7020028.
- Yruela, I. (2009). Copper in plants: acquisition, transport and interactions. Functional Plant Biology 36 (5): 409. doi: 10.1071/FP08288.
- Yuan, Y., Si, G., Wang, J. et al. (2014). Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. FEMS Microbiology Ecology 87 (1): 121–132. doi: 10.1111/1574-6941.12197.
- Zandalinas, S.I., Mittler, R., Balfagón, D. et al. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum 162 (1): 2–12. doi: 10.1111/ppl.12540.
- Zapata, P.J., Serrano, M., Pretel, M.T. et al. (2004). Polyamines and ethylene changes during germination of different plant species under salinity. Plant Science 167 (4): 781–788. doi: 10.1016/j.plantsci.2004.05.014.
- Zhang, Z., Abuduwaili, J., and Jiang, F. (2013). Determination of occurrence characteristics of heavy metals in soil and water environments in Tianshan Mountains, Central Asia. Analytical Letters 46 (13): 2122–2131. doi: 10.1080/00032719.2013.784919.
- Zhang, X.W., Wang, J.R., Ji, M.F. et al. (2015). Higher thermal acclimation potential of respiration but not photosynthesis in two Alpine Picea taxa in contrast to two lowland congeners. PLoS One 10 (4): e0123248. doi: 10.1371/journal.pone.0123248.
- Zhang, K., Shi, Y., Cui, X. et al. (2019). Salinity is a key determinant for soil microbial communities in a desert ecosystem. mSystems 4 (1): e00225–e00218, /msystems/4/1/msys.00225-18.atom. doi: 10.1128/mSystems.00225-18.
- Zhao, Y., Xu, F., Liu, J. et al. (2019). The adaptation strategies of Herpetospermum pedunculosum (Ser.) Baill at altitude gradient of the Tibetan plateau by physiological and metabolomic methods. BMC Genomics 20 (1): 451. doi: 10.1186/s12864-019-5778-y.
- Zheng, G., Tian, B., Zhang, F. et al. (2011). Plant adaptation to frequent alterations between high and low temperatures: remodelling of membrane lipids and maintenance of unsaturation levels: lipid changes in high-low temperature alteration. Plant, Cell & Environment 34 (9): 1431–1442. doi: 10.1111/j.1365-3040.2011.02341.x.
- Zhou, X., Zhang, Y., Ji, X. et al. (2011). Combined effects of nitrogen deposition and water stress on growth and physiological responses of two annual desert plants in northwestern China. Environmental and Experimental Botany 74: 1–8. doi: 10.1016/j.envexpbot.2010.12.005.
- Zidorn, C. (2010). Altitudinal variation of secondary metabolites in flowering heads of the Asteraceae: trends and causes. Phytochemistry Reviews 9 (2): 197–203. doi: 10.1007/s11101-009-9143-7.
- Zlatev, Z.S., Lidon, J.C., and F. and Kaimakanova, M. (2012). Plant physiological responses to UV-B radiation. Emirates Journal of Food and Agriculture 24 (6). doi: 10.9755/ejfa.v24i6.14669.
10.9755/ejfa.v24i6.14669 Google Scholar
- Zou, T., Li, Y., Xu, H. et al. (2010). Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils. Ecological Research 25 (1): 185–194. doi: 10.1007/s11284-009-0642-1.
Citing Literature
Browse other articles of this reference work: